1
|
Lian J, Xia L, Wang G, Wu W, Yi P, Li M, Su X, Chen Y, Li X, Dou F, Wang Z. Multi-omics evaluation of clinical-grade human umbilical cord-derived mesenchymal stem cells in synergistic improvement of aging related disorders in a senescence-accelerated mouse model. Stem Cell Res Ther 2024; 15:383. [PMID: 39468666 PMCID: PMC11520580 DOI: 10.1186/s13287-024-03986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The prevalence of age-related disorders, particularly in neurological and cardiovascular systems, is an increasing global health concern. Mesenchymal stem cell (MSC) therapy, particularly using human umbilical cord-derived MSCs (HUCMSCs), has shown promise in mitigating these disorders. This study investigates the effects of HUCMSCs on aging-related conditions in a senescence-accelerated mouse model (SAMP8), with a focus on DNA damage, gut microbiota alterations, and metabolic changes. METHODS SAMP8 mice were treated with clinical-grade HUCMSCs via intraperitoneal injections. Behavioral and physical assessments were conducted to evaluate cognitive and motor functions. The Single-Strand Break Mapping at Nucleotide Genome Level (SSiNGLe) method was employed to assess DNA single-strand breaks (SSBs) across the genome, with particular attention to exonic regions and transcription start sites. Gut microbiota composition was analyzed using 16S rRNA sequencing, and carboxyl metabolomic profiling was performed to identify changes in circulating metabolites. RESULTS HUCMSC treatment significantly improved motor coordination and reduced anxiety in SAMP8 mice. SSiNGLe analysis revealed a notable reduction in DNA SSBs in MSC-treated mice, especially in critical genomic regions, suggesting that HUCMSCs may mitigate age-related DNA damage. The functional annotation of the DNA breaktome indicated a potential link between reduced DNA damage and altered metabolic pathways. Additionally, beneficial alterations in gut microbiota were observed, including an increase in short-chain fatty acid (SCFA)-producing bacteria, which correlated with improved metabolic profiles. CONCLUSION The administration of HUCMSCs in SAMP8 mice not only reduces DNA damage but also induces favorable changes in gut microbiota and metabolism. The observed alterations in DNA break patterns, along with specific changes in microbiota and metabolic profiles, suggest that these could serve as potential biomarkers for evaluating the efficacy of HUCMSCs in treating age-related disorders. This highlights a promising avenue for the development of new therapeutic strategies that leverage these biomarkers, to enhance the effectiveness of HUCMSC-based treatments for aging-associated diseases.
Collapse
Affiliation(s)
- Jiabian Lian
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Guohao Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Weijing Wu
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ping Yi
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Meilin Li
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Xufeng Su
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Yushuo Chen
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Xun Li
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Zhanxiang Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
2
|
Meier L, Bruginski E, Marafiga JR, Caus LB, Pasquetti MV, Calcagnotto ME, Campos FR. Hippocampal metabolic profile during epileptogenesis in the pilocarpine model of epilepsy. Biomed Chromatogr 2024; 38:e5820. [PMID: 38154955 DOI: 10.1002/bmc.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.
Collapse
Affiliation(s)
- Letícia Meier
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Estevan Bruginski
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francinete Ramos Campos
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
3
|
Zou S, Li X, Huang Y, Zhang B, Tang H, Xue Y, Zheng Y. Properties and biotechnological applications of microbial deacetylase. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12613-1. [PMID: 37326683 DOI: 10.1007/s00253-023-12613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Deacetylases, a class of enzymes that can catalyze the hydrolysis of acetylated substrates to remove the acetyl group, used in producing various products with high qualities, are one of the most influential industrial enzymes. These enzymes are highly specific, non-toxic, sustainable, and eco-friendly biocatalysts. Deacetylases and deacetylated compounds have been widely applicated in pharmaceuticals, medicine, food, and the environment. This review synthetically summarizes deacetylases' sources, characterizations, classifications, and applications. Moreover, the typical structural characteristics of deacetylases from different microbial sources are summarized. We also reviewed the deacetylase-catalyzed reactions for producing various deacetylated compounds, such as chitosan-oligosaccharide (COS), mycothiol, 7-aminocephalosporanic acid (7-ACA), glucosamines, amino acids, and polyamines. It is aimed to expound on the advantages and challenges of deacetylases in industrial applications. Moreover, it also serves perspectives on obtaining promising and innovative biocatalysts for enzymatic deacetylation. KEYPOINTS: • The fundamental properties of microbial deacetylases of various microorganisms are presented. • The biochemical characterizations, structures, and catalyzation mechanisms of microbial deacetylases are summarized. • The applications of microbial deacetylases in food, pharmaceutical, medicine, and the environment were discussed.
Collapse
Affiliation(s)
- Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yinfeng Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bing Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
ACY1 deficiency: long time monitoring of N-acetylated amino acids concentrations in urine of ACY1 deficient siblings by NMR. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Göverti D, Yüksel RN, Kaya H, Büyüklüoğlu N, Yücel Ç, Göka E. Serum concentrations of aminoacylase 1 in schizophrenia as a potential biomarker: a case-sibling-control study. Nord J Psychiatry 2022; 76:380-385. [PMID: 35791057 DOI: 10.1080/08039488.2021.1981435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Aminoacylase 1 (ACY1) catalyzes the hydrolysis reaction during protein degradation. N-acetylamino acids are accumulated in the urine in Aminoacylase 1 deficiency (ACY1D). This study attempts to evaluate the potential of ACY1 as a biomarker for schizophrenia and predict genetic vulnerability in the high-risk population. MATERIAL AND METHODS Seventy patients with schizophrenia, twenty-five of which have newly diagnosed, forty-nine unaffected siblings of patients, and fifty-six healthy controls were included in the study. The ELISA method was used to measure serum ACY1. The Positive and Negative Syndrome Scale (PANSS) and The Clinical Global Impression - Severity scale (CGI-S) were used to analyze the severity of the symptoms. Data were analysed statistically by non-parametric tests. RESULTS The finding of the study indicated that the serum levels of ACY1 in patients and siblings were lower compared to healthy controls (p < 0.001 and p = 0.023). There was no statistically significant difference between patients and siblings (p = 0.067). The duration of disease, PANSS total scores, and CGI-S scores did not have a significant association with the ACY1 levels in the patient group (p > 0.005). ACY1 levels among the drug-using patient group and the newly diagnosed patient group showed no notable difference (respectively, p = 0.120 and p = 0.843). CONCLUSION This study is the first to evaluate the serum ACY1 levels in patients with schizophrenia. The result of the study provides us insight regarding the first hints that ACY1 might be a potential biomarker. Being aware of the molecule will pave the way for further explorations in the field.
Collapse
Affiliation(s)
- Diğdem Göverti
- Department of Psychiatry, Erenkoy Mental Health and Neurologic Disorders Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Rabia Nazik Yüksel
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Hasan Kaya
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Nihan Büyüklüoğlu
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Biochemistry, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Erol Göka
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
6
|
Bradlow RCJ, Berk M, Kalivas PW, Back SE, Kanaan RA. The Potential of N-Acetyl-L-Cysteine (NAC) in the Treatment of Psychiatric Disorders. CNS Drugs 2022; 36:451-482. [PMID: 35316513 PMCID: PMC9095537 DOI: 10.1007/s40263-022-00907-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
N-acetyl-L-cysteine (NAC) is a compound of increasing interest in the treatment of psychiatric disorders. Primarily through its antioxidant, anti-inflammatory, and glutamate modulation activity, NAC has been investigated in the treatment of neurodevelopmental disorders, schizophrenia spectrum disorders, bipolar-related disorders, depressive disorders, anxiety disorders, obsessive compulsive-related disorders, substance-use disorders, neurocognitive disorders, and chronic pain. Whilst there is ample preclinical evidence and theoretical justification for the use of NAC in the treatment of multiple psychiatric disorders, clinical trials in most disorders have yielded mixed results. However, most studies have been underpowered and perhaps too brief, with some evidence of benefit only after months of treatment with NAC. Currently NAC has the most evidence of having a beneficial effect as an adjuvant agent in the negative symptoms of schizophrenia, severe autism, depression, and obsessive compulsive and related disorders. Future research with well-powered studies that are of sufficient length will be critical to better understand the utility of NAC in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Michael Berk
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC Australia ,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Melbourne, VIC Australia ,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC Australia ,Department of Psychiatry, University of Melbourne, Parkville, VIC Australia
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC USA
| | - Sudie E. Back
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC USA ,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC USA
| | - Richard A. Kanaan
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC Australia ,Department of Psychiatry, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
7
|
Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol 2021; 4:63. [PMID: 33437055 PMCID: PMC7803963 DOI: 10.1038/s42003-020-01583-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The study of metabolomics and disease has enabled the discovery of new risk factors, diagnostic markers, and drug targets. For neurological and psychiatric phenotypes, the cerebrospinal fluid (CSF) is of particular importance. However, the CSF metabolome is difficult to study on a large scale due to the relative complexity of the procedure needed to collect the fluid. Here, we present a metabolome-wide association study (MWAS), which uses genetic and metabolomic data to impute metabolites into large samples with genome-wide association summary statistics. We conduct a metabolome-wide, genome-wide association analysis with 338 CSF metabolites, identifying 16 genotype-metabolite associations (metabolite quantitative trait loci, or mQTLs). We then build prediction models for all available CSF metabolites and test for associations with 27 neurological and psychiatric phenotypes, identifying 19 significant CSF metabolite-phenotype associations. Our results demonstrate the feasibility of MWAS to study omic data in scarce sample types.
Collapse
Grants
- R01 AG037639 NIA NIH HHS
- UL1 TR000427 NCATS NIH HHS
- T15 LM007359 NLM NIH HHS
- T32 LM012413 NLM NIH HHS
- RF1 AG027161 NIA NIH HHS
- T32 AG000213 NIA NIH HHS
- P2C HD047873 NICHD NIH HHS
- UL1 TR002373 NCATS NIH HHS
- P30 AG062715 NIA NIH HHS
- P50 AG033514 NIA NIH HHS
- R01 AG027161 NIA NIH HHS
- R01 AG054047 NIA NIH HHS
- P30 AG017266 NIA NIH HHS
- R21 AG067092 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
- NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences (DMS)
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- This research is supported by National Institutes of Health (NIH) grants R01AG27161 (Wisconsin Registry for Alzheimer Prevention: Biomarkers of Preclinical AD), R01AG054047 (Genomic and Metabolomic Data Integration in a Longitudinal Cohort at Risk for Alzheimer’s Disease), R21AG067092 (Identifying Metabolomic Risk Factors in Plasma and Cerebrospinal Fluid for Alzheimer’s Disease), R01AG037639 (White Matter Degeneration: Biomarkers in Preclinical Alzheimer’s Disease), P30AG017266 (Center for Demography of Health and Aging), and P50AG033514 and P30AG062715 (Wisconsin Alzheimer’s Disease Research Center Grant), the Helen Bader Foundation, Northwestern Mutual Foundation, Extendicare Foundation, State of Wisconsin, the Clinical and Translational Science Award (CTSA) program through the NIH National Center for Advancing Translational Sciences (NCATS) grant UL1TR000427, and the University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. This research was supported in part by the Intramural Research Program of the National Institute on Aging. Computational resources were supported by a core grant to the Center for Demography and Ecology at the University of Wisconsin-Madison (P2CHD047873). Author DJP was supported by an NLM training grant to the Bio-Data Science Training Program (T32LM012413). Author BFD was supported by an NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM 5T15LM007359). Author YKD was supported by a training grant from the National Institute on Aging (T32AG000213). Author HK was supported by National Science Foundation (NSF) grant DMS-1811414 (Theory and Methods for Inferring Causal Effects with Mendelian Randomization).
Collapse
Affiliation(s)
- Daniel J Panyard
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI, 53726, USA
| | - Kyeong Mo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Burcu F Darst
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, 90033, USA
| | - Yuetiva K Deming
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI, 53726, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
| | - Xiaoyuan Zhong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI, 53726, USA
| | - Yuchang Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI, 53726, USA
| | - Hyunseung Kang
- Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI, 53726, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI, 53726, USA.
- Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, Martins-de-Souza D. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Sci Rep 2020; 10:12655. [PMID: 32724114 PMCID: PMC7387551 DOI: 10.1038/s41598-020-69543-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
9
|
Cao B, Chen Y, Rosenbalt JD, McIntyre RS, Wang D, Yan L. Association of alkali metals and Alkaline-earth metals with the risk of schizophrenia in a Chinese population: A Case-Control study. J Trace Elem Med Biol 2020; 60:126478. [PMID: 32146340 DOI: 10.1016/j.jtemb.2020.126478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/02/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Alkali metals (AMs) and alkali earth metals (AEMs) affect levels and signaling of neurotransmitters, which potentially play a role in the etiology of schizophrenia (SCZ). The current case-control study aims to explore how AMs [i.e. Potassium (K), sodium (Na), rubidium (Rb), cesium (Cs)] and AEMs [i.e. magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba)] in serum could associate with SCZ. One hundred and five inpatients with SCZ and 106 age- and sex-matched healthy controls (HCs) were recruited from Weifang, China. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was used to evaluate serum concentrations of Na, K, Ca, Mg and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was for Rb, Cs, Sr, Ba. Subjects with SCZ had significantly higher Mg and Sr serum concentrations than HCs (20.86 vs. 19.73 μg/mL of Mg, p < 0.001; 53.14 vs. 42.26 ng/mL of Sr, p < 0.001). After adjusting for confounders, the odds ratio of Mg and Sr remain significantly higher in the SCZ group (Mg: OR = 2.538, 95 % CI: 1.254-5.136, p=0.010; Sr: OR = 3.798, 95 % CI: 1.769-8.153, p = 0.001). No significant differences between SCZ subjects and HCs were observed for other AMs and AEMs. Higher serum concentrations of Mg and Sr were associated with SCZ. Studies are suggested to find the related mechanisms and provide clues for pathogenesis of SCZ, which would impact prevention and treatments of SCZ.
Collapse
Affiliation(s)
- Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education); National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing 400715, China
| | - Yan Chen
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON, Canada
| | - Joshua D Rosenbalt
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, PR China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Medical and Health Analysis Center, Peking University, Beijing 100191, PR China; Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, PR China.
| |
Collapse
|