1
|
He Z, Liu Y, Li Z, Sun T, Li Z, Liu C, Xiang H. Gut Microbiota-Mediated Alterations of Hippocampal CB1R Regulating the Diurnal Variation of Cognitive Impairment Induced by Hepatic Ischemia-Reperfusion Injury in Mice. Neurochem Res 2024; 49:2165-2178. [PMID: 38824460 DOI: 10.1007/s11064-024-04182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and β-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.
Collapse
Affiliation(s)
- Zhigang He
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry Education, Wuhan, China.
| |
Collapse
|
2
|
Wei H, Wang X, Zhong H, Kong X, Zhu J, Li B. Artesunate improves learning and memory impairment in rats with vascular cognitive impairment by down-regulating the level of autophagy in cerebral cortex neurons. Heliyon 2024; 10:e33068. [PMID: 38948049 PMCID: PMC11211894 DOI: 10.1016/j.heliyon.2024.e33068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Background Vascular cognitive impairment (VCI) is the second leading cause of dementia. Cognitive impairment is a common consequence of VCI. However, there is no effective treatment for VCI and the underlying mechanism of its pathogenesis remains unclear. This study to investigate whether artesunate (ART) can improve the learning and memory function in rats with VCI by down-regulating he level of autophagy in cerebral cortex neurons. Methods The models for VCI were the rat bilateral common carotid artery occlusion (BACCO), which were randomized into three groups including the sham operation group (Sham), model + vehicle group (Model) and model + ART group (ART). Then the animal behaviors were recorded, as well as staining the results of cortical neurons. Western blot was performed to determine the protein expressions of LC3BⅡ/Ⅰ, p-AMPK, p-mTOR, and Beclin-1. Results Behavioral outcomes and the protein expressions in Model group were supposedly affected by the induction of autophagy in cerebral cortex neurons. Compared to the Model group, ART improved memory impairment in VCI rats. And the expression of LC3BⅡ/Ⅰ, p-AMPK/AMPK, Beclin-1 is significant decreased in the ART group, while significant increases of p-mTOR/mTOR were showed. These results suggest that ART improved learning and memory impairment in VCI rats by down-regulating the level of autophagy in cerebral cortex neurons. Conclusion The results suggest that autophagy occurs in cerebral cortex neurons in rats with VCI. It is speculated that ART can improve learning and memory impairment in VCI rats by down-regulating the level of autophagy in cerebral cortex neurons.
Collapse
Affiliation(s)
- Honqiao Wei
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, China
| | - Xiaokun Wang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Hequan Zhong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xiangyu Kong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Jie Zhu
- Department of Rehabilitation, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| |
Collapse
|
3
|
Kang K, Wang DP, Lv QL, Chen F. VEGF-A ameliorates ischemia hippocampal neural injury via regulating autophagy and Akt/CREB signaling in a rat model of chronic cerebral hypoperfusion. J Stroke Cerebrovasc Dis 2023; 32:107367. [PMID: 37734181 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) can cause a series of pathophysiological processes, including neuronal autophagy and apoptosis. VEGF-A has been reported to affect angiogenesis and neurogenesis in many CNS diseases. However, its effects on neuronal autophagy and apoptosis, as well as the underlying mechanisms in CCH remain unclear. METHODS To address these issues, the CCH model was established by permanent bilateral common carotid artery occlusion (2VO). Rats were sacrificed at different stages of CCH. Hippocampal morphological and ultrastructural changes were detected using HE staining and electron microscopy. The immunoreactivities of microtubule-associated protein 1 light chain 3 (LC3) and phospho-cAMP response element binding protein (p-CREB) were examined by immunofluorescence staining. The neuronal apoptosis was detected via TUNEL staining. The levels of LC3-II, Beclin-1, Akt, p-Akt, CREB, p-CREB, Caspase-3, and Bad were accessed by Western blotting. Furthermore, mouse hippocampal HT22 neurons received the oxygen and glucose deprivation (OGD) treatment, VEGF-A treatment, and GSK690693 (an Akt inhibitor) treatment, respectively. RESULTS LC3-II protein started to increase at 3 days of CCH, peaked at 4 weeks of CCH, then decreased. CCH increased the levels of LC3-II, Caspase-3, and Bad, and decreased the levels of p-Akt, CREB, and p-CREB, which were reversed by VEGF-A treatment. VEGF-A also improved CCH-induced neuronal ultrastructural injuries and apoptosis in the hippocampus in vitro. In HT22, the anti-apoptosis and pro-phosphorylation of VEGF-A were reversed by GSK690693. CONCLUSION Present results provide a novel neuroprotective effect of VEGF-A in CCH that is related to the inhibition of neuronal autophagy and activation of the Akt/CREB signaling, suggesting a potential therapeutic strategy for ischemic brain damage.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai 200032, China; Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai 200040, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi 330029, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lott J, Jutkiewicz EM, Puthenveedu MA. The Synthetic Cannabinoid WIN55,212-2 Can Disrupt the Golgi Apparatus Independent of Cannabinoid Receptor-1. Mol Pharmacol 2022; 101:371-380. [PMID: 35236771 PMCID: PMC9092469 DOI: 10.1124/molpharm.121.000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
The synthetic cannabinoid WIN55,212-2 (WIN) is widely used as a pharmacological tool to study the biologic activity of cannabinoid receptors. In contrast to many other cannabinoid agonists, however, WIN also causes broad effects outside of neurons, such as reducing inflammatory responses, causing cell cycle arrest, and reducing general protein expression. How exactly WIN causes these broad effects is not known. Here we show that WIN partially disrupts the Golgi apparatus at nanomolar concentrations and fully disperses the Golgi apparatus in neuronal and non-neuronal cells at micromolar concentrations. WIN55,212-3, the enantiomer of WIN; JWH-018, a related alkylindole; or 2-arachidonoylglycerol, an endocannabinoid, did not cause Golgi disruption, suggesting that the effect was specific to the chirality of WIN. WIN treatment also perturbed the microtubule network. Importantly, WIN disrupted the Golgi in primary cortical neurons derived from mice where cannabinoid receptor-1 (CB1) was genetically knocked out, indicating that the effects were independent of CB1 signaling. The Golgi dispersion could not be explained by WIN's action on peroxisome proliferator-activated receptors. Our results show that WIN can disrupt the Golgi apparatus independent of CB1 in cultured cells. These effects could contribute to the unique physiologic effects that WIN exhibits in neuronal behavior, as well as its role as an antiproliferative and anti-inflammatory agent. SIGNIFICANCE STATEMENT: The synthetic cannabinoid WIN55,212-2 (WIN), widely used to investigate the cannabinoid system, also shows unique broader effects at cellular and organismal levels compared to endogenous cannabinoids. Our study shows that WIN can disrupt the Golgi apparatus and the microtubule network in multiple cell types, independent of cannabinoid receptors. These results could explain how WIN reduces surface levels of proteins and contributes to the unique physiological effects observed with WIN.
Collapse
Affiliation(s)
- Joshua Lott
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
5
|
Fields JA, Swinton MK, Montilla-Perez P, Ricciardelli E, Telese F. The Cannabinoid Receptor Agonist, WIN-55212-2, Suppresses the Activation of Proinflammatory Genes Induced by Interleukin 1 Beta in Human Astrocytes. Cannabis Cannabinoid Res 2022; 7:78-92. [PMID: 33998879 PMCID: PMC8864424 DOI: 10.1089/can.2020.0128] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Alterations of astrocyte function play a crucial role in neuroinflammatory diseases due to either the loss of their neuroprotective role or the gain of their toxic inflammatory properties. Accumulating evidence highlights that cannabinoids and cannabinoid receptor agonists, such as WIN55,212-2 (WIN), reduce inflammation in cellular and animal models. Thus, the endocannabinoid system has become an attractive target to attenuate chronic inflammation in neurodegenerative diseases. However, the mechanism of action of WIN in astrocytes remains poorly understood. Objective: We studied the immunosuppressive property of WIN by examining gene expression patterns that were modulated by WIN in reactive astrocytes. Materials and Methods: Transcriptomic analysis by RNA-seq was carried out using primary human astrocyte cultures stimulated by the proinflammatory cytokine interleukin 1 beta (IL1β) in the presence or absence of WIN. Real-time quantitative polymerase chain reaction analysis was conducted on selected transcripts to characterize the dose-response effects of WIN, and to test the effect of selective antagonists of cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptors (PPAR). Results: Transcriptomic analysis showed that the IL1β-induced inflammatory response is robustly inhibited by WIN pretreatment. WIN treatment alone also induced substantial gene expression changes. Pathway analysis revealed that the anti-inflammatory properties of WIN were linked to the regulation of kinase pathways and gene targets of neuroprotective transcription factors, including PPAR and SMAD (mothers against decapentaplegic homolog). The inhibitory effect of WIN was dose-dependent, but it was not affected by selective antagonists of CB1 or PPAR. Conclusions: This study suggests that targeting the endocannabinoid system may be a promising strategy to disrupt inflammatory pathways in reactive astrocytes. The anti-inflammatory activity of WIN is independent of CB1, suggesting that alternative receptors mediate the effects of WIN. These results provide mechanistic insights into the anti-inflammatory activity of WIN and highlight that astrocytes are a potential therapeutic target to ameliorate neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | - Mary K. Swinton
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | | | - Eugenia Ricciardelli
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, California, USA.,*Address correspondence to: Francesca Telese, PhD, Department of Medicine, University of California San Diego, La Jolla, CA 93093, USA,
| |
Collapse
|
6
|
Gao L, Guo X, Liu S, Sun Q, Qin X, Lv P, Hu M, Xu J, Dong Y. Neuroprotective role of DL-3-n-butylphthalide via the Nrf2/SIRT3 pathway in a mouse model of vascular dementia. Brain Res 2022; 1779:147785. [DOI: 10.1016/j.brainres.2022.147785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
|
7
|
WIN55,212-2 Attenuates Cognitive Impairments in AlCl 3 + d-Galactose-Induced Alzheimer's Disease Rats by Enhancing Neurogenesis and Reversing Oxidative Stress. Biomedicines 2021; 9:biomedicines9091270. [PMID: 34572456 PMCID: PMC8465335 DOI: 10.3390/biomedicines9091270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Neurotransmission and cognitive dysfunctions have been linked to old age disorders including Alzheimer’s disease (AD). Aluminium is a known neurotoxic metal, whereas d-galactose (d-gal) has been established as a senescence agent. WIN55,212-2 (WIN), is a potent cannabinoid agonist which partially restores neurogenesis in aged rats. The current study aimed to explore the therapeutic potentials of WIN on Aluminium chloride (AlCl3) and d-gal-induced rat models with cognitive dysfunction. Healthy male albino Wistar rats weighing between 200–250 g were injected with d-gal 60 mg/kg intra peritoneally (i.p), while AlCl3 (200 mg/kg) was orally administered once daily for 10 consecutive weeks. Subsequently, from weeks 8–11 rats were co-administered with WIN (0.5, 1 and 2 mg/kg/day) and donepezil 1 mg/kg. The cognitive functions of the rats were assessed with a Morris water maze (MWM). Furthermore, oxidative stress biomarkers; malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and neurogenesis markers: Nestin and glial fibrillary acidic protein (GFAP) were also evaluated, as well as the histology of the hippocampus. The results revealed that rats exposed to AlCl3 and d-gal alone showed cognitive impairments and marked neuronal loss (p < 0.05) in their hippocampal conus ammonis 1 (CA1). Additionally, a significant decrease in the expressions of GFAP and Nestin was also observed, including increased levels of MDA and decreased levels of SOD and GSH. However, administration of WIN irrespective of the doses given reversed the cognitive impairments and the associated biochemical derangements. As there were increases in the levels SOD, GSH, Nestin and GFAP (p < 0.05), while a significant decrease in the levels of MDA was observed, besides attenuation of the aberrant cytoarchitecture of the rat’s hippocampi. The biochemical profiles of the WIN-treated rats were normal. Thus, these findings offer possible scientific evidence of WIN being an effective candidate in the treatment of AD-related cognitive deficits.
Collapse
|
8
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
9
|
Wang DP, Jin KY, Zhao P, Lin Q, Kang K, Hai J. Neuroprotective Effects of VEGF-A Nanofiber Membrane and FAAH Inhibitor URB597 Against Oxygen-Glucose Deprivation-Induced Ischemic Neuronal Injury. Int J Nanomedicine 2021; 16:3661-3678. [PMID: 34093011 PMCID: PMC8168836 DOI: 10.2147/ijn.s307335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Brain ischemia is a common neurological disorder worldwide that activates a cascade of pathophysiological events involving decreases in oxygen and glucose levels. Despite substantial efforts to explore its pathogenesis, the management of ischemic neuronal injury remains an enormous challenge. Accumulating evidence suggests that VEGF modified nanofiber (NF) materials and the fatty-acid amide hydrolase (FAAH) inhibitor URB597 exert an influence on alleviating ischemic brain damage. We aimed to further investigate their effects on primary hippocampal neurons, as well as the underlying mechanisms following oxygen-glucose deprivation (OGD). METHODS Different layers of VEGF-A loaded polycaprolactone (PCL) nanofibrous membranes were first synthesized by using layer-by-layer (LBL) self-assembly of electrospinning methods. The physicochemical and biological properties of VEGF-A NF membranes, and their morphology, hydrophilicity, and controlled-release of VEGF-A were then estimated. Furthermore, the effects of VEGF-A NF and URB597 on OGD-induced mitochondrial oxidative stress, inflammatory responses, neuronal apoptosis, and endocannabinoid signaling components were assessed. RESULTS The VEGF-A NF membrane and URB597 can not only promote hippocampal neuron adhesion and viability following OGD but also exhibited antioxidant/anti-inflammatory and mitochondrial membrane potential protection. The VEGF-A NF membrane and URB597 also inhibited OGD-induced cellular apoptosis through activating CB1R signaling. These results indicate that VEGF-A could be controlled-released by LBL self-assembled NF membranes. DISCUSSION The VEGF-A NF membrane and URB597 displayed positive synergistic neuroprotective effects through the inhibition of mitochondrial oxidative stress and activation of CB1R/PI3K/AKT/BDNF signaling, suggesting that a VEGF-A loaded NF membrane and the FAAH inhibitor URB597 could be of therapeutic value in ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| | - Peng Zhao
- Institute for Translational Medicine, Institute for Biomedical Engineering and Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Kai Kang
- Department of Research and Surveillance Evaluation, Shanghai Center for Health Promotion, Shanghai, 200040, People’s Republic of China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
10
|
Kuang H, Zhou ZF, Zhu YG, Wan ZK, Yang MW, Hong FF, Yang SL. Pharmacological Treatment of Vascular Dementia: A Molecular Mechanism Perspective. Aging Dis 2021; 12:308-326. [PMID: 33532143 PMCID: PMC7801279 DOI: 10.14336/ad.2020.0427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 11/01/2022] Open
Abstract
Vascular dementia (VaD) is a neurodegenerative disease, with cognitive dysfunction attributable to cerebrovascular factors. At present, it is the second most frequently occurring type of dementia in older adults (after Alzheimer's disease). The underlying etiology of VaD has not been completely elucidated, which limits its management. Currently, there are no approved standard treatments for VaD. The drugs used in VaD are only suitable for symptomatic treatment and cannot prevent or reduce the occurrence and progression of VaD. This review summarizes the current status of pharmacological treatment for VaD, from the perspective of the molecular mechanisms specified in various pathogenic hypotheses, including oxidative stress, the central cholinergic system, neuroinflammation, neuronal apoptosis, and synaptic plasticity. As VaD is a chronic cerebrovascular disease with multifactorial etiology, combined therapy, targeting multiple pathophysiological factors, may be the future trend in VaD.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Kai Wan
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi, China.
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| |
Collapse
|
11
|
Esteves AR, Cardoso SM. Differential protein expression in diverse brain areas of Parkinson's and Alzheimer's disease patients. Sci Rep 2020; 10:13149. [PMID: 32753661 PMCID: PMC7403590 DOI: 10.1038/s41598-020-70174-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Many hypotheses have been postulated to define the etiology of sporadic Parkinson's and Alzheimer's disorders (PD and AD) but there is no consensus on what causes these devastating age-related diseases. Braak staging of both pathologies helped researchers to better understand the progression and to identify their prodromal and symptomatic phases. Indeed, it is well accepted that Lewy body pathology and neurofibrillary tangles appearance correlates with disease progression and severity of symptoms in PD and AD, respectively. Additionally, several studies in PD and AD models try to disclose which cellular mechanisms are defaulted and trigger the neurodegenerative process that culminates with neuronal death causing PD and AD classical symptomatology. Herein, we determined expression levels of proteins involved in microtubule assembly, autophagic-lysosomal pathway and unfolded protein response in the cortex, hippocampus and SNpc of PD and AD patients, vascular dementia patients and aged-match controls. The differential expression allowed us to determine which pathways are determinant to synaptic dysfunction and to establish a time line for disease progression. Our results allow us to challenge the hypothesis that both PD and AD pathologies are caused by α-synuclein or Aβ pathology propagation throughout the brain in a prion-like manner.
Collapse
Affiliation(s)
- A R Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - S M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal. .,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal. .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Wang Q, Yang W, Zhang J, Zhao Y, Xu Y. TREM2 Overexpression Attenuates Cognitive Deficits in Experimental Models of Vascular Dementia. Neural Plast 2020; 2020:8834275. [PMID: 32617097 PMCID: PMC7306072 DOI: 10.1155/2020/8834275] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation plays a prominent role in the pathogenesis of vascular dementia (VD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor mainly expressed on microglia and has been known for its anti-inflammatory properties during immune response. However, data evaluating the effects of TREM2 in VD are lacking. Therefore, the present study is aimed at investigating the role of TREM2 in VD. In this study, the mouse model of VD was induced by transient bilateral common carotid artery occlusion (BCCAO). We compared the hippocampal gene and protein expressions of TREM2 between the VD mice and sham-operated mice at different time points. The TREM2 mRNA and protein expression levels in the VD mice were higher than those in the sham-operated mice. The cognitive deficits of VD mice were observed in the Morris water maze test. Interestingly, overexpression of TREM2 by intracerebroventricular injection of a lentiviral vector that encoded TREM2 (LV-TREM2) significantly improved the spatial learning and memory and attenuated the hippocampal neural loss in VD mice. Further mechanistic study revealed that overexpression of TREM2 significantly inhibited microglia M1 polarization by decreasing inducible nitric oxide synthase (iNOS) and proinflammatory cytokines expression levels and conversely enhanced microglia M2 polarization by increasing Arginase-1 (Arg-1) and anti-inflammatory cytokine expression levels. These results strongly suggest that TREM2 provides a protective effect in VD via modulating the phenotype of activated microglia and may serve as a novel potential therapeutic target for VD.
Collapse
Affiliation(s)
- Qian Wang
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, China
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 271000, China
| | - Weixia Yang
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jingmei Zhang
- Institute of Behavioral Medicine Education, Jining Medical University, Jining, Shandong Province 272067, China
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, China
| | - Yuzhen Xu
- Department of Neurology, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 271000, China
| |
Collapse
|
13
|
Wang DP, Chen SH, Wang D, Kang K, Wu YF, Su SH, Zhang YY, Hai J. Neuroprotective effects of andrographolide on chronic cerebral hypoperfusion-induced hippocampal neuronal damage in rats possibly via PTEN/AKT signaling pathway. Acta Histochem 2020; 122:151514. [PMID: 32019701 DOI: 10.1016/j.acthis.2020.151514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
To explore the potential effects of andrographolide on chronic cerebral hypoperfusion (CCH)-induced neuronal damage as well as the underlying mechanisms. Rat CCH model was established by 2-vessel occlusion (2VO). The CCH rats received andrographolide treatment for 4 weeks. The neuron loss was detected by using neuronal nuclei (NeuN) immunofluorescent staining. The expression levels of phospho-phosphatase and tensin homolog deleted on chromosome ten (p-PTEN), protein kinase B (AKT), p-AKT, and cysteinyl aspartate specific proteinase-3 (Caspase-3) proteins were accessed by Western blotting. Moreover, the neuronal apoptosis of hippocampus tissues was detected via terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL) staining. CCH reduced the number of NeuN-positive cells, while the number was significant increased after andrographolide treatment. CCH increased the proteins expression level of p-PTEN, Caspase-3, and decreased the p-AKT, which were reversed by andrographolide treatment. Furthermore, andrographolide treatment also down-regulated CCH-induced TUNEL-apoptosis rate. Our results suggest that the PTEN/AKT pathway may be modulated by andrographolide and the damaging effects of CCH on hippocampus may be ameliorated by andrographolide treatment. Andrographolide may act as a potential therapeutic approach for chronic ischemic insults.
Collapse
|
14
|
Guo T, Fang J, Tong ZY, He S, Luo Y. Transcranial Direct Current Stimulation Ameliorates Cognitive Impairment via Modulating Oxidative Stress, Inflammation, and Autophagy in a Rat Model of Vascular Dementia. Front Neurosci 2020; 14:28. [PMID: 32063834 PMCID: PMC7000631 DOI: 10.3389/fnins.2020.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
To investigate the potential applications and the molecular mechanisms of transcranial direct current stimulation (tDCS) on cognitive impairment in a vascular dementia (VD) animal model. Sprague-Dawley rats were used in this study. VD rat model was induced by modified permanent bilateral common carotid artery occlusion (2-VO) approach. Anodal tDCS was applied to the animals. Morris water maze was used to analyze spatial memory and navigation ability. The pathological changes in the hippocampal CA1 region and cerebral cortex were examined via Hematoxylin-Eosin staining. The rats were sacrificed for the measurement of the level of superoxide (SOD), glutathione (GSH), reactive oxidative species (ROS), malondialdehyd (MDA), Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α level in the hippocampus. Western blot was carried out to measure the hippocampal expression of microtubule-associated protein 1 light chain 3 (LC-3) and p62. Rats with VD have decreased number of neurons in the hippocampus and cerebral cortex, as well as worse cognitive impairment. The proliferation of activated microglia and astroglia, accompanied with attenuation of myelination were observed in the white matter about 1 month after 2-VO operation. These abnormalities were significantly ameliorated by tDCS treatment. Further study revealed that anodal tDCS could suppress the MDA and ROS level, while enhance the SOD and GSH level to reduce the oxidative stress. Anodal tDCS could inhibit hypoperfusion-induced IL-1β, IL-6, and TNF-α expression to attenuate inflammatory response in hippocampus. Moreover, anodal tDCS treatment could alleviate autophagy level. The study has demonstrated a possible therapeutic role of tDCS in the treatment of cognitive impairment in VD.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong Y Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Luo
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
16
|
The Cannabinoid Receptor Agonist WIN55,212-2 Ameliorates Hippocampal Neuronal Damage After Chronic Cerebral Hypoperfusion Possibly Through Inhibiting Oxidative Stress and ASK1-p38 Signaling. Neurotox Res 2019; 37:847-856. [PMID: 31808139 DOI: 10.1007/s12640-019-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is a major contributor to cognitive decline and degenerative processes leading to Alzheimer's disease, vascular dementia, and aging. However, the delicate mechanism of CCH-induced neuronal damage, and therefore proper treatment, remains unclear. WIN55,212-2 (WIN) is a nonselective cannabinoid receptor agonist that has been shown to have effects on hippocampal neuron survival. In this study, we investigated the potential roles of WIN, as well as its underlying mechanism in a rat CCH model of bilateral common carotid artery occlusion. Hippocampal morphological changes and mitochondrial ultrastructure were detected using hematoxylin and eosin staining and electron microscopy, respectively. Various biomarkers, such as reactive oxidative species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were used to assess the level of oxidative stress in the hippocampus. Furthermore, the expression levels of neuronal nuclei (NeuN), apoptosis signal-regulating kinase 1 (ASK1)-p38 signaling proteins, cleaved Caspase-9 and -3, and cytochrome-c (Cyt-C) were accessed by western blotting. CCH decreased the levels of NeuN, Cyt-C (mitochondrial), SOD, and CAT, and increased the levels of MDA, phosphorylated ASK1 and phosphorylated p38, cleaved Caspase-9 and -3, and Cyt-C (cytoplasm), which were reversed by WIN treatment. Chronic treatment with WIN also improved CCH-induced neuronal degeneration and mitochondrial fragmentation. These findings indicated that WIN may be a potential therapeutic agent for ischemic neuronal damage, involving a mechanism associated with the suppression of oxidative stress and ASK1-p38 signaling.
Collapse
|
17
|
Liu B, Liu J, Zhang J, Mao W, Li S. Effects of autophagy on synaptic-plasticity-related protein expression in the hippocampus CA1 of a rat model of vascular dementia. Neurosci Lett 2019; 707:134312. [DOI: 10.1016/j.neulet.2019.134312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
|
18
|
Wang DP, Yin H, Lin Q, Fang SP, Shen JH, Wu YF, Su SH, Hai J. Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1277-1284. [PMID: 31187188 DOI: 10.1007/s00210-019-01672-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Andrographolide is a medical herbal compound with documented anti-inflammatory activity and therapeutic efficacy in animal models of Alzheimer's disease, traumatic brain injury, and ischemic stroke. The present study examined the potential therapeutic effects of andrographolide on chronic cerebral hypoperfusion (CCH)-induced hippocampal neuronal damage and cognitive dysfunction. A CCH model was established in male Sprague Dawley (SD) rats using 2-vessel occlusion (2VO). After 4 weeks of CCH, spatial learning and memory were assessed in the Morris water maze and structural damage to the hippocampus by hematoxylin and eosin (HE) staining. Astrocyte activation was examined by immunohistochemical staining and Western blotting for glial fibrillary acid protein (GFAP), while expression levels of the pro-inflammatory cytokine-tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), the apoptosis effector cysteinyl aspartate specific proteinase-3 (caspase-3), and the neuroprotectant brain-derived neurotrophic factor (BDNF) and the TrkB receptor were estimated by Western blotting. After 4 weeks of CCH, the hippocampus of 2VO rats exhibited marked neurodegeneration as well as elevated GFAP, TNF-α, IL-1β, and caspase-3 compared to Sham controls. In addition, spatial learning was impaired compared to Sham controls. Andrographolide treatment during CCH suppressed astrocyte activation as evidenced by reduced GFAP expression, enhanced expression of BDNF and TrkB, improved impaired spatial learning and memory, and reversed upregulated TNF-α, IL-1β, and caspase-3 expression. These results reveal a potential neuroprotective effect of andrographolide on hippocampal neuronal damage and cognitive impairment from CCH due to suppression of astrocyte activation and enhancement of BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China.
| | - Hang Yin
- Department of Neurosurgery, Zao Zhuang Municipal Hospital, Zaozhuang, 277000, Shandong, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shu-Ping Fang
- Department of Neurosurgery, Feng Cheng Hospital, Shanghai, 201499, China
| | - Jian-Hua Shen
- Department of Neurosurgery, Affiliated Dongtai Hospital of Nantong University, Nantong, 224200, Jiangsu, China
| | - Yi-Fang Wu
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China.
| |
Collapse
|
19
|
Hort J, Vališ M, Kuča K, Angelucci F. Vascular Cognitive Impairment: Information from Animal Models on the Pathogenic Mechanisms of Cognitive Deficits. Int J Mol Sci 2019; 20:E2405. [PMID: 31096580 PMCID: PMC6566630 DOI: 10.3390/ijms20102405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of cognitive deficit after Alzheimer's disease. Since VCI patients represent an important target population for prevention, an ongoing effort has been made to elucidate the pathogenesis of this disorder. In this review, we summarize the information from animal models on the molecular changes that occur in the brain during a cerebral vascular insult and ultimately lead to cognitive deficits in VCI. Animal models cannot effectively represent the complex clinical picture of VCI in humans. Nonetheless, they allow some understanding of the important molecular mechanisms leading to cognitive deficits. VCI may be caused by various mechanisms and metabolic pathways. The pathological mechanisms, in terms of cognitive deficits, may span from oxidative stress to vascular clearance of toxic waste products (such as amyloid beta) and from neuroinflammation to impaired function of microglia, astrocytes, pericytes, and endothelial cells. Impaired production of elements of the immune response, such as cytokines, and vascular factors, such as insulin-like growth factor 1 (IGF-1), may also affect cognitive functions. No single event could be seen as being the unique cause of cognitive deficits in VCI. These events are interconnected, and may produce cascade effects resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
- International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Martin Vališ
- Department of Neurology, University Hospital Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
| |
Collapse
|
20
|
Sohn E, Kim YJ, Lim HS, Kim BY, Jeong SJ. Hwangryunhaedok-Tang Exerts Neuropreventive Effect on Memory Impairment by Reducing Cholinergic System Dysfunction and Inflammatory Response in a Vascular Dementia Rat Model. Molecules 2019; 24:molecules24020343. [PMID: 30669383 PMCID: PMC6358959 DOI: 10.3390/molecules24020343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023] Open
Abstract
Hwangryunhaedok-tang (HRT) is a traditional oriental herbal formula used in Asian countries for treating inflammatory diseases and controlling fever. Our present study aimed to determine whether HRT has therapeutic effects for patients with vascular dementia (VaD) using a bilateral common carotid artery occlusion (BCCAO) rat model and assessing spatial memory impairment and activation of neuroinflammation. BCCAO was performed in male Sprague Dawley rats to induce VaD, and oral HRT was administered daily for 30 d. Our data showed that HRT ameliorated BCCAO-induced memory and cognitive impairment in behavioral tests. In addition, HRT reversed cholinergic dysfunction and neuronal damage in the hippocampus of BCCAO rats. Furthermore, HRT attenuated microglial activation and reduced the phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) induced by BCCAO. Simultaneous high-performance liquid chromatography analysis of HRT using index compounds from the herbal composition revealed that both HRT ethanol extract and commercial HRT granules primarily comprise geniposide, baicalin, and berberine. Our study showed that HRT administration resulted in the prevention of neuronal injury induced by BCCAO through improvement of cholinergic dysfunction and inhibition of neuroinflammatory responses, suggesting that HRT may have potential as a treatment for VaD.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|