1
|
Erdogan MA, Nesil P, Altuntas I, Sirin C, Uyanikgil Y, Erbas O. Amelioration of propionic acid-induced autism spectrum disorder in rats through dapagliflozin: The role of IGF-1/IGFBP-3 and the Nrf2 antioxidant pathway. Neuroscience 2024; 554:16-25. [PMID: 39004410 DOI: 10.1016/j.neuroscience.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The biological effects of dapagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, reveal its antioxidant and anti-inflammatory properties, suggesting therapeutic benefits beyond glycemic control. This study explores the neuroprotective effects of dapagliflozin in a rat model of autism spectrum disorder (ASD) induced by propionic acid (PPA), characterized by social interaction deficits, communication challenges, repetitive behaviors, cognitive impairments, and oxidative stress. Our research aims to find effective treatments for ASD, a condition with limited therapeutic options and significant impacts on individuals and families. PPA induces ASD-like symptoms in rodents, mimicking biochemical and behavioral features of human ASD. This study explores dapagliflozin's potential to mitigate these symptoms, providing insights into novel therapeutic avenues. The findings demonstrate that dapagliflozin enhances the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and increases levels of neurotrophic and growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor-binding protein-3 (IGFBP-3). Additionally, dapagliflozin reduces pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17), and decreases the oxidative stress marker malondialdehyde (MDA). Dapagliflozin's antioxidant properties support cognitive functions by modulating apoptotic mechanisms and enhancing antioxidant capacity. These combined effects contribute to reducing learning and memory impairments in PPA-induced ASD, highlighting dapagliflozin's potential as an adjunctive therapy for oxidative stress and inflammation-related cognitive decline in ASD. This study underscores the importance of exploring new therapeutic strategies targeting molecular pathways involved in the pathophysiology of ASD, potentially improving the quality of life for individuals affected by this disorder.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Izmir Katip Celebi University, Faculty of Medicine, Izmir, Turkey.
| | - Pemra Nesil
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | | | - Cansın Sirin
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Oytun Erbas
- Demiroglu Bilim University, Department of Physiology, İstanbul, Turkey
| |
Collapse
|
2
|
Weng Y, Huang Y, Qian M, Jin Y. Epoxiconazole disturbed metabolic balance and gut microbiota homeostasis in juvenile zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105993. [PMID: 39084794 DOI: 10.1016/j.pestbp.2024.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Epoxiconazole (EPX) is a broad-spectrum fungicide extensively used in agricultural pest control. Emerging evidence suggests that EPX can adversely affect different endpoints in non-target organisms. Here, the toxicity of EPX was assessed using earlier developmental stage of zebrafish as a model to investigate its effects on metabolism and intestinal microbiota after 21 days of exposure. Our findings indicated that EPX exposure resulted in physiological alterations in juvenile zebrafish, including increase in triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and glycose (Glu). Nile red staining demonstrated enhanced lipid accumulation in juvenile, accompanied by a marked upregulation in the expression of genes associated with TG synthesis. Moreover, EPX led to alterations in amino acids and carnitines levels in 21 dpf (days post fertilization) zebrafish. We also observed that EPX disrupted intestinal barrier function in juvenile zebrafish, manifested by decreasing mucus secretion and changing in genes related to tight junctions. Moreover, for a more comprehensive analysis of the intestinal microbiota in 21 dpf zebrafish, the intestine tissues were dissected under a microscope for 16S rRNA sequencing analysis. The results revealed that EPX altered the structure and abundance of intestinal microflora in zebrafish, including decreased alpha diversity indices and shifted in bacteria at phylum and genus levels. Notably, the correlation analysis demonstrated strong associations between alterations in various pathogenic bacterial genera and levels of amino acids and carnitines. Overall, these findings confirm that the fungicide EPX promotes metabolic disorders and alterations in the intestinal micro-environment in 21 dpf zebrafish, shedding light on the toxicologic effects of chemicals to aquatic organisms during the development stage.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
3
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
4
|
Zheng L, Jiao Y, Zhong H, Tan Y, Yin Y, Liu Y, Liu D, Wu M, Wang G, Huang J, Wang P, Qin M, Wang M, Xiao Y, Lv T, Luo Y, Hu H, Hou ST, Kui L. Human-derived fecal microbiota transplantation alleviates social deficits of the BTBR mouse model of autism through a potential mechanism involving vitamin B 6 metabolism. mSystems 2024; 9:e0025724. [PMID: 38780265 PMCID: PMC11237617 DOI: 10.1128/msystems.00257-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by social communication deficiencies and stereotypic behaviors influenced by hereditary and/or environmental risk factors. There are currently no approved medications for treating the core symptoms of ASD. Human fecal microbiota transplantation (FMT) has emerged as a potential intervention to improve autistic symptoms, but the underlying mechanisms are not fully understood. In this study, we evaluated the effects of human-derived FMT on behavioral and multi-omics profiles of the BTBR mice, an established model for ASD. FMT effectively alleviated the social deficits in the BTBR mice and normalized their distinct plasma metabolic profile, notably reducing the elevated long-chain acylcarnitines. Integrative analysis linked these phenotypic changes to specific Bacteroides species and vitamin B6 metabolism. Indeed, vitamin B6 supplementation improved the social behaviors in BTBR mice. Collectively, these findings shed new light on the interplay between FMT and vitamin B6 metabolism and revealed a potential mechanism underlying the therapeutic role of FMT in ASD.IMPORTANCEAccumulating evidence supports the beneficial effects of human fecal microbiota transplantation (FMT) on symptoms associated with autism spectrum disorder (ASD). However, the precise mechanism by which FMT induces a shift in the microbiota and leads to symptom improvement remains incompletely understood. This study integrated data from colon-content metagenomics, colon-content metabolomics, and plasma metabolomics to investigate the effects of FMT treatment on the BTBR mouse model for ASD. The analysis linked the amelioration of social deficits following FMT treatment to the restoration of mitochondrial function and the modulation of vitamin B6 metabolism. Bacterial species and compounds with beneficial roles in vitamin B6 metabolism and mitochondrial function may further contribute to improving FMT products and designing novel therapies for ASD treatment.
Collapse
Affiliation(s)
- Lifeng Zheng
- Brain Research Centre and Department of Neuroscience, Southern University of Science and Technology, Shenzhen, China
- Xbiome Co. Ltd., Shenzhen, China
| | - Yinming Jiao
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Haolin Zhong
- Brain Research Centre and Department of Neuroscience, Southern University of Science and Technology, Shenzhen, China
| | - Yan Tan
- Xbiome Co. Ltd., Shenzhen, China
| | | | | | - Ding Liu
- Xbiome Co. Ltd., Shenzhen, China
| | - Manli Wu
- Xbiome Co. Ltd., Shenzhen, China
| | - Guoyun Wang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | | | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Tiying Lv
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yangzi Luo
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Han Hu
- Xbiome Co. Ltd., Shenzhen, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Neuroscience, Southern University of Science and Technology, Shenzhen, China
| | - Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
5
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
6
|
Kaupper CS, Blaauwendraad SM, Cecil CAM, Mulder RH, Gaillard R, Goncalves R, Borggraefe I, Koletzko B, Jaddoe VWV. Cord Blood Metabolite Profiles and Their Association with Autistic Traits in Childhood. Metabolites 2023; 13:1140. [PMID: 37999236 PMCID: PMC10672851 DOI: 10.3390/metabo13111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition. Gene-environmental interactions in early stages of life might alter metabolic pathways, possibly contributing to ASD pathophysiology. Metabolomics may serve as a tool to identify underlying metabolic mechanisms contributing to ASD phenotype and could help to unravel its complex etiology. In a population-based, prospective cohort study among 783 mother-child pairs, cord blood serum concentrations of amino acids, non-esterified fatty acids, phospholipids, and carnitines were obtained using liquid chromatography coupled with tandem mass spectrometry. Autistic traits were measured at the children's ages of 6 (n = 716) and 13 (n = 648) years using the parent-reported Social Responsiveness Scale. Lower cord blood concentrations of SM.C.39.2 and NEFA16:1/16:0 were associated with higher autistic traits among 6-year-old children, adjusted for sex and age at outcome. After more stringent adjustment for confounders, no significant associations of cord blood metabolites and autistic traits at ages 6 and 13 were detected. Differences in lipid metabolism (SM and NEFA) might be involved in ASD-related pathways and are worth further investigation.
Collapse
Affiliation(s)
- Christin S. Kaupper
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Rosa H. Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Romy Goncalves
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Comprehensive Epilepsy Center for Children and Adolescents, Dr. von Hauner Children’s Hospital, LMU University Hospitals, LMU—Ludwig-Maximilians Universität, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU University Hospitals, LMU—Ludwig-Maximilians Universität, 80337 Munich, Germany
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
7
|
Smith AM, Donley ELR, Ney DM, Amaral DG, Burrier RE, Natowicz MR. Metabolomic biomarkers in autism: identification of complex dysregulations of cellular bioenergetics. Front Psychiatry 2023; 14:1249578. [PMID: 37928922 PMCID: PMC10622772 DOI: 10.3389/fpsyt.2023.1249578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD or autism) is a phenotypically and etiologically heterogeneous condition. Identifying biomarkers of clinically significant metabolic subtypes of autism could improve understanding of its underlying pathophysiology and potentially lead to more targeted interventions. We hypothesized that the application of metabolite-based biomarker techniques using decision thresholds derived from quantitative measurements could identify autism-associated subpopulations. Metabolomic profiling was carried out in a case-control study of 499 autistic and 209 typically developing (TYP) children, ages 18-48 months, enrolled in the Children's Autism Metabolome Project (CAMP; ClinicalTrials.gov Identifier: NCT02548442). Fifty-four metabolites, associated with amino acid, organic acid, acylcarnitine and purine metabolism as well as microbiome-associated metabolites, were quantified using liquid chromatography-tandem mass spectrometry. Using quantitative thresholds, the concentrations of 4 metabolites and 149 ratios of metabolites were identified as biomarkers, each identifying subpopulations of 4.5-11% of the CAMP autistic population. A subset of 42 biomarkers could identify CAMP autistic individuals with 72% sensitivity and 90% specificity. Many participants were identified by several metabolic biomarkers. Using hierarchical clustering, 30 clusters of biomarkers were created based on participants' biomarker profiles. Metabolic changes associated with the clusters suggest that altered regulation of cellular metabolism, especially of mitochondrial bioenergetics, were common metabolic phenotypes in this cohort of autistic participants. Autism severity and cognitive and developmental impairment were associated with increased lactate, many lactate containing ratios, and the number of biomarker clusters a participant displayed. These studies provide evidence that metabolic phenotyping is feasible and that defined autistic subgroups can lead to enhanced understanding of the underlying pathophysiology and potentially suggest pathways for targeted metabolic treatments.
Collapse
Affiliation(s)
- Alan M. Smith
- Stemina Biomarker Discovery, Inc, Madison, WI, United States
| | | | - Denise M. Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Davis, CA, United States
| | | | - Marvin R. Natowicz
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, Francavilla R, Cristofori F. Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023; 15:nu15071620. [PMID: 37049461 PMCID: PMC10096948 DOI: 10.3390/nu15071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multifactorial etiology, characterized by impairment in two main functional areas: (1) communication and social interactions, and (2) skills, interests and activities. ASD patients often suffer from gastrointestinal symptoms associated with dysbiotic states and a “leaky gut.” A key role in the pathogenesis of ASD has been attributed to the gut microbiota, as it influences central nervous system development and neuropsychological and gastrointestinal homeostasis through the microbiota–gut–brain axis. A state of dysbiosis with a reduction in the Bacteroidetes/Firmicutes ratio and Bacteroidetes level and other imbalances is common in ASD. In recent decades, many authors have tried to study and identify the microbial signature of ASD through in vivo and ex vivo studies. In this regard, the advent of metabolomics has also been of great help. Based on these data, several therapeutic strategies, primarily the use of probiotics, are investigated to improve the symptoms of ASD through the modulation of the microbiota. However, although the results are promising, the heterogeneity of the studies precludes concrete evidence. The aim of this review is to explore the role of intestinal barrier dysfunction, the gut–brain axis and microbiota alterations in ASD and the possible role of probiotic supplementation in these patients.
Collapse
|
9
|
Cao C, Li Q, Chen Y, Zou M, Sun C, Li X, Wu L. Untargeted Metabolomic Analysis Reveals the Metabolic Disturbances and Exacerbation of Oxidative Stress in the Cerebral Cortex of a BTBR Mouse Model of Autism. J Mol Neurosci 2023; 73:15-27. [PMID: 36574152 DOI: 10.1007/s12031-022-02096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
The etiology and pathology of autism spectrum disorders (ASDs) are still poorly understood, which largely limit the treatment and diagnosis of ASDs. Emerging evidence supports that abnormal metabolites in the cerebral cortex of a BTBR mouse model of autism are involved in the pathogenesis of autism. However, systematic study on global metabolites in the cerebral cortex of BTBR mice has not been conducted. The current study aims to characterize metabolic changes in the cerebral cortex of BTBR mice by using an untargeted metabolomic approach based on UPLC-Q-TOF/MS. C57BL/6 J mice were used as a control group. A total of 14 differential metabolites were identified. Compared with the control group, the intensities of PI(16:0/22:5(4Z,7Z,10Z,13Z,16Z)), PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(9Z)), PA(16:0/18:1(11Z)), 17-beta-estradiol-3-glucuronide, and N6,N6,N6-trimethyl-L-lysine decreased significantly (p < 0.01) and the intensities of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, LysoPC(20:4(5Z,8Z,11Z,14Z)/0:0), adenosine monophosphate, adenosine-5'-phosphosulfate, LacCer(d18:1/12:0),3-dehydro-L-gulonate, N-(1-deoxy-1-fructosyl)tryptophan, homovanillic acid, and LPA(0:0/18:1(9Z)) increased significantly (p < 0.01) in the BTBR group. These changes in metabolites were closely related to perturbations in lipid metabolism, energy metabolism, purine metabolism, sulfur metabolism, amino acid metabolism, and carnitine biosynthesis. Notably, exacerbation of the oxidative stress response caused by differential prooxidant metabolites led to alteration of antioxidative systems in the cerebral cortex and resulted in mitochondrial dysfunction, further leading to abnormal energy metabolism as an etiological mechanism of autism. A central role of abnormal metabolites in neurological functions associated with behavioral outcomes and disturbance of sulfur metabolism and carnitine biosynthesis were found in the cerebral cortex of BTBR mice, which helped increase our understanding for exploring the pathological mechanism of autism.
Collapse
Affiliation(s)
- Can Cao
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qi Li
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yanping Chen
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiangning Li
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
10
|
Boktor JC, Adame MD, Rose DR, Schumann CM, Murray KD, Bauman MD, Careaga M, Mazmanian SK, Ashwood P, Needham BD. Global metabolic profiles in a non-human primate model of maternal immune activation: implications for neurodevelopmental disorders. Mol Psychiatry 2022; 27:4959-4973. [PMID: 36028571 PMCID: PMC9772216 DOI: 10.1038/s41380-022-01752-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023]
Abstract
Epidemiological evidence implicates severe maternal infections as risk factors for neurodevelopmental disorders, such as ASD and schizophrenia. Accordingly, animal models mimicking infection during pregnancy, including the maternal immune activation (MIA) model, result in offspring with neurobiological, behavioral, and metabolic phenotypes relevant to human neurodevelopmental disorders. Most of these studies have been performed in rodents. We sought to better understand the molecular signatures characterizing the MIA model in an organism more closely related to humans, rhesus monkeys (Macaca mulatta), by evaluating changes in global metabolic profiles in MIA-exposed offspring. Herein, we present the global metabolome in six peripheral tissues (plasma, cerebrospinal fluid, three regions of intestinal mucosa scrapings, and feces) from 13 MIA and 10 control offspring that were confirmed to display atypical neurodevelopment, elevated immune profiles, and neuropathology. Differences in lipid, amino acid, and nucleotide metabolism discriminated these MIA and control samples, with correlations of specific metabolites to behavior scores as well as to cytokine levels in plasma, intestinal, and brain tissues. We also observed modest changes in fecal and intestinal microbial profiles, and identify differential metabolomic profiles within males and females. These findings support a connection between maternal immune activation and the metabolism, microbiota, and behavioral traits of offspring, and may further the translational applications of the MIA model and the advancement of biomarkers for neurodevelopmental disorders such as ASD or schizophrenia.
Collapse
Affiliation(s)
- Joseph C Boktor
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark D Adame
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Cynthia M Schumann
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Karl D Murray
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sarkis K Mazmanian
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA.
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Brittany D Needham
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Yang G, Weng Y, Zhao Y, Wang D, Luo T, Jin Y. Transcriptomic and targeted metabolomic analysis revealed the toxic effects of prochloraz on larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153625. [PMID: 35124026 DOI: 10.1016/j.scitotenv.2022.153625] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Prochloraz (PCZ), an imidazole fungicide, has been extensively used in horticulture and agriculture to protect against pests and diseases. To investigate the potential toxicity of PCZ on aquatic organisms, larval zebrafish, as a model, were exposed to a series of concentrations (0, 20, 100, and 500 μg/L) of PCZ for 7 days. With transcriptomic analysis, we found that exposure to high dose PCZ could produce 76 downregulated and 345 upregulated differential expression genes (DEGs). Bioinformatics analysis revealed that most of the DEGs were characterized in the pathways of glycolipid metabolism, amino acid metabolism and oxidative stress in larval zebrafish. Targeted metabolomic analysis was conducted to verify the effects of PCZ on the levels of acyl-carnitines and some amino acids in larval zebrafish. In addition, biochemical indicators related to glycolipid metabolism were affected obviously, manifested as elevated triglyceride (TG) levels and decreased glucose (Glu) levels in whole larvae. The expression levels of genes associated with glycolipid metabolism were affected in larvae after exposure to PCZ (PK, GK, PEPckc, SREBP, ACO). Interestingly, we further confirmed that PCZ could induce oxidative stress by the changing enzyme activities (T-GSH, GSSG) and upregulating several related genes levels in larval zebrafish. Generally, our results revealed that the endpoints related to glycolipid metabolism, amino acid metabolism and oxidative stress were influenced by PCZ in larval zebrafish.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
12
|
Likhitweerawong N, Thonusin C, Boonchooduang N, Louthrenoo O, Nookaew I, Chattipakorn N, Chattipakorn SC. Profiles of urine and blood metabolomics in autism spectrum disorders. Metab Brain Dis 2021; 36:1641-1671. [PMID: 34338974 PMCID: PMC8502415 DOI: 10.1007/s11011-021-00788-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023]
Abstract
Early diagnosis and treatment for autism spectrum disorder (ASD) pose challenges. The current diagnostic approach for ASD is mainly clinical assessment of patient behaviors. Biomarkers-based identification of ASD would be useful for pediatricians. Currently, there is no specific treatment for ASD, and evidence for the efficacy of alternative treatments remains inconclusive. The prevalence of ASD is increasing, and it is becoming more urgent to find the pathogenesis of such disorder. Metabolomic studies have been used to deeply investigate the alteration of metabolic pathways, including those associated with ASD. Metabolomics is a promising tool for identifying potential biomarkers and possible pathogenesis of ASD. This review comprehensively summarizes and discusses the abnormal metabolic pathways in ASD children, as indicated by evidence from metabolomic studies in urine and blood. In addition, the targeted interventions that could correct the metabolomic profiles relating to the improvement of autistic behaviors in affected animals and humans have been included. The results revealed that the possible underlying pathophysiology of ASD were alterations of amino acids, reactive oxidative stress, neurotransmitters, and microbiota-gut-brain axis. The potential common pathways shared by animal and human studies related to the improvement of ASD symptoms after pharmacological interventions were mammalian-microbial co-metabolite, purine metabolism, and fatty acid oxidation. The content of this review may contribute to novel biomarkers for the early diagnosis of ASD and possible therapeutic paradigms.
Collapse
Affiliation(s)
- Narueporn Likhitweerawong
- Division of Growth and Development, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sriphum, Muang, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nonglak Boonchooduang
- Division of Growth and Development, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Orawan Louthrenoo
- Division of Growth and Development, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Arkanasa, USA
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sriphum, Muang, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sriphum, Muang, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Peralta-Marzal LN, Prince N, Bajic D, Roussin L, Naudon L, Rabot S, Garssen J, Kraneveld AD, Perez-Pardo P. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. Int J Mol Sci 2021; 22:10052. [PMID: 34576216 PMCID: PMC8470471 DOI: 10.3390/ijms221810052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lucía N. Peralta-Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Naika Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Djordje Bajic
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA;
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Léa Roussin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Laurent Naudon
- CNRS, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sylvie Rabot
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| |
Collapse
|
14
|
Potential Role of L-Carnitine in Autism Spectrum Disorder. J Clin Med 2021; 10:jcm10061202. [PMID: 33805796 PMCID: PMC8000371 DOI: 10.3390/jcm10061202] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
L-carnitine plays an important role in the functioning of the central nervous system, and especially in the mitochondrial metabolism of fatty acids. Altered carnitine metabolism, abnormal fatty acid metabolism in patients with autism spectrum disorder (ASD) has been documented. ASD is a complex heterogeneous neurodevelopmental condition that is usually diagnosed in early childhood. Patients with ASD require careful classification as this heterogeneous clinical category may include patients with an intellectual disability or high functioning, epilepsy, language impairments, or associated Mendelian genetic conditions. L-carnitine participates in the long-chain oxidation of fatty acids in the brain, stimulates acetylcholine synthesis (donor of the acyl groups), stimulates expression of growth-associated protein-43, prevents cell apoptosis and neuron damage and stimulates neurotransmission. Determination of L-carnitine in serum/plasma and analysis of acylcarnitines in a dried blood spot may be useful in ASD diagnosis and treatment. Changes in the acylcarnitine profiles may indicate potential mitochondrial dysfunctions and abnormal fatty acid metabolism in ASD children. L-carnitine deficiency or deregulation of L-carnitine metabolism in ASD is accompanied by disturbances of other metabolic pathways, e.g., Krebs cycle, the activity of respiratory chain complexes, indicative of mitochondrial dysfunction. Supplementation of L-carnitine may be beneficial to alleviate behavioral and cognitive symptoms in ASD patients.
Collapse
|
15
|
Needham BD, Adame MD, Serena G, Rose DR, Preston GM, Conrad MC, Campbell AS, Donabedian DH, Fasano A, Ashwood P, Mazmanian SK. Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biol Psychiatry 2021; 89:451-462. [PMID: 33342544 PMCID: PMC7867605 DOI: 10.1016/j.biopsych.2020.09.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal dysfunction, and altered gut microbiome compositions. METHODS We sought to better understand nonbehavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (ultrahigh performance liquid chromatography-tandem mass spectrometry) with broad panels of identified metabolites. Herein, we compared the global metabolome of 231 plasma and 97 fecal samples from a large cohort of children with ASD and typically developing control children. RESULTS Differences in amino acid, lipid, and xenobiotic metabolism distinguished ASD and typically developing samples. Our results implicated oxidative stress and mitochondrial dysfunction, hormone level elevations, lipid profile changes, and altered levels of phenolic microbial metabolites. We also revealed correlations between specific metabolite profiles and clinical behavior scores. Furthermore, a summary of metabolites modestly associated with gastrointestinal dysfunction in ASD is provided, and a pilot study of metabolites that can be transferred via fecal microbial transplant into mice is identified. CONCLUSIONS These findings support a connection between metabolism, gastrointestinal physiology, and complex behavioral traits and may advance discovery and development of molecular biomarkers for ASD.
Collapse
Affiliation(s)
- Brittany D. Needham
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark D. Adame
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Destanie R. Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA,The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | | | | | | | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA,The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sarkis K. Mazmanian
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
16
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
17
|
Pacheva I, Ivanov I. Targeted Biomedical Treatment for Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4430-4453. [PMID: 31801452 DOI: 10.2174/1381612825666191205091312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND A diagnosis of autism spectrum disorders (ASD) represents presentations with impairment in communication and behaviour that vary considerably in their clinical manifestations and etiology as well as in their likely pathophysiology. A growing body of data indicates that the deleterious effect of oxidative stress, mitochondrial dysfunction, immune dysregulation and neuroinflammation, as well as their interconnections are important aspects of the pathophysiology of ASD. Glutathione deficiency decreases the mitochondrial protection against oxidants and tumor necrosis factor (TNF)-α; immune dysregulation and inflammation inhibit mitochondrial function through TNF-α; autoantibodies against the folate receptors underpin cerebral folate deficiency, resulting in disturbed methylation, and mitochondrial dysfunction. Such pathophysiological processes can arise from environmental and epigenetic factors as well as their combined interactions, such as environmental toxicant exposures in individuals with (epi)genetically impaired detoxification. The emerging evidence on biochemical alterations in ASD is forming the basis for treatments aimed to target its biological underpinnings, which is of some importance, given the uncertain and slow effects of the various educational interventions most commonly used. METHODS Literature-based review of the biomedical treatment options for ASD that are derived from established pathophysiological processes. RESULTS Most proposed biomedical treatments show significant clinical utility only in ASD subgroups, with specified pre-treatment biomarkers that are ameliorated by the specified treatment. For example, folinic acid supplementation has positive effects in ASD patients with identified folate receptor autoantibodies, whilst the clinical utility of methylcobalamine is apparent in ASD patients with impaired methylation capacity. Mitochondrial modulating cofactors should be considered when mitochondrial dysfunction is evident, although further research is required to identify the most appropriate single or combined treatment. Multivitamins/multiminerals formulas, as well as biotin, seem appropriate following the identification of metabolic abnormalities, with doses tapered to individual requirements. A promising area, requiring further investigations, is the utilization of antipurinergic therapies, such as low dose suramin. CONCLUSION The assessment and identification of relevant physiological alterations and targeted intervention are more likely to produce positive treatment outcomes. As such, current evidence indicates the utility of an approach based on personalized and evidence-based medicine, rather than treatment targeted to all that may not always be beneficial (primum non nocere).
Collapse
Affiliation(s)
- Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
18
|
Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020; 502:41-54. [DOI: 10.1016/j.cca.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
19
|
Bene J, Szabo A, Komlósi K, Melegh B. Mass Spectrometric Analysis of L-carnitine and its Esters: Potential Biomarkers of Disturbances in Carnitine Homeostasis. Curr Mol Med 2020; 20:336-354. [PMID: 31729298 PMCID: PMC7231908 DOI: 10.2174/1566524019666191113120828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE After a golden age of classic carnitine research three decades ago, the spread of mass spectrometry opened new perspectives and a much better understanding of the carnitine system is available nowadays. In the classic period, several human and animal studies were focused on various distinct physiological functions of this molecule and these revealed different aspects of carnitine homeostasis in normal and pathological conditions. Initially, the laboratory analyses were based on the classic or radioenzymatic assays, enabling only the determination of free and total carnitine levels and calculation of total carnitine esters' amount without any information on the composition of the acyl groups. The introduction of mass spectrometry allowed the measurement of free carnitine along with the specific and sensitive determination of different carnitine esters. Beyond basic research, mass spectrometry study of carnitine esters was introduced into the newborn screening program because of being capable to detect more than 30 metabolic disorders simultaneously. Furthermore, mass spectrometry measurements were performed to investigate different disease states affecting carnitine homeostasis, such as diabetes, chronic renal failure, celiac disease, cardiovascular diseases, autism spectrum disorder or inflammatory bowel diseases. RESULTS This article will review the recent advances in the field of carnitine research with respect to mass spectrometric analyses of acyl-carnitines in normal and various pathological states. CONCLUSION The growing number of publications using mass spectrometry as a tool to investigate normal physiological conditions or reveal potential biomarkers of primary and secondary carnitine deficiencies shows that this tool brought a new perspective to carnitine research.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andras Szabo
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Katalin Komlósi
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
20
|
Guevara-Campos J, González-Guevara L, Guevara-González J, Cauli O. First Case Report of Primary Carnitine Deficiency Manifested as Intellectual Disability and Autism Spectrum Disorder. Brain Sci 2019; 9:brainsci9060137. [PMID: 31200524 PMCID: PMC6628273 DOI: 10.3390/brainsci9060137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Systemic primary carnitine deficiency (PCD) is a genetic disorder caused by decreased or absent organic cation transporter type 2 (OCTN2) carnitine transporter activity, resulting in low serum carnitine levels and decreased carnitine accumulation inside cells. In early life, PCD is usually diagnosed as a metabolic decompensation, presenting as hypoketotic hypoglycemia, Reye syndrome, or sudden infant death; in childhood, PCD presents with skeletal or cardiac myopathy. However, the clinical presentation of PCD characterized by autism spectrum disorder (ASD) with intellectual disability (ID) has seldom been reported in the literature. In this report, we describe the clinical features of a seven-year-old girl diagnosed with PCD who presented atypical features of the disease, including a developmental delay involving language skills, concentration, and attention span, as well as autistic features and brain alterations apparent in magnetic resonance imaging. We aim to highlight the difficulties related to the diagnostic and therapeutic approaches used to diagnose such patients. The case reported here presented typical signs of PCD, including frequent episodes of hypoglycemia, generalized muscle weakness, decreased muscle mass, and physical growth deficits. A molecular genetic study confirmed the definitive diagnosis of the disease (c.1345T>G (p.Y449D)) in gene SLC22A5, located in exon 8. PCD can be accompanied by less common clinical signs, which may delay its diagnosis because the resulting global clinical picture can closely resemble other metabolic disorders. In this case, the patient was prescribed a carnitine-enriched diet, as well as oral carnitine at a dose of 100 mg/kg/day. PCD has a better prognosis if it is diagnosed and treated early; however, a high level of clinical suspicion is required for its timely and accurate diagnosis.
Collapse
Affiliation(s)
- José Guevara-Campos
- "Felipe Guevara Rojas" Hospital, Pediatrics Service, University of Oriente, El Tigre-Anzoátegui 6034, Venezuela.
| | - Lucía González-Guevara
- "Felipe Guevara Rojas" Hospital, Epilepsy and Encephalography Unit, El Tigre-Anzoátegui 6034, Venezuela.
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
21
|
Demarquoy C, Demarquoy J. Autism and carnitine: A possible link. World J Biol Chem 2019; 10:7-16. [PMID: 30622681 PMCID: PMC6314880 DOI: 10.4331/wjbc.v10.i1.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
Patients with autism spectrum disorders (ASD) present deficits in social interactions and communication, they also show limited and stereotypical patterns of behaviors and interests. The pathophysiological bases of ASD have not been defined yet. Many factors seem to be involved in the onset of this disorder. These include genetic and environmental factors, but autism is not linked to a single origin, only. Autism onset can be connected with various factors such as metabolic disorders: including carnitine deficiency. Carnitine is a derivative of two amino acid lysine and methionine. Carnitine is a cofactor for a large family of enzymes: the carnitine acyltransferases. Through their action these enzymes (and L-carnitine) are involved in energy production and metabolic homeostasis. Some people with autism (less than 20%) seem to have L-carnitine metabolism disorders and for these patients, a dietary supplementation with L-carnitine is beneficial. This review summarizes the available information on this topic.
Collapse
Affiliation(s)
- Caroline Demarquoy
- DATSA 71 - Foyer Marie-José Marchand, 5 allée du Carrouge, Sennecey-le-Grand 71240, France
| | - Jean Demarquoy
- Université de Bourgogne-Agrosup Dijon, UMR PAM, 6 blvd Gabriel, Dijon 21000, France
| |
Collapse
|
22
|
Shen L, Zhao Y, Zhang H, Feng C, Gao Y, Zhao D, Xia S, Hong Q, Iqbal J, Liu XK, Yao F. Advances in Biomarker Studies in Autism Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:207-233. [PMID: 30747425 DOI: 10.1007/978-3-030-05542-4_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental condition that begins early in childhood and lasts throughout life. The epidemiology of ASD is continuously increasing all over the world with huge social and economical burdens. As the etiology of autism is not completely understood, there is still no medication available for the treatment of this disorder. However, some behavioral interventions are available to improve the core and associated symptoms of autism, particularly when initiated at an early stage. Thus, there is an increasing demand for finding biomarkers for ASD. Although diagnostic biomarkers have not yet been established, research efforts have been carried out in neuroimaging and biological analyses including genomics and gene testing, proteomics, metabolomics, transcriptomics, and studies of the immune system, inflammation, and microRNAs. Here, we will review the current progress in these fields and focus on new methods, developments, research strategies, and studies of blood-based biomarkers.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China.
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, People's Republic of China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Sijian Xia
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, People's Republic of China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Xu Kun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|