1
|
Tiwari C, Khan H, Grewal AK, Dhankhar S, Chauhan S, Dua K, Gupta G, Singh TG. Opiorphin: an endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024; 32:3037-3056. [PMID: 39164607 DOI: 10.1007/s10787-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on μ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.
Collapse
Affiliation(s)
- Chanchal Tiwari
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Sanchit Dhankhar
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
2
|
Guo D, Sheng W, Cai Y, Shu J, Cai C. Genetic Association of Lipids and Lipid-Lowering Drug Target Genes With Attention Deficit Hyperactivity Disorder. J Atten Disord 2024; 28:1425-1436. [PMID: 38166458 DOI: 10.1177/10870547231222219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
BACKGROUND Lipid metabolism plays an essential role in nervous system development. Cholesterol deficiency leads to a variety of neurodevelopmental disorders, such as autism spectrum disorder and fragile X syndrome. There have been a lot of efforts to search for biological markers associated with and causal to ADHD, among which lipid is one possible etiological factor that is quite widely studied. We aimed to evaluate the causal relationship between lipids traits, lipid-lowering drugs, and attention deficit hyperactivity disorder (ADHD) outcomes using Mendelian randomization (MR) studies. METHODS We used summary data from genome-wide association studies to explore the causal relationships between circulating lipid-related traits and ADHD. Then, quantitative trait loci for the expression of lipid-lowering drug target genes and genetic variants associated with lipid traits were extracted. Summary-data-based MR and inverse-variance-weighted MR (IVW-MR) were used to investigate the correlation between the expression of these drug-target genes and ADHD. RESULTS After rigorous screening, 939 instrumental variables were finally included for univariable mendelian randomization analysis. However, there is no correlation between lipid profile and ADHD risk. Drug target analysis by IVW-MR method observed that APOB-mediated low-density lipoprotein cholesterol was associated with lower ADHD risk (odds ratio [OR] = 0.90, 95% confidence interval [CI] [0.84, 0.97]; p = .007), whereas LPL-mediated triglycerides levels were associated with a higher risk of ADHD (OR = 1.13, 95% CI [1.06, 1.21]; p < .001). CONCLUSION Our results suggest that APOB gene and LPL gene may be candidate drug target genes for the treatment of ADHD.
Collapse
Affiliation(s)
- Detong Guo
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Medical University, China
| | - Wenchao Sheng
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Medical University, China
| | | | - Jianbo Shu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, China
| |
Collapse
|
3
|
Sharma V, Sharma P, Singh TG. Therapeutic potential of transient receptor potential (TRP) channels in psychiatric disorders. J Neural Transm (Vienna) 2024; 131:1025-1037. [PMID: 39007920 DOI: 10.1007/s00702-024-02803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Psychiatric disorders such as Bipolar disorder, Anxiety, Major depressive disorder, Schizophrenia, Attention-deficit/hyperactivity disorder, as well as neurological disorders such as Migraine, are linked by the evidence of altered calcium homeostasis. The disturbance of intra-cellular calcium homeostasis disrupts the activity of numerous ion channels including transient receptor potential (TRP) channels. TRP channel families comprise non-selective calcium-permeable channels that have been implicated in variety of physiological processes in the brain, as well as in the pathogenesis of psychiatric disorders. Through a comprehensive review of current research and experimentation, this investigation elucidates the role of TRP channels in psychiatric disorders. Furthermore, this review discusses about the exploration of epigenetics and TRP channels in psychiatric disorders.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
5
|
Chen H, Zheng Z, Cai X, Gao F. Causal links between serum micronutrients and epilepsy: a Mendelian randomization analysis. Front Neurol 2024; 15:1419289. [PMID: 39076846 PMCID: PMC11284170 DOI: 10.3389/fneur.2024.1419289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Background Micronutrient levels play a critical role in epilepsy. This study investigates the impact of micronutrient levels on epilepsy via Mendelian randomization (MR). Methods A two-sample MR framework evaluated the genetic association between 15 serum micronutrients and epilepsy phenotypes. The analysis included calcium, iron, zinc, selenium, copper, magnesium, potassium, folate, vitamins B6, B12, C, D, E, retinol, and carotene against all epilepsy, generalized epilepsy, childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), generalized tonic-clonic seizures alone and with spike-wave electroencephalography (GTCS), and various focal epilepsy phenotypes [with hippocampal sclerosis (HS), lesions other than HS, lesion-negative]. The random-effects inverse-variance weighted (IVW) model was the primary method used, supported by heterogeneity and pleiotropy assessments. Multivariable Mendelian randomization analyses (MVMR) were used to identify micronutrients that are significantly causally associated with different epilepsy subtypes and to confirm the most potential causal risk factors for these subtypes. Results Zinc conferred an increased risk of focal epilepsy with HS (OR = 1.01; p = 0.045). Carotene was similarly linked to higher risks of lesion-negative cases (OR = 1.129; p = 0.037). Conversely, vitamin B6 was associated with reduced risks of focal epilepsy with HS (OR = 0.949; p = 0.020), and vitamin D was linked to decreased risks of both CAE (OR = 0.976, 95% CI: 0.959-0.993, p = 0.006) and JAE (OR = 0.986, 95% CI: 0.973-0.999, p = 0.032). These associations were robust, showing minimal heterogeneity and no evidence of pleiotropy across various sensitivity analyses. After adjustment using MVMR, significant causal relationships between vitamin D and both CAE and JAE remained. Furthermore, the causal relationship between zinc and vitamin B6 on focal epilepsy with HS became non-significant, while carotene shifted from a risk factor to a protective factor for focal epilepsy lesion-negative after adjusting for vitamin D. Conclusion MR estimates provide robust evidence for the causal effects of vitamin D on reducing the risk of CAE, and JAE, which might provide alternative treatment strategies.
Collapse
Affiliation(s)
- Haohao Chen
- Department of Pharmacy, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zequn Zheng
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fenfei Gao
- Department of Pharmacy, Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
6
|
Bandeira CE, das Neves FGP, Rovaris DL, Grevet EH, Dias-Soares M, da Silva C, Dresch F, da Silva BS, Bau CHD, Shansis FM, Genro JP, Contini V. The symptomatology of Attention-Deficit/Hyperactivity Disorder and the genetic control of vitamin D levels. Nutr Neurosci 2024:1-11. [PMID: 38761117 DOI: 10.1080/1028415x.2024.2351322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
OBJECTIVES Vitamin D deficiency has been associated with psychiatric disorders and behavioral phenotypes such as Attention-Deficit/Hyperactivity Disorder (ADHD). Considering that vitamin D levels are polygenic, we aim to evaluate the overall effects of its genetic architecture on symptoms of inattention, hyperactivity, and impulsivity and on the serum levels of vitamin D in two independent samples of adults, as well as the specific effects of five relevant polymorphisms in vitamin D-related genes. METHODS We evaluated 870 subjects from an ADHD sample (407 cases and 463 controls) and 319 subjects from an academic community (nutrigenetic sample). Vitamin D serum levels were obtained through Elisa test and genetic data by TaqMan™ allelic discrimination and Infinium PsychArray-24 BeadChip genotyping. Polygenic Scores (PGS) were calculated on PRSice2 based on the latest GWAS for Vitamin D and statistical analyses were conducted at Plink and SPSS software. RESULTS Vitamin D PGSs were associated with inattention in the ADHD sample and with hyperactivity when inattention symptoms were included as covariates. In the nutrigenetic sample, CYP2R1 rs10741657 and DHCR7 rs12785878 were nominally associated with impulsivity and hyperactivity, respectively, and both with vitamin D levels. In the clinical sample, RXRG rs2134095 was associated with impulsivity. DISCUSSION Our findings suggest a shared genetic architecture between vitamin D levels and ADHD symptoms, as evidenced by the associations observed with PGS and specific genes related to vitamin D levels. Interestingly, differential effects for vitamin D PGS were found in inattention and hyperactivity, which should be considered in further studies involving ADHD.
Collapse
Affiliation(s)
- Cibele Edom Bandeira
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | | | - Diego Luiz Rovaris
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Monique Dias-Soares
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Caroline da Silva
- Graduate Program in Biotechnology, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Fabiane Dresch
- Graduate Program in Biotechnology, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Bruna Santos da Silva
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flávio Milman Shansis
- Graduate Program in Medical Sciences, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Júlia Pasqualini Genro
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Verônica Contini
- Graduate Program in Biotechnology, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
- Graduate Program in Medical Sciences, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| |
Collapse
|
7
|
Li Z, Wu X, Li H, Bi C, Zhang C, Sun Y, Yan Z. Complex interplay of neurodevelopmental disorders (NDDs), fractures, and osteoporosis: a mendelian randomization study. BMC Psychiatry 2024; 24:232. [PMID: 38539137 PMCID: PMC10967110 DOI: 10.1186/s12888-024-05693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/18/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), such as Attention-Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and Tourette Syndrome (TS), have been extensively studied for their multifaceted impacts on social and emotional well-being. Recently, there has been growing interest in their potential relationship with fracture risks in adulthood. This study aims to explore the associations between these disorders and fracture rates, in order to facilitate better prevention and treatment. METHODS Employing a novel approach, this study utilized Mendelian randomization (MR) analysis to investigate the complex interplay between ADHD, ASD, TS, and fractures. The MR framework, leveraging extensive genomic datasets, facilitated a systematic examination of potential causal relationships and genetic predispositions. RESULTS The findings unveil intriguing bidirectional causal links between ADHD, ASD, and specific types of fractures. Notably, ADHD is identified as a risk factor for fractures, with pronounced associations in various anatomical regions, including the skull, trunk, and lower limbs. Conversely, individuals with specific fractures, notably those affecting the femur and lumbar spine, exhibit an increased genetic predisposition to ADHD and ASD. In this research, no correlation was found between TS and fractures, or osteoporosis.These results provide a genetic perspective on the complex relationships between NDDs and fractures, emphasizing the importance of early diagnosis, intervention, and a holistic approach to healthcare. CONCLUSION This research sheds new light on the intricate connections between NDDs and fractures, offering valuable insights into potential risk factors and causal links. The bidirectional causal relationships between ADHD, ASD, and specific fractures highlight the need for comprehensive clinical approaches that consider both NDDs and physical well-being.
Collapse
Affiliation(s)
- Zefang Li
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqiang Wu
- Department of Health Science, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Hanzheng Li
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Can Zhang
- School of Biomedical Sciences, Shandong First Medical University, Jinan, China
| | - Yiqing Sun
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
8
|
Menéndez SG, Manucha W. Vitamin D as a Modulator of Neuroinflammation: Implications for Brain Health. Curr Pharm Des 2024; 30:323-332. [PMID: 38303529 DOI: 10.2174/0113816128281314231219113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
Neuroinflammation represents a critical immune response within the brain, playing a pivotal role in defense against injury and infection. However, when this response becomes chronic, it can contribute to the development of various neurodegenerative and psychiatric disorders. This bibliographic review delves into the role of vitamin D in modulating neuroinflammation and its implications for brain health, particularly in the context of neurological and psychiatric disorders. While vitamin D is traditionally associated with calcium homeostasis and bone health, it also exerts immunomodulatory and neuroprotective effects within the central nervous system. Through comprehensive analysis of preclinical and clinical studies, we uncover how vitamin D, acting through its receptors in glial cells, may influence the production of proinflammatory cytokines and antioxidants, potentially mitigating the cascade of events leading to neuronal damage. Clinical research has identified vitamin D deficiency as a common thread in the increased risks of multiple sclerosis, Parkinson's disease, Alzheimer's, and depression, among others. Furthermore, preclinical models suggest vitamin D's regulatory capacity over inflammatory mediators, its protective role against neuronal apoptosis, and its contribution to neurogenesis and synaptic plasticity. These insights underscore the potential of vitamin D supplementation not only in slowing the progression of neurodegenerative diseases but also in improving the quality of life for patients suffering from psychiatric conditions. Future clinical studies are essential to validate these findings and further our understanding of vitamin D's capacity to prevent or alleviate symptoms, opening new avenues for therapeutic strategies against neuroinflammation-related pathologies. Neuroinflammation is a crucial immune response in the brain against injuries or infections, but its persistence can lead to diseases such as Alzheimer's, Parkinson's, multiple sclerosis, and depression. Cholecalciferol (Vitamin D3) emerges as a regulator of neuroinflammation, present in brain cells such as astrocytes and microglia, modulating immune function. Vitamin D's mechanisms of action include cytokine modulation and regulation of nuclear and mitochondrial genes. It adjusts inflammatory mediators and antioxidants, resulting in neuroprotective effects. Additionally, vitamin D impacts neurotransmitter synthesis and brain plasticity. This positions vitamin D as a potential adjunct in treating diseases like Alzheimer's and Parkinson's. Lastly, its role in intestinal microbiota and serotonin synthesis contributes to psychiatric disorders like schizophrenia and depression. Thus, vitamin D presents a novel therapeutic approach for neuroinflammatory, neurodegenerative, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sebastián García Menéndez
- Facultad de Ciencias Químicas y Tecnológicas, Instituto de Investigaciones en Ciencias Químicas, Universidad Católica de Cuyo, San Juan 5400, Argentina
- Departamento de Patología, Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Pathology and Pharmacology Department, Centro Científico Tecnológico, Mendoza 5500, Argentina
| | - Walter Manucha
- Facultad de Ciencias Químicas y Tecnológicas, Instituto de Investigaciones en Ciencias Químicas, Universidad Católica de Cuyo, San Juan 5400, Argentina
- Departamento de Patología, Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Pathology and Pharmacology Department, Centro Científico Tecnológico, Mendoza 5500, Argentina
| |
Collapse
|
9
|
Máčová L, Kancheva R, Bičíková M. Molecular Regulation of the CNS by Vitamin D. Physiol Res 2023; 72:S339-S356. [PMID: 38116771 DOI: 10.33549/physiolres.935248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Vitamin D is a lipid-soluble vitamin that can be found in some foods. It is also produced endogenously (in the presence of ultraviolet light), transported through the blood to the targets organs and this is the reason to consider vitamin D as a hormone. It is known that vitamin D has genomic and non-genomic effects. This review is focused mainly on the vitamin D receptors, the importance of vitamin D as a neuromodulator, the role of vitamin D in the pathophysiology of devastating neurological disorders such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and the benefit of vitamin D and its derivates in alleviating these disorders.
Collapse
Affiliation(s)
- L Máčová
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | | | | |
Collapse
|
10
|
Sui X, Liu T, Zou Z, Zhang B. Appraising the role of circulating concentrations of micronutrients in attention deficit hyperactivity disorder: a Mendelian randomization study. Sci Rep 2023; 13:21850. [PMID: 38071357 PMCID: PMC10710398 DOI: 10.1038/s41598-023-49283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Previous observational researches have discovered a connection between circulating concentrations of micronutrients and attention deficit hyperactivity disorder (ADHD). However, the results may be influenced by confounding factors and reverse causation. This study aims to explore the causal relationship between circulating concentrations of micronutrients and ADHD using Mendelian randomization (MR). In a two-sample MR context, we used summary data from the major European genome-wide association studies (GWAS) for these illnesses to assess the genetically anticipated effects of circulating concentrations of micronutrients on ADHD risk. In order to achieve this, we took single nucleotide polymorphisms (SNPs) from the GWAS that were highly related with concentrations of nine micronutrients. The corresponding data for ADHD were extracted from the Psychiatric Genomics Consortium. Inverse-variance weighted (IVW) method was used as the main MR analysis, and the reliability of the study's conclusions was assessed using sensitivity analyses. Our MR analyses showed that the copper level may be associated with a reduced risk of ADHD. However, the significance of the research results is weak. There were no clear relationships between other micronutrients and ADHD. Our sensitivity studies confirmed the findings of the primary IVW MR analyses. According to this study, there may be some association between copper level and ADHD, but the significance of the research results is weak, and it is recommended that copper level should be used as a long-term monitoring indicator for further research. The results provide a new idea for the further study of ADHD, and provide guidance for the prevention and treatment of ADHD.
Collapse
Affiliation(s)
- Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Tingting Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhiyun Zou
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Baoqing Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
11
|
Sharma D, Khan H, Kumar A, Grewal AK, Dua K, Singh TG. Pharmacological modulation of HIF-1 in the treatment of neuropsychiatric disorders. J Neural Transm (Vienna) 2023; 130:1523-1535. [PMID: 37740098 DOI: 10.1007/s00702-023-02698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Hypoxia-inducible factor 1 has been identified as an important therapeutic target in psychiatric illnesses. Hypoxia is a condition in which tissues do not receive enough oxygen, resulting in less oxidative energy production. HIF-1, the master regulator of molecular response to hypoxia, is destabilized when oxygen levels fall. HIF-1, when activated, increases the gene transcription factors that promote adaptive response and longevity in hypoxia. HIF-regulated genes encode proteins involved in cell survival, energy metabolism, angiogenesis, erythropoiesis, and vasomotor control. Multiple genetic and environmental variables contribute to the pathophysiology of psychiatric disease. This review focuses on the most recent findings indicating the role of oxygen deprivation in CNS damage, with strong attention on HIF-mediated pathways. Several pieces of evidence suggested that, in the case of hypoxia, induction and maintenance of HIF-1 target genes may help reduce nerve damage. Major new insights into the molecular mechanisms that control HIF's sensitivity to oxygen are used to make drugs that can change the way HIF works as a therapeutic target for some CNS diseases.
Collapse
Affiliation(s)
- Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
12
|
Späth Z, Tmava-Berisha A, Fellendorf FT, Stross T, Maget A, Platzer M, Bengesser SA, Häussl A, Zwigl I, Birner A, Queissner R, Stix K, Wels L, Lenger M, Dalkner N, Zelzer S, Herrmann M, Reininghaus EZ. Vitamin D Status in Bipolar Disorder. Nutrients 2023; 15:4752. [PMID: 38004146 PMCID: PMC10674170 DOI: 10.3390/nu15224752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Vitamin D status may impact acute affective symptomatology and the severity of symptoms in patients with bipolar disorder (BD). Therefore, this cross-sectional study analyzed 25(OH)D, 24,25(OH)2D, and the vitamin D metabolite ratio (VMR) in BD and correlated the results with clinical affective symptomatology and functionality. The inactive precursor 25(OH)D, and its principal catabolite 24,25(OH)2D, were measured simultaneously with a validated liquid chromatography-tandem mass spectrometry method in 170 BD outpatients and 138 healthy controls. VMR was calculated as follows: VMR = 100×(24,25(OH)2D/25(OH)D). The psychometric assessment comprised: Beck Depression Inventory-II, Hamilton Depression Rating Scale, Young Mania Rating Scale, Global Assessment of Functioning, and number of suicide attempts. We did not find a significant difference between patients and controls in the concentrations of 25(OH)D and 24,25(OH)2D. Additionally, the VMR was comparable in both groups. The calculations for the clinical parameters showed a negative correlation between the Young Mania Rating Scale and 24,25(OH)2D (r = -0.154, p = 0.040), as well as the Young Mania Rating Scale and the VMR (r = -0.238, p = 0.015). Based on the small effect size and the predominantly euthymic sample, further exploration in individuals with manic symptoms would be needed to confirm this association. In addition, long-term clinical markers and an assessment in different phases of the disease may provide additional insights.
Collapse
Affiliation(s)
- Zita Späth
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Adelina Tmava-Berisha
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Frederike T. Fellendorf
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Tatjana Stross
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Alexander Maget
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Martina Platzer
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Susanne A. Bengesser
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Alfred Häussl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Ina Zwigl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Armin Birner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Robert Queissner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Katharina Stix
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Linda Wels
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Melanie Lenger
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Nina Dalkner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (S.Z.); (M.H.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (S.Z.); (M.H.)
| | - Eva Z. Reininghaus
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (Z.S.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (L.W.); (M.L.); (N.D.); (E.Z.R.)
| |
Collapse
|
13
|
Leser B, Dalkner N, Tmava-Berisha A, Fellendorf FT, Unterrainer HF, Stross T, Maget A, Platzer M, Bengesser SA, Häussl A, Zwigl I, Birner A, Queissner R, Stix K, Wels L, Schönthaler EMD, Lenger M, Schwerdtfeger AR, Zelzer S, Herrmann M, Reininghaus EZ. The Influence of Vitamin D Status on Cognitive Ability in Patients with Bipolar Disorder and Healthy Controls. Nutrients 2023; 15:4111. [PMID: 37836395 PMCID: PMC10574501 DOI: 10.3390/nu15194111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recent evidence on the association between vitamin D and cognition in mentally healthy individuals is inconsistent. Furthermore, the link between vitamin D and cognitive ability in individuals with bipolar disorder has not been studied yet. Thus, we aimed to investigate the association between 25-hydroxyvitamin D (25(OH)D), 24,25 dihydroxyvitamin D (24,25(OH)2D, the vitamin D metabolite ratio (VMR) and cognition in a cohort of euthymic patients with bipolar disorder. Vitamin D metabolites were measured simultaneously by liquid-chromatography tandem mass-spectrometry in serum samples from 86 outpatients with bipolar disorder and 93 healthy controls. Neither the inactive precursor 25(OH)D, nor the primary vitamin D catabolite 24,25(OH)2D, or the vitamin D metabolite ratio were significantly associated with the domains "attention", "memory", or "executive function" in individuals with bipolar disorder and healthy controls. Further, no vitamin D deficiency effect or interaction group × vitamin D deficiency was found in the cognitive domain scores. In summary, the present study does not support vitamin D metabolism as a modulating factor of cognitive function in euthymic BD patients. Considering the current study's cross-sectional design, future research should expand these results in a longitudinal setting and include additional aspects of mental health, such as manic or depressive symptoms, long-term illness course and psychopharmacological treatment.
Collapse
Affiliation(s)
- Bernadette Leser
- Department of Psychology, University of Graz, 8010 Graz, Austria; (B.L.); (A.R.S.)
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Adelina Tmava-Berisha
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Frederike T. Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | | | - Tatjana Stross
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Alexander Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Susanne A. Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Alfred Häussl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Ina Zwigl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Katharina Stix
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Linda Wels
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Elena M. D. Schönthaler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| | | | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (S.Z.); (M.H.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (S.Z.); (M.H.)
| | - Eva Z. Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (A.T.-B.); (F.T.F.); (T.S.); (A.M.); (M.P.); (S.A.B.); (A.H.); (I.Z.); (A.B.); (R.Q.); (K.S.); (E.M.D.S.); (M.L.); (E.Z.R.)
| |
Collapse
|
14
|
Kaur P, Khan H, Grewal AK, Dua K, Singh TG. Therapeutic potential of NOX inhibitors in neuropsychiatric disorders. Psychopharmacology (Berl) 2023; 240:1825-1840. [PMID: 37507462 DOI: 10.1007/s00213-023-06424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE Neuropsychiatric disorders encompass a broad category of medical conditions that include both neurology as well as psychiatry such as major depressive disorder, autism spectrum disorder, bipolar disorder, schizophrenia as well as psychosis. OBJECTIVE NADPH-oxidase (NOX), which is the free radical generator, plays a substantial part in oxidative stress in neuropsychiatric disorders. It is thought that elevated oxidative stress as well as neuroinflammation plays a part in the emergence of neuropsychiatric disorders. Including two linked with membranes and four with subunits of cytosol, NOX is a complex of multiple subunits. NOX has been linked to a significant source of reactive oxygen species in the brain. NOX has been shown to control memory processing and neural signaling. However, excessive NOX production has been linked to cardiovascular disorders, CNS degeneration, and neurotoxicity. The increase in NOX leads to the progression of neuropsychiatric disorders. RESULT Our review mainly emphasized the characteristics of NOX and its various mechanisms, the modulation of NOX in various neuropsychiatric disorders, and various studies supporting the fact that NOX might be the potential therapeutic target for neuropsychiatric disorders. CONCLUSION Here, we summarizes various pharmacological studies involving NOX inhibitors in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
15
|
Chen TB, Chang CM, Yang CC, Tsai IJ, Wei CY, Yang HW, Yang CP. Neuroimmunological Effect of Vitamin D on Neuropsychiatric Long COVID Syndrome: A Review. Nutrients 2023; 15:3802. [PMID: 37686834 PMCID: PMC10490318 DOI: 10.3390/nu15173802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). COVID-19 is now recognized as a multiorgan disease with a broad spectrum of manifestations. A substantial proportion of individuals who have recovered from COVID-19 are experiencing persistent, prolonged, and often incapacitating sequelae, collectively referred to as long COVID. To date, definitive diagnostic criteria for long COVID diagnosis remain elusive. An emerging public health threat is neuropsychiatric long COVID, encompassing a broad range of manifestations, such as sleep disturbance, anxiety, depression, brain fog, and fatigue. Although the precise mechanisms underlying the neuropsychiatric complications of long COVID are presently not fully elucidated, neural cytolytic effects, neuroinflammation, cerebral microvascular compromise, breakdown of the blood-brain barrier (BBB), thrombosis, hypoxia, neurotransmitter dysregulation, and provoked neurodegeneration are pathophysiologically linked to long-term neuropsychiatric consequences, in addition to systemic hyperinflammation and maladaptation of the renin-angiotensin-aldosterone system. Vitamin D, a fat-soluble secosteroid, is a potent immunomodulatory hormone with potential beneficial effects on anti-inflammatory responses, neuroprotection, monoamine neurotransmission, BBB integrity, vasculometabolic functions, gut microbiota, and telomere stability in different phases of SARS-CoV-2 infection, acting through both genomic and nongenomic pathways. Here, we provide an up-to-date review of the potential mechanisms and pathophysiology of neuropsychiatric long COVID syndrome and the plausible neurological contributions of vitamin D in mitigating the effects of long COVID.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung 433, Taiwan
| | - Chun-Pai Yang
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
- Department of Neurology, Kuang Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, HungKuang University, Taichung 433, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|