1
|
van Engelen MPE, Verfaillie SCJ, Dols A, Oudega ML, Boellaard R, Golla SSV, den Hollander M, Ossenkoppele R, Scheltens P, van Berckel BNM, Pijnenburg YAL, Vijverberg EGB. Altered brain metabolism in frontotemporal dementia and psychiatric disorders: involvement of the anterior cingulate cortex. EJNMMI Res 2023; 13:71. [PMID: 37493827 PMCID: PMC10371967 DOI: 10.1186/s13550-023-01020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Behavioural symptoms and frontotemporal hypometabolism overlap between behavioural variant of frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD), hampering diagnostic distinction. Voxel-wise comparisons of brain metabolism might identify specific frontotemporal-(hypo)metabolic regions between bvFTD and PPD. We investigated brain metabolism in bvFTD and PPD and its relationship with behavioural symptoms, social cognition, severity of depressive symptoms and cognitive functioning. RESULTS Compared to controls, bvFTD showed decreased metabolism in the dorsal anterior cingulate cortex (dACC) (p < 0.001), orbitofrontal cortex (OFC), temporal pole, dorsolateral prefrontal cortex (dlPFC) and caudate, whereas PPD showed no hypometabolism. Compared to PPD, bvFTD showed decreased metabolism in the dACC (p < 0.001, p < 0.05FWE), insula, Broca's area, caudate, thalamus, OFC and temporal cortex (p < 0.001), whereas PPD showed decreased metabolism in the motor cortex (p < 0.001). Across bvFTD and PPD, decreased metabolism in the temporal cortex (p < 0.001, p < 0.05FWE), dACC and frontal cortex was associated with worse social cognition. Decreased metabolism in the dlPFC was associated with compulsiveness (p < 0.001). Across bvFTD, PPD and controls, decreased metabolism in the PFC and motor cortex was associated with executive dysfunctioning (p < 0.001). CONCLUSIONS Our findings indicate subtle but distinct metabolic patterns in bvFTD and PPD, most strongly in the dACC. The degree of frontotemporal and cingulate hypometabolism was related to impaired social cognition, compulsiveness and executive dysfunctioning. Our findings suggest that the dACC might be an important region to differentiate between bvFTD and PPD but needs further validation.
Collapse
Affiliation(s)
- Marie-Paule E van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Sander C J Verfaillie
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Medical Psychology, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht Brain Center, University of Utrecht, Utrecht, The Netherlands
| | - Mardien L Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marijke den Hollander
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- EQT Life Sciences Partners, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Yuksel C, Chen X, Chouinard VA, Nickerson LD, Gardner M, Cohen T, Öngür D, Du F. Abnormal Brain Bioenergetics in First-Episode Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgaa073. [PMID: 33554120 PMCID: PMC7848946 DOI: 10.1093/schizbullopen/sgaa073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Converging evidence indicates impaired brain energy metabolism in schizophrenia and other psychotic disorders. Creatine kinase (CK) is pivotal in providing adenosine triphosphate in the cell and maintaining its levels when energy demand is increased. However, the activity of CK has not been investigated in patients with first-episode schizophrenia spectrum disorders. METHODS Using in vivo phosphorus magnetization transfer spectroscopy, we measured CK first-order forward rate constant (k f ) in the frontal lobe, in patients with first-episode psychosis (FEP; n = 16) and healthy controls (n = 34), at rest. RESULTS CK k f was significantly reduced in FEP compared to healthy controls. There were no differences in other energy metabolism-related measures, including phosphocreatine (PCr) or ATP, between groups. We also found increase in glycerol-3-phosphorylcholine, a putative membrane breakdown product, in patients. CONCLUSIONS The results of this study indicate that brain bioenergetic abnormalities are already present early in the course of schizophrenia spectrum disorders. Future research is needed to identify the relationship of reduced CK k f with psychotic symptoms and to test treatment alternatives targeting this pathway. Increased glycerol-3-phosphorylcholine is consistent with earlier studies in medication-naïve patients and later studies in first-episode schizophrenia, and suggest enhanced synaptic pruning.
Collapse
Affiliation(s)
- Cagri Yuksel
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | | | | | | | | | - Dost Öngür
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Fei Du
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Castro-de-Araujo LF, Machado DB, Barreto ML, Kanaan RA. Subtyping schizophrenia based on symptomatology and cognition using a data driven approach. Psychiatry Res Neuroimaging 2020; 304:111136. [PMID: 32707455 PMCID: PMC7613209 DOI: 10.1016/j.pscychresns.2020.111136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/01/2022]
Abstract
Schizophrenia is a highly heterogeneous disorder, not only in its phenomenology but in its clinical course. This limits the usefulness of the diagnosis as a basis for both research and clinical management. Methods of reducing this heterogeneity may inform the diagnostic classification. With this in mind, we performed k-means clustering with symptom and cognitive measures to generate groups in a machine-driven way. We found that our data was best organised in three clusters: high cognitive performance, high positive symptomatology, low positive symptomatology. We hypothesized that these clusters represented biological categories, which we tested by comparing these groups in terms of brain volumetric information. We included all the groups in an ANCOVA analysis with post hoc tests, where brain volume areas were modelled as dependent variables, controlling for age and estimated intracranial volume. We found six brain volumes significantly differed between the clusters: left caudate, left cuneus, left lateral occipital, left inferior temporal, right lateral, and right pars opercularis. The k-means clustering provides a way of subtyping schizophrenia which appears to have a biological basis, though one that requires both replication and confirmation of its clinical significance.
Collapse
Affiliation(s)
- Luis Fs Castro-de-Araujo
- Center of Data and Knowledge Integration for Health (CIDACS). R. Mundo, 121, Salvador BA, Brazil; University of Melbourne, Department of Psychiatry, Austin Health. Studley Road, Heidelberg, Victoria, Australia.
| | - Daiane B Machado
- Center of Data and Knowledge Integration for Health (CIDACS). R. Mundo, 121, Salvador BA, Brazil; Centre for Global Mental health (CGMH), London School of Hygiene and Tropical Medicine. King's College London. David Goldberg Centre, De Crespigny Park, London United Kingdom
| | - Maurício L Barreto
- Center of Data and Knowledge Integration for Health (CIDACS). R. Mundo, 121, Salvador BA, Brazil; Institute of Collective Health, UFBA. Rua Basílio da Gama, Salvador BA Brazil.
| | - Richard Aa Kanaan
- University of Melbourne, Department of Psychiatry, Austin Health. Studley Road, Heidelberg, Victoria, Australia.
| |
Collapse
|