1
|
Somé GF, Séré M, Somda BM, Dayo GK, Ouédraogo GA, Boulangé A, Maarifi G, Chantal I, Berthier-Teyssedre D, Thévenon S. Immune Response in Cattle Trypanosomosis and Trypanotolerance: Main Findings and Gaps. Parasite Immunol 2024; 46:e13075. [PMID: 39508487 DOI: 10.1111/pim.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Trypanosome parasites of the genus Trypanosoma cause African animal trypanosomosis, a devastating livestock disease plaguing sub-Saharan Africa. Unlike many protozoan parasites, these extracellular blood-borne pathogens directly engage the host's immune system. While the mouse model has provided valuable insights, a comprehensive understanding of the bovine immune response to trypanosomes remains elusive. Addressing the immune response in cattle, the most relevant host species, and how it takes part in mitigating the negative impact of the disease could contribute to setting up sustainable control strategies. This review summarises the current knowledge of the immune response in cattle during trypanosomosis. Following a brief overview of infection processes and bovine trypanotolerance, we present advances in the regulation of host innate, inflammatory and adaptive responses and delve into the key immunological players involved in immunoactivities and immunosuppression. We discuss how these mechanisms contribute to tolerance or susceptibility to infection, highlighting critical gaps in knowledge that require further investigation.
Collapse
Affiliation(s)
- Gnohion Fabrice Somé
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Modou Séré
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Daniel-Ouezzin-COULIBALLY, Dédougou, Burkina Faso
| | - Bienvenu Martin Somda
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Guiguigbaza-Kossigan Dayo
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | | | - Alain Boulangé
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Ghizlane Maarifi
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Isabelle Chantal
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - David Berthier-Teyssedre
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Sophie Thévenon
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| |
Collapse
|
2
|
Nagar R, Hambleton I, Tinti M, Carrington M, Ferguson MAJ. Characterization of the major surface glycoconjugates of Trypanosoma theileri. Mol Biochem Parasitol 2023; 256:111591. [PMID: 37652240 DOI: 10.1016/j.molbiopara.2023.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Trypanosoma theileri maintains a long-term extracellular infection with a low parasitaemia in bovids. The surface of this parasite is predicted to be decorated with several surface molecules including membrane surface proteases (MSPs), trans-sialidases and T. theileri putative surface proteins (TTPSPs). However, there are no experimental data to verify this hypothesis. Here, we have purified and partially characterized the surface glycoconjugates of T. theileri using biochemical and mass spectrometry-based approaches. The glycoconjugates fall into two classes: glycoproteins and glycolipids. Proteomic analysis of the glycoprotein fraction demonstrated the presence of MSPs and abundant mucin-like TTPSPs, with most predicted to be GPI-anchored. Mass spectrometric characterization of the glycolipid fraction showed that these are mannose- and galactose-containing glycoinositolphospholipids (GIPLs) that are larger and more diverse than those of its phylogenetic relative T. cruzi, containing up to 10 hexose residues and carrying either alkylacyl-phosphatidylinositol or inositol-phospho-ceramide (IPC) lipid components.
Collapse
Affiliation(s)
- Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Isobel Hambleton
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
3
|
Đaković S, Zeelen JP, Gkeka A, Chandra M, van Straaten M, Foti K, Zhong J, Vlachou EP, Aresta-Branco F, Verdi JP, Papavasiliou FN, Stebbins CE. A structural classification of the variant surface glycoproteins of the African trypanosome. PLoS Negl Trop Dis 2023; 17:e0011621. [PMID: 37656766 PMCID: PMC10501684 DOI: 10.1371/journal.pntd.0011621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Long-term immune evasion by the African trypanosome is achieved through repetitive cycles of surface protein replacement with antigenically distinct versions of the dense Variant Surface Glycoprotein (VSG) coat. Thousands of VSG genes and pseudo-genes exist in the parasite genome that, together with genetic recombination mechanisms, allow for essentially unlimited immune escape from the adaptive immune system of the host. The diversity space of the "VSGnome" at the protein level was thought to be limited to a few related folds whose structures were determined more than 30 years ago. However, recent progress has shown that the VSGs possess significantly more architectural variation than had been appreciated. Here we combine experimental X-ray crystallography (presenting structures of N-terminal domains of coat proteins VSG11, VSG21, VSG545, VSG558, and VSG615) with deep-learning prediction using Alphafold to produce models of hundreds of VSG proteins. We classify the VSGnome into groups based on protein architecture and oligomerization state, contextualize recent bioinformatics clustering schemes, and extensively map VSG-diversity space. We demonstrate that in addition to the structural variability and post-translational modifications observed thus far, VSGs are also characterized by variations in oligomerization state and possess inherent flexibility and alternative conformations, lending additional variability to what is exposed to the immune system. Finally, these additional experimental structures and the hundreds of Alphafold predictions confirm that the molecular surfaces of the VSGs remain distinct from variant to variant, supporting the hypothesis that protein surface diversity is central to the process of antigenic variation used by this organism during infection.
Collapse
Affiliation(s)
- Sara Đaković
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Johan P. Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Anastasia Gkeka
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Monica Chandra
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Konstantina Foti
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Janet Zhong
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Evi P. Vlachou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Francisco Aresta-Branco
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Joseph P. Verdi
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - C. Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
4
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
5
|
Escrivani DO, Scheidt V, Tinti M, Faria J, Horn D. Competition among variants is predictable and contributes to the antigenic variation dynamics of African trypanosomes. PLoS Pathog 2023; 19:e1011530. [PMID: 37459347 PMCID: PMC10374056 DOI: 10.1371/journal.ppat.1011530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/27/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Several persistent pathogens employ antigenic variation to continually evade mammalian host adaptive immune responses. African trypanosomes use variant surface glycoproteins (VSGs) for this purpose, transcribing one telomeric VSG expression-site at a time, and exploiting a reservoir of (sub)telomeric VSG templates to switch the active VSG. It has been known for over fifty years that new VSGs emerge in a predictable order in Trypanosoma brucei, and differential activation frequencies are now known to contribute to the hierarchy. Switching of approximately 0.01% of dividing cells to many new VSGs, in the absence of post-switching competition, suggests that VSGs are deployed in a highly profligate manner, however. Here, we report that switched trypanosomes do indeed compete, in a highly predictable manner that is dependent upon the activated VSG. We induced VSG gene recombination and switching in in vitro culture using CRISPR-Cas9 nuclease to target the active VSG. VSG dynamics, that were independent of host immune selection, were subsequently assessed using RNA-seq. Although trypanosomes activated VSGs from repressed expression-sites at relatively higher frequencies, the population of cells that activated minichromosomal VSGs subsequently displayed a competitive advantage and came to dominate. Furthermore, the advantage appeared to be more pronounced for longer VSGs. Differential growth of switched clones was also associated with wider differences, affecting transcripts involved in nucleolar function, translation, and energy metabolism. We conclude that antigenic variants compete, and that the population of cells that activates minichromosome derived VSGs displays a competitive advantage. Thus, competition among variants impacts antigenic variation dynamics in African trypanosomes and likely prolongs immune evasion with a limited set of antigens.
Collapse
Affiliation(s)
- Douglas O Escrivani
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Viktor Scheidt
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Joana Faria
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
6
|
Makarov A, Began J, Mautone IC, Pinto E, Ferguson L, Zoltner M, Zoll S, Field MC. The role of invariant surface glycoprotein 75 in xenobiotic acquisition by African trypanosomes. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:18-35. [PMID: 36789350 PMCID: PMC9896412 DOI: 10.15698/mic2023.02.790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
The surface proteins of parasitic protozoa mediate functions essential to survival within a host, including nutrient accumulation, environmental sensing and immune evasion. Several receptors involved in nutrient uptake and defence from the innate immune response have been described in African trypanosomes and, together with antigenic variation, contribute towards persistence within vertebrate hosts. Significantly, a superfamily of invariant surface glycoproteins (ISGs) populates the trypanosome surface, one of which, ISG75, is implicated in uptake of the century-old drug suramin. By CRISPR/Cas9 knockout and biophysical analysis, we show here that ISG75 directly binds suramin and mediates uptake of additional naphthol-related compounds, making ISG75 a conduit for entry of at least one structural class of trypanocidal compounds. However, ISG75 null cells present only modest attenuation of suramin sensitivity, have unaltered viability in vivo and in vitro and no alteration to suramin-invoked proteome responses. While ISG75 is demonstrated as a valid suramin cell entry pathway, we suggest the presence of additional mechanisms for suramin accumulation, further demonstrating the complexity of trypanosomatid drug interactions and potential for evolution of resistance.
Collapse
Affiliation(s)
- Alexandr Makarov
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jakub Began
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Ileana Corvo Mautone
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, Universidad de la República, Paysandú 60000, Uruguay
| | - Erika Pinto
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Liam Ferguson
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Charles University, Faculty of Science, Department of Parasitology, Vestec, Czech Republic
| | - Sebastian Zoll
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Cebrián R, Martínez-García M, Fernández M, García F, Martínez-Bueno M, Valdivia E, Kuipers OP, Montalbán-López M, Maqueda M. Advances in the preclinical characterization of the antimicrobial peptide AS-48. Front Microbiol 2023; 14:1110360. [PMID: 36819031 PMCID: PMC9936517 DOI: 10.3389/fmicb.2023.1110360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial resistance is a natural and inevitable phenomenon that constitutes a severe threat to global public health and economy. Innovative products, active against new targets and with no cross- or co-resistance with existing antibiotic classes, novel mechanisms of action, or multiple therapeutic targets are urgently required. For these reasons, antimicrobial peptides such as bacteriocins constitute a promising class of new antimicrobial drugs under investigation for clinical development. Here, we review the potential therapeutic use of AS-48, a head-to-tail cyclized cationic bacteriocin produced by Enterococcus faecalis. In the last few years, its potential against a wide range of human pathogens, including relevant bacterial pathogens and trypanosomatids, has been reported using in vitro tests and the mechanism of action has been investigated. AS-48 can create pores in the membrane of bacterial cells without the mediation of any specific receptor. However, this mechanism of action is different when susceptible parasites are studied and involves intracellular targets. Due to these novel mechanisms of action, AS-48 remains active against the antibiotic resistant strains tested. Remarkably, the effect of AS-48 against eukaryotic cell lines and in several animal models show little effect at the doses needed to inhibit susceptible species. The characteristics of this molecule such as low toxicity, microbicide activity, blood stability and activity, high stability at a wide range of temperatures or pH, resistance to proteases, and the receptor-independent effect make AS-48 unique to fight a broad range of microbial infections, including bacteria and some important parasites.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,*Correspondence: Rubén Cebrián, ✉
| | | | | | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,Biomedicinal Research Network Center, Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology, University of Granada, Granada, Spain,Manuel Montalbán-López, ✉
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Chandra M, Đaković S, Foti K, Zeelen JP, van Straaten M, Aresta-Branco F, Tihon E, Lübbehusen N, Ruppert T, Glover L, Papavasiliou FN, Stebbins CE. Structural similarities between the metacyclic and bloodstream form variant surface glycoproteins of the African trypanosome. PLoS Negl Trop Dis 2023; 17:e0011093. [PMID: 36780870 PMCID: PMC9956791 DOI: 10.1371/journal.pntd.0011093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
During infection of mammalian hosts, African trypanosomes thwart immunity using antigenic variation of the dense Variant Surface Glycoprotein (VSG) coat, accessing a large repertoire of several thousand genes and pseudogenes, and switching to antigenically distinct copies. The parasite is transferred to mammalian hosts by the tsetse fly. In the salivary glands of the fly, the pathogen adopts the metacyclic form and expresses a limited repertoire of VSG genes specific to that developmental stage. It has remained unknown whether the metacyclic VSGs possess distinct properties associated with this particular and discrete phase of the parasite life cycle. We present here three novel metacyclic form VSG N-terminal domain crystal structures (mVSG397, mVSG531, and mVSG1954) and show that they mirror closely in architecture, oligomerization, and surface diversity the known classes of bloodstream form VSGs. These data suggest that the mVSGs are unlikely to be a specialized subclass of VSG proteins, and thus could be poor candidates as the major components of prophylactic vaccines against trypanosomiasis.
Collapse
Affiliation(s)
- Monica Chandra
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Sara Đaković
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Konstantina Foti
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Johan P. Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Francisco Aresta-Branco
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Eliane Tihon
- Institut Pasteur, Université Paris Cité, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Nicole Lübbehusen
- Centre for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Centre for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lucy Glover
- Institut Pasteur, Université Paris Cité, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - C. Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
9
|
Sandes JM, de Figueiredo RCBQ. The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy. Front Cell Infect Microbiol 2022; 12:1057774. [PMID: 36439218 PMCID: PMC9684732 DOI: 10.3389/fcimb.2022.1057774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 01/04/2024] Open
Abstract
The endoplasmic reticulum (ER) of higher eukaryotic cells forms an intricate membranous network that serves as the main processing facility for folding and assembling of secreted and membrane proteins. The ER is a highly dynamic organelle that interacts with other intracellular structures, as well as endosymbiotic pathogenic and non-pathogenic microorganisms. A strict ER quality control (ERQC) must work to ensure that proteins entering the ER are folded and processed correctly. Unfolded or misfolded proteins are usually identified, selected, and addressed to Endoplasmic Reticulum-Associated Degradation (ERAD) complex. Conversely, when there is a large demand for secreted proteins or ER imbalance, the accumulation of unfolded or misfolded proteins activates the Unfold Protein Response (UPR) to restore the ER homeostasis or, in the case of persistent ER stress, induces the cell death. Pathogenic trypanosomatids, such as Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp are the etiological agents of important neglected diseases. These protozoans have a complex life cycle alternating between vertebrate and invertebrate hosts. The ER of trypanosomatids, like those found in higher eukaryotes, is also specialized for secretion, and depends on the ERAD and non-canonical UPR to deal with the ER stress. Here, we reviewed the basic aspects of ER biology, organization, and quality control in trypanosomatids. We also focused on the unusual way by which T. cruzi, T. brucei, and Leishmania spp. respond to ER stress, emphasizing how these parasites' ER-unrevealed roads might be an attractive target for chemotherapy.
Collapse
Affiliation(s)
- Jana Messias Sandes
- Laboratório de Biologia Celular e Molecular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Keizo Assami, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
10
|
Mesa JM, Comini MA, Dibello E, Gamenara D. Organocatalytic synthesis and anti‐trypanosomal activity evaluation of L‐pentofuranose‐mimetic iminosugars. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juan Manuel Mesa
- Universidad de la Republica Uruguay Organic chemistry department Gral. Flores 2124 11800 Montevideo URUGUAY
| | - Marcelo Alberto Comini
- Institut Pasteur Montevideo Group Redox Biology of Trypanosomes Mataojo 2020 11400 Montevideo URUGUAY
| | - Estefania Dibello
- Universidad de la República Uruguay Departamento de Química Orgánica Gral. Flores 21 24 11800 Montevideo URUGUAY
| | - Daniela Gamenara
- Universidad de la Republica Facultad de Quimica Organic Chemistry Department Gral. Flores 2124 11800 Montevideo URUGUAY
| |
Collapse
|
11
|
The Spliced Leader RNA Silencing (SLS) Pathway in Trypanosoma brucei Is Induced by Perturbations of Endoplasmic Reticulum, Golgi Complex, or Mitochondrial Protein Factors: Functional Analysis of SLS-Inducing Kinase PK3. mBio 2021; 12:e0260221. [PMID: 34844425 PMCID: PMC8630539 DOI: 10.1128/mbio.02602-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5′ exon derived from the spliced leader (SL) RNA. Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA-binding protein TRF4, leading to the shutoff of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structures of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all of the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments.
Collapse
|
12
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
More K, Klinger CM, Barlow LD, Dacks JB. Evolution and Natural History of Membrane Trafficking in Eukaryotes. Curr Biol 2021; 30:R553-R564. [PMID: 32428497 DOI: 10.1016/j.cub.2020.03.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The membrane-trafficking system is a defining facet of eukaryotic cells. The best-known organelles and major protein families of this system are largely conserved across the vast diversity of eukaryotes, implying both ancient organization and functional unity. Nonetheless, intriguing variation exists that speaks to the evolutionary forces that have shaped the endomembrane system in eukaryotes and highlights ways in which membrane trafficking in protists differs from that in our well-understood models of mammalian and yeast cells. Both parasites and free-living protists possess specialized trafficking organelles, some lineage specific, others more widely distributed - the evolution and function of these organelles begs exploration. Novel members of protein families are present across eukaryotes but have been lost in humans. These proteins may well hold clues to understanding differences in cellular function in organisms that are of pressing importance for planetary health.
Collapse
Affiliation(s)
- Kira More
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Christen M Klinger
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
14
|
Zhang K, Jiang N, Sang X, Feng Y, Chen R, Chen Q. Trypanosoma brucei Lipophosphoglycan Induces the Formation of Neutrophil Extracellular Traps and Reactive Oxygen Species Burst via Toll-Like Receptor 2, Toll-Like Receptor 4, and c-Jun N-Terminal Kinase Activation. Front Microbiol 2021; 12:713531. [PMID: 34394064 PMCID: PMC8355521 DOI: 10.3389/fmicb.2021.713531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023] Open
Abstract
Trypanosoma brucei brucei is the causative agent of African animal trypanosomosis, which mainly parasitizes the blood of the host. Lipophosphoglycan (LPG), a polymer anchored to the surface of the parasites, activates the host immune response. In this study, we revealed that T. brucei LPG stimulated neutrophils to form neutrophil extracellular traps (NETs) and release the reactive oxygen species (ROS). We further analyzed the involvement of toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) and explored the activation of signaling pathway enzymes in response to LPG stimulation. During the stimulation of neutrophils by LPG, the blockade using anti-TLR2 and anti-TLR4 antibodies reduced the phosphorylation of c-Jun N-terminal kinase (JNK), the release of DNA from the NETs, and the burst of ROS. Moreover, the addition of JNK inhibitor and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor exhibited similar effects. Our data suggest that T. brucei LPG activates the phosphorylation of JNK through TLR2 and TLR4 recognition, which causes the formation of NETs and the burst of ROS.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
15
|
Nihei CI, Nakanishi M. Cargo selection in the early secretory pathway of African trypanosomes. Parasitol Int 2021; 84:102379. [PMID: 34000424 DOI: 10.1016/j.parint.2021.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Membrane and secretory proteins are synthesized by ribosomes and then enter the endoplasmic reticulum (ER) where they undergo glycosylation and quality control for proper folding. Subsequently, proteins are transported to the Golgi apparatus and then sorted to the plasma membrane or intracellular organelles. Transport vesicles are formed at ER-exit sites (ERES) on the ER with several coat protein complexes. Cargo proteins loaded into the vesicles are selected by specific interactions with cargo receptors and/or adaptors during vesicle formation. p24 family and intracellular lectin ERGIC-53-membrane proteins are the known cargo receptors acting in the early secretory pathway (ER-Golgi). Oligomerization of the cargo receptors have been suggested to play an important role in cargo selection and sorting via posttranslational modifications in fungi and metazoans. On the other hand, the mechanisms involved in the early secretory pathway in protozoa remain unclear. In this review, we focus on Trypanosoma brucei as a representative of protozoan and discuss differences and commonalities in the molecular mechanisms of its early secretory pathway compared with other organisms.
Collapse
Affiliation(s)
- Coh-Ichi Nihei
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0023, Japan.
| | - Masayuki Nakanishi
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
16
|
Halliday C, de Castro-Neto A, Alcantara CL, Cunha-E-Silva NL, Vaughan S, Sunter JD. Trypanosomatid Flagellar Pocket from Structure to Function. Trends Parasitol 2021; 37:317-329. [PMID: 33308952 DOI: 10.1016/j.pt.2020.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Artur de Castro-Neto
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
17
|
Black JA, Crouch K, Lemgruber L, Lapsley C, Dickens N, Tosi LRO, Mottram JC, McCulloch R. Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Rep 2021; 30:836-851.e5. [PMID: 31968257 PMCID: PMC6988115 DOI: 10.1016/j.celrep.2019.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control. Loss of the repair protein kinase ATR in Trypanosoma brucei is lethal Loss of T. brucei ATR alters VSG coat expression needed for immune evasion Monoallelic RNA polymerase I VSG expression is undermined by ATR loss ATR loss leads to expression of subtelomeric VSGs, indicative of recombination
Collapse
Affiliation(s)
- Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Nicholas Dickens
- Marine Science Lab, FAU Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946, USA
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
18
|
Structure of trypanosome coat protein VSGsur and function in suramin resistance. Nat Microbiol 2021; 6:392-400. [PMID: 33462435 PMCID: PMC7116837 DOI: 10.1038/s41564-020-00844-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023]
Abstract
Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.
Collapse
|
19
|
Maudlin IE, Kelly S, Schwede A, Carrington M. VSG mRNA levels are regulated by the production of functional VSG protein. Mol Biochem Parasitol 2021; 241:111348. [PMID: 33352254 PMCID: PMC7871013 DOI: 10.1016/j.molbiopara.2020.111348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The bloodstream form of Trypanosoma brucei persists in mammalian hosts through a population survival strategy depending on antigenic variation of a cell surface coat composed of the variant surface glycoprotein (VSG). The integrity of the VSG coat is essential and blocking its synthesis results in a cell division cycle arrest just prior to cytokinesis. This observation indicates that VSG levels are monitored and that the cell has mechanisms to respond to a disruption of synthesis. Here, the regulation of VSG mRNA levels has been investigated by first measuring VSG mRNA copy number, and second using ectopic expression of VSG transgenes containing premature termination codons. The findings are that (i) VSG mRNA copy number varies with the identity of the VSG and (ii) a pathway detects synthesis of non-functional VSG protein and results in an increase in VSG mRNA levels.
Collapse
Affiliation(s)
- Isabella E Maudlin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Steve Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom
| | - Angela Schwede
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| |
Collapse
|
20
|
Rogozin IB, Charyyeva A, Sidorenko IA, Babenko VN, Yurchenko V. Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens 2020; 9:pathogens9070572. [PMID: 32679679 PMCID: PMC7400496 DOI: 10.3390/pathogens9070572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022] Open
Abstract
The Leishmania donovani species complex consists of all L. donovani and L. infantum strains mainly responsible for visceral leishmaniasis (VL). It was suggested that genome rearrangements in Leishmania spp. occur very often, thus enabling parasites to adapt to the different environmental conditions. Some of these rearrangements may be directly linked to the virulence or explain the reduced efficacy of antimonial drugs in some isolates. In the current study, we focused on a large-scale analysis of putative gene conversion events using publicly available datasets. Previous population study of L. donovani suggested that population variability of L. donovani is relatively low, however the authors used masking procedures and strict read selection criteria. We decided to re-analyze DNA-seq data without masking sequences, because we were interested in the most dynamic fraction of the genome. The majority of samples have an excess of putative gene conversion/recombination events in the noncoding regions, however we found an overall excess of putative intrachromosomal gene conversion/recombination in the protein coding genes, compared to putative interchromosomal gene conversion/recombination events.
Collapse
Affiliation(s)
- Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA;
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Ivan A. Sidorenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
21
|
Effect of Praziquantel on Schistosoma mekongi Proteome and Phosphoproteome. Pathogens 2020; 9:pathogens9060417. [PMID: 32471184 PMCID: PMC7350297 DOI: 10.3390/pathogens9060417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/11/2023] Open
Abstract
Schistosoma mekongi causes schistosomiasis in southeast Asia, against which praziquantel (PZQ) is the only treatment option. PZQ resistance has been reported, thus increasing the requirement to understand mechanism of PZQ. Herein, this study aimed to assess differences in proteome and phosphoproteome of S. mekongi after PZQ treatment for elucidating its action. Furthermore, key kinases related to PZQ effects were predicted to identify alternative targets for novel drug development. Proteomes of S. mekongi were profiled after PZQ treatment at half maximal inhibitory concentration and compared with untreated worms. A total of 144 proteins were differentially expressed after treatment. In parallel, immunohistochemistry indicated a reduction of phosphorylation, with 43 phosphoproteins showing reduced phosphorylation, as identified by phosphoproteomic approach. Pathway analysis of mass spectrometric data showed that calcium homeostasis, worm antigen, and oxidative stress pathways were influenced by PZQ treatment. Interestingly, two novel mechanisms related to protein folding and proteolysis through endoplasmic reticulum-associated degradation pathways were indicated as a parasiticidal mechanism of PZQ. According to kinase–substrate predictions with bioinformatic tools, Src kinase was highlighted as the major kinase related to the alteration of phosphorylation by PZQ. Interfering with these pathways or applying Src kinase inhibitors could be alternative approaches for further antischistosomal drug development.
Collapse
|
22
|
Kim C, Sung S, Kim J, Lee J. Repair and Reconstruction of Telomeric and Subtelomeric Regions and Genesis of New Telomeres: Implications for Chromosome Evolution. Bioessays 2020; 42:e1900177. [PMID: 32236965 DOI: 10.1002/bies.201900177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/20/2020] [Indexed: 12/12/2022]
Abstract
DNA damage repair within telomeres are suppressed to maintain the integrity of linear chromosomes, but the accidental activation of repairs can lead to genome instability. This review develops the concept that mechanisms to repair DNA damage in telomeres contribute to genetic variability and karyotype evolution, rather than catastrophe. Spontaneous breaks in telomeres can be repaired by telomerase, but in some cases DNA repair pathways are activated, and can cause chromosomal rearrangements or fusions. The resultant changes can also affect subtelomeric regions that are adjacent to telomeres. Subtelomeres are actively involved in such chromosomal changes, and are therefore the most variable regions in the genome. The case of Caenorhabditis elegans in the context of changes of subtelomeric structures revealed by long-read sequencing is also discussed. Theoretical and methodological issues covered in this review will help to explore the mechanism of chromosome evolution by reconstruction of chromosomal ends in nature.
Collapse
Affiliation(s)
- Chuna Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea.,Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Daejeon, 34141, Korea
| | - Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea
| |
Collapse
|
23
|
Tinti M, Güther MLS, Crozier TWM, Lamond AI, Ferguson MAJ. Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics. Wellcome Open Res 2019; 4:152. [PMID: 31681858 PMCID: PMC6816455 DOI: 10.12688/wellcomeopenres.15421.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
Collapse
Affiliation(s)
- Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maria Lucia S Güther
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas W M Crozier
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK.,Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.,Department of Medicine, Cambridge Institute for Medical Research, Cambridge, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael A J Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
24
|
Leeder WM, Giehler F, Joswig J, Göringer HU. Bioinspired Design of Lysolytic Triterpenoid-Peptide Conjugates that Kill African Trypanosomes. Chembiochem 2019; 20:1251-1255. [PMID: 30609206 DOI: 10.1002/cbic.201800674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Indexed: 11/07/2022]
Abstract
Humans have evolved a natural immunity against Trypanosoma brucei infections, which is executed by two serum (lipo)protein complexes known as trypanolytic factors (TLF). The active TLF ingredient is the primate-specific apolipoprotein L1 (APOL1). The protein has a pore-forming activity that kills parasites by lysosomal and mitochondrial membrane fenestration. Of the many trypanosome subspecies, only two are able to counteract the activity of APOL1; this illustrates its evolutionarily optimized design and trypanocidal potency. Herein, we ask whether a synthetic (syn) TLF can be synthesized by using the design principles of the natural TLF complexes but with different chemical building blocks. We demonstrate the stepwise development of triterpenoid-peptide conjugates, in which the triterpenoids act as a cell-binding, uptake and lysosomal-transport modules and the synthetic peptide GALA acts as a pH-sensitive, pore-forming lysolytic toxin. As designed, the conjugate kills infective-stage African trypanosomes through lysosomal lysis thus demonstrating a proof-of-principle for the bioinspired, forward-design of a synTLF.
Collapse
Affiliation(s)
- W-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Fabian Giehler
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.,Present address: Helmholtz Zentrum München für Gesundheit und Umwelt (GmbH), Research Unit Gene Vectors Munich (Germany) and, German Center for Infection Research (DZIF), Partner Site Munich, Marchionistrasse 25, 81377, Munich, Germany
| | - Juliane Joswig
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - H Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| |
Collapse
|
25
|
In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra. SCIENCE CHINA-LIFE SCIENCES 2019; 62:406-419. [PMID: 30685829 DOI: 10.1007/s11427-018-9473-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022]
Abstract
Trypanosoma evansi is the causative agent of the animal trypanosomiasis surra, a disease with serious economic burden worldwide. The availability of the genome of its closely related parasite Trypanosoma brucei allows us to compare their genetic and evolutionarily shared and distinct biological features. The complete genomic sequence of the T. evansi YNB strain was obtained using a combination of genomic and transcriptomic sequencing, de novo assembly, and bioinformatic analysis. The genome size of the T. evansi YNB strain was 35.2 Mb, showing 96.59% similarity in sequence and 88.97% in scaffold alignment with T. brucei. A total of 8,617 protein-coding genes, accounting for 31% of the genome, were predicted. Approximately 1,641 alternative splicing events of 820 genes were identified, with a majority mediated by intron retention, which represented a major difference in post-transcriptional regulation between T. evansi and T. brucei. Disparities in gene copy number of the variant surface glycoprotein, expression site-associated genes, microRNAs, and RNA-binding protein were clearly observed between the two parasites. The results revealed the genomic determinants of T. evansi, which encoded specific biological characteristics that distinguished them from other related trypanosome species.
Collapse
|
26
|
Venkatesh D, Zhang N, Zoltner M, del Pino RC, Field MC. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. Traffic 2018; 19:803-812. [DOI: 10.1111/tra.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ning Zhang
- School of Life Sciences; University of Dundee; Dundee UK
| | - Martin Zoltner
- School of Life Sciences; University of Dundee; Dundee UK
| | | | - Mark C. Field
- School of Life Sciences; University of Dundee; Dundee UK
| |
Collapse
|
27
|
Quintana JF, Pino RCD, Yamada K, Zhang N. Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes (Basel) 2018; 9:E368. [PMID: 30037058 PMCID: PMC6071061 DOI: 10.3390/genes9070368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes are highly divergent from their metazoan hosts, and as part of adaptation to a parasitic life style have developed a unique endomembrane system. The key virulence mechanism of many pathogens is successful immune evasion, to enable survival within a host, a feature that requires both genetic events and membrane transport mechanisms in African trypanosomes. Intracellular trafficking not only plays a role in immune evasion, but also in homeostasis of intracellular and extracellular compartments and interactions with the environment. Significantly, historical and recent work has unraveled some of the connections between these processes and highlighted how immune evasion mechanisms that are associated with adaptations to membrane trafficking may have, paradoxically, provided specific sensitivity to drugs. Here, we explore these advances in understanding the membrane composition of the trypanosome plasma membrane and organelles and provide a perspective for how transport could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juan F Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | - Kayo Yamada
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
28
|
Liu D, Albergante L, Newman TJ, Horn D. Faster growth with shorter antigens can explain a VSG hierarchy during African trypanosome infections: a feint attack by parasites. Sci Rep 2018; 8:10922. [PMID: 30026531 PMCID: PMC6053454 DOI: 10.1038/s41598-018-29296-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/09/2018] [Indexed: 11/22/2022] Open
Abstract
The parasitic African trypanosome, Trypanosoma brucei, evades the adaptive host immune response by a process of antigenic variation that involves the clonal switching of variant surface glycoproteins (VSGs). The VSGs that come to dominate in vivo during an infection are not entirely random, but display a hierarchical order. How this arises is not fully understood. Combining available genetic data with mathematical modelling, we report a VSG-length-dependent hierarchical timing of clonal VSG dominance in a mouse model, consistent with an inverse correlation between VSG length and trypanosome growth-rate. Our analyses indicate that, among parasites switching to new VSGs, those expressing shorter VSGs preferentially accumulate to a detectable level that is sufficient to trigger a targeted immune response. This may be due to the increased metabolic cost of producing longer VSGs. Subsequent elimination of faster-growing parasites then allows slower-growing parasites with longer VSGs to accumulate. This interaction between the host and parasite is able to explain the temporal distribution of VSGs observed in vivo. Thus, our findings reveal a length-dependent hierarchy that operates during T. brucei infection. This represents a 'feint attack' diversion tactic utilised by these persistent parasites to out-maneuver the host adaptive immune system.
Collapse
Affiliation(s)
- Dianbo Liu
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA.
| | - Luca Albergante
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institut Curie, PLS Research University, Mines Paris Tech, Inserm U900, F-75005, Paris, France
| | - T J Newman
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Solaravus, PO Box 29476, Cupar, KY15 9AS, UK
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
29
|
Kelly S, Ivens A, Mott GA, O'Neill E, Emms D, Macleod O, Voorheis P, Tyler K, Clark M, Matthews J, Matthews K, Carrington M. An Alternative Strategy for Trypanosome Survival in the Mammalian Bloodstream Revealed through Genome and Transcriptome Analysis of the Ubiquitous Bovine Parasite Trypanosoma (Megatrypanum) theileri. Genome Biol Evol 2018; 9:2093-2109. [PMID: 28903536 PMCID: PMC5737535 DOI: 10.1093/gbe/evx152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - G Adam Mott
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - David Emms
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Olivia Macleod
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Matthew Clark
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Jacqueline Matthews
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Keith Matthews
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, United Kingdom
| |
Collapse
|
30
|
Currier RB, Cooper A, Burrell-Saward H, MacLeod A, Alsford S. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PLoS Pathog 2018; 14:e1006855. [PMID: 29346416 PMCID: PMC5790291 DOI: 10.1371/journal.ppat.1006855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/30/2018] [Accepted: 01/05/2018] [Indexed: 12/27/2022] Open
Abstract
In contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T. b. brucei is lysed by apolipoprotein-L1 (apoL1)-containing human serum trypanolytic factors (TLF), rendering it non-infectious to humans. While the mechanisms of TLF1 uptake, apoL1 membrane integration, and T. b. gambiense and T. b. rhodesiense apoL1-resistance have been extensively characterised, our understanding of the range of factors that drive apoL1 action in T. b. brucei is limited. Selecting our bloodstream-form T. b. brucei RNAi library with recombinant apoL1 identified an array of factors that supports the trypanocidal action of apoL1, including six putative ubiquitin modifiers and several proteins putatively involved in membrane trafficking; we also identified the known apoL1 sensitivity determinants, TbKIFC1 and the V-ATPase. Most prominent amongst the novel apoL1 sensitivity determinants was a putative ubiquitin ligase. Intriguingly, while loss of this ubiquitin ligase reduces parasite sensitivity to apoL1, its loss enhances parasite sensitivity to TLF1-dominated normal human serum, indicating that free and TLF1-bound apoL1 have contrasting modes-of-action. Indeed, loss of the known human serum sensitivity determinants, p67 (lysosomal associated membrane protein) and the cathepsin-L regulator, 'inhibitor of cysteine peptidase', had no effect on sensitivity to free apoL1. Our findings highlight a complex network of proteins that influences apoL1 action, with implications for our understanding of the anti-trypanosomal action of human serum.
Collapse
Affiliation(s)
- Rachel B. Currier
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anneli Cooper
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
31
|
Herman E, Siegesmund MA, Bottery MJ, van Aerle R, Shather MM, Caler E, Dacks JB, van der Giezen M. Membrane Trafficking Modulation during Entamoeba Encystation. Sci Rep 2017; 7:12854. [PMID: 28993644 PMCID: PMC5634486 DOI: 10.1038/s41598-017-12875-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is an intestinal parasite that infects 50-100 million people and causes up to 55,000 deaths annually. The transmissive form of E. histolytica is the cyst, with a single infected individual passing up to 45 million cysts per day, making cyst production an attractive target for infection control. Lectins and chitin are secreted to form the cyst wall, although little is known about the underlying membrane trafficking processes supporting encystation. As E. histolytica does not readily form cysts in vitro, we assessed membrane trafficking gene expression during encystation in the closely related model Entamoeba invadens. Genes involved in secretion are up-regulated during cyst formation, as are some trans-Golgi network-to-endosome trafficking genes. Furthermore, endocytic and general trafficking genes are up-regulated in the mature cyst, potentially preserved as mRNA in preparation for excystation. Two divergent dynamin-related proteins found in Entamoeba are predominantly expressed during cyst formation. Phylogenetic analyses indicate that they are paralogous to, but quite distinct from, classical dynamins found in human, suggesting that they may be potential drug targets to block encystation. The membrane-trafficking machinery is clearly regulated during encystation, providing an additional facet to understanding this crucial parasitic process.
Collapse
Affiliation(s)
- Emily Herman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada
| | | | - Michael J Bottery
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ronny van Aerle
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | | | - Elisabet Caler
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD, 20892-7950, USA
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada.
| | | |
Collapse
|
32
|
Castillo-Acosta VM, Balzarini J, González-Pacanowska D. Surface Glycans: A Therapeutic Opportunity for Kinetoplastid Diseases. Trends Parasitol 2017; 33:775-787. [PMID: 28760415 DOI: 10.1016/j.pt.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Abstract
Trypanosomal diseases are in need of innovative therapies that exploit novel mechanisms of action. The cell surface of trypanosomatid parasites is characterized by a dense coat of glycoconjugates with important functions in host cell recognition, immune evasion, infectivity, and cell function. The nature of parasite surface glycans is highly dynamic and changes during differentiation and in response to different stimuli through the action of glycosyltransferases and glycosidases. Here we propose a new approach to antiparasitic drug discovery that involves the use of carbohydrate-binding agents that bind specifically to cell-surface glycans, giving rise to cytotoxic events and parasite death. The potential and limitations of this strategy are addressed with a specific focus on the treatment of sleeping sickness.
Collapse
Affiliation(s)
- Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016-Armilla (Granada), Spain
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016-Armilla (Granada), Spain.
| |
Collapse
|
33
|
Devlin R, Marques CA, McCulloch R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome? Curr Genet 2017; 63:441-449. [PMID: 27822899 PMCID: PMC5422504 DOI: 10.1007/s00294-016-0662-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
34
|
Manna PT, Obado SO, Boehm C, Gadelha C, Sali A, Chait BT, Rout MP, Field MC. Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci 2017; 130:1379-1392. [PMID: 28232524 PMCID: PMC5399782 DOI: 10.1242/jcs.191478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is the most evolutionarily ancient endocytic mechanism known, and in many lineages the sole mechanism for internalisation. Significantly, in mammalian cells CME is responsible for the vast bulk of endocytic flux and has likely undergone multiple adaptations to accommodate specific requirements by individual species. In African trypanosomes, we previously demonstrated that CME is independent of the AP-2 adaptor protein complex, that orthologues to many of the animal and fungal CME protein cohort are absent, and that a novel, trypanosome-restricted protein cohort interacts with clathrin and drives CME. Here, we used a novel cryomilling affinity isolation strategy to preserve transient low-affinity interactions, giving the most comprehensive trypanosome clathrin interactome to date. We identified the trypanosome AP-1 complex, Trypanosoma brucei (Tb)EpsinR, several endosomal SNAREs plus orthologues of SMAP and the AP-2 associated kinase AAK1 as interacting with clathrin. Novel lineage-specific proteins were identified, which we designate TbCAP80 and TbCAP141. Their depletion produced extensive defects in endocytosis and endomembrane system organisation, revealing a novel molecular pathway subtending an early-branching and highly divergent form of CME, which is conserved and likely functionally important across the kinetoplastid parasites. Summary: Endocytosis is a vital process in most cells, and here we identify important proteins required for this process in trypanosomes. Significantly, these are unique and not present in animals, fungi or plants.
Collapse
Affiliation(s)
- Paul T Manna
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Samson O Obado
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham NG2 7UH, UK
| | - Andrej Sali
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| | - Brian T Chait
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Michael P Rout
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| |
Collapse
|
35
|
Boehm CM, Obado S, Gadelha C, Kaupisch A, Manna PT, Gould GW, Munson M, Chait BT, Rout MP, Field MC. The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathog 2017; 13:e1006063. [PMID: 28114397 PMCID: PMC5256885 DOI: 10.1371/journal.ppat.1006063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
Membrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence. We directly determined the composition of the Trypanosoma brucei exocyst by affinity isolation and demonstrate that the parasite complex is nonameric, retaining all eight canonical subunits (albeit highly divergent at the sequence level) plus a novel essential subunit, Exo99. Exo99 and Sec15 knockdowns have remarkably similar phenotypes in terms of viability and impact on morphology and trafficking pathways. Significantly, both Sec15 and Exo99 have a clear function in endocytosis, and global proteomic analysis indicates an important role in maintaining the surface proteome. Taken together these data indicate additional exocyst functions in trypanosomes, which likely include endocytosis, recycling and control of surface composition. Knockdowns in HeLa cells suggest that the role in endocytosis is shared with metazoan cells. We conclude that, whilst the trypanosome exocyst has novel components, overall functionality appears conserved, and suggest that the unique subunit may provide therapeutic opportunities.
Collapse
Affiliation(s)
- Cordula M. Boehm
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Samson Obado
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexandra Kaupisch
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul T. Manna
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Gwyn W. Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Brian T. Chait
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Michael P. Rout
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Mark C. Field
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
36
|
Zoltner M, Horn D, de Koning HP, Field MC. Exploiting the Achilles' heel of membrane trafficking in trypanosomes. Curr Opin Microbiol 2016; 34:97-103. [PMID: 27614711 PMCID: PMC5176092 DOI: 10.1016/j.mib.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Pathogenic protozoa are evolutionarily highly divergent from their metazoan hosts, reflected in many aspects of their biology. One particularly important parasite taxon is the trypanosomatids. Multiple transmission modes, distinct life cycles and exploitation of many host species attests to great prowess as parasites, and adaptability for efficient, chronic infection. Genome sequencing has begun uncovering how trypanosomatids are well suited to parasitism, and recent genetic screening and cell biology are revealing new aspects of how to control these organisms and prevent disease. Importantly, several lines of evidence suggest that membrane transport processes are central for the sensitivity towards several frontline drugs.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
37
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
38
|
Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol 2016; 18:1673-1688. [PMID: 27110662 DOI: 10.1111/cmi.12605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/20/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ). We now reinvestigate VSG turnover and find no evidence for rapid degradation, consistent with a model whereby VSG synthesis is precisely regulated to match requirements for a functional surface coat on each daughter cell. However, using a mutated version of the ESAG7 subunit of the transferrin receptor (E7:Ty) we confirm functional ERAD in trypanosomes. E7:Ty fails to assemble into transferrin receptors and accumulates in the ER, consistent with retention of misfolded protein, and its turnover is selectively rescued by the proteasomal inhibitor MG132. We also show that ER accumulation of E7:Ty does not induce an unfolded protein response. These data, along with the presence of ERAD orthologues in the Trypanosoma brucei genome, confirm ERAD in trypanosomes. We discuss scenarios in which ERAD could be critical to bloodstream parasites, and how these may have contributed to the evolution of antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Katherine A Muratore
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis-St. Paul, MN, 55455, USA
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
39
|
Yaro M, Munyard KA, Stear MJ, Groth DM. Combatting African Animal Trypanosomiasis (AAT) in livestock: The potential role of trypanotolerance. Vet Parasitol 2016; 225:43-52. [PMID: 27369574 DOI: 10.1016/j.vetpar.2016.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 01/09/2023]
Abstract
African Animal Trypanosomiasis (AAT) is endemic in at least 37 of the 54 countries in Africa. It is estimated to cause direct and indirect losses to the livestock production industry in excess of US$ 4.5 billion per annum. A century of intervention has yielded limited success, owing largely to the extraordinary complexity of the host-parasite interaction. Trypanotolerance, which refers to the inherent ability of some African livestock breeds, notably Djallonke sheep, N'Dama cattle and West African Dwarf goats, to withstand a trypanosomiasis challenge and still remain productive without any form of therapy, is an economically sustainable option for combatting this disease. Yet trypanotolerance has not been adequately exploited in the fight against AAT. In this review, we describe new insights into the genetic basis of trypanotolerance and discuss the potential of exploring this phenomenon as an integral part of the solution for AAT, particularly, in the context of African animal production systems.
Collapse
Affiliation(s)
- M Yaro
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K A Munyard
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - M J Stear
- Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow University, Garscube Estate, Bearsden Road, Glasgow G61 1QH, UK
| | - D M Groth
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
40
|
Perdomo D, Bonhivers M, Robinson DR. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1. Cells 2016; 5:cells5010009. [PMID: 26950156 PMCID: PMC4810094 DOI: 10.3390/cells5010009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton.
Collapse
Affiliation(s)
- Doranda Perdomo
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Mélanie Bonhivers
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Derrick R Robinson
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| |
Collapse
|
41
|
Manna PT, Field MC. Phosphoinositides, kinases and adaptors coordinating endocytosis in Trypanosoma brucei. Commun Integr Biol 2016; 8:e1082691. [PMID: 27064836 PMCID: PMC4802737 DOI: 10.1080/19420889.2015.1082691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/08/2015] [Indexed: 01/01/2023] Open
Abstract
In the kinetoplastid parasite Trypanosoma brucei clathrin-mediated endocytosis is essential for survival and aids immune evasion in the mammalian host. The formation of endocytic clathrin coated vesicles in T. brucei is via a unique mechanism owing to an evolutionarily recent loss of the adaptor protein (AP)2 complex, a central hub in endocytic vesicle assembly. Despite this loss, recent studies examining endocytic clathrin coat assembly have highlighted a high degree of conservation between trypanosomes and their mammalian hosts. In particular phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and its putative effectors, TbCALM and TbEpsinR, are central to clathrin-mediated endocytosis in the trypanosome, just as they are in animal cells. In addition to providing insights into the cell biology of T. brucei, these studies also suggest an ancient, possibly pan-eukaryotic connection between PtdIns(4,5)P2 and endocytosis.
Collapse
Affiliation(s)
- Paul T Manna
- Cambridge Institute for Medical Research; University of Cambridge ; Cambridge, UK
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery; University of Dundee ; Dundee, UK
| |
Collapse
|
42
|
Schwede A, Macleod OJS, MacGregor P, Carrington M. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins? PLoS Pathog 2015; 11:e1005259. [PMID: 26719972 PMCID: PMC4697842 DOI: 10.1371/journal.ppat.1005259] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Variations on the statement “the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier” appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG. African trypanosomes have evolved two key strategies to prevent killing by the host immune response and, thus, maintain a long-term infection in a mammal. Both are based on a densely packed coat of a single protein, the variant surface glycoprotein (VSG), which covers the entire extracellular surface of the cell. The first strategy is antigenic variation, through which individual cells switch the identity of the expressed VSG at a low frequency and are selected by the host immune response. If the VSG is novel, the trypanosome proliferates, maintaining the infection; if it doesn't switch, or if the new VSG is not novel, it will be killed. In the second strategy, the VSG acts as a protective barrier, shielding the cell from innate and adaptive immune factors until there is an overwhelming titre of antibodies recognising the expressed VSG. In this review, the VSG coat is modelled, and past experiments that investigated how it protected the trypanosome are revisited using current knowledge of VSG sequence and structure. The conclusions are: (i) the identity of the individual VSGs explains early experimental variation; (ii) most of the VSG molecule is accessible to antibodies. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.
Collapse
Affiliation(s)
- Angela Schwede
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS Pathog 2015; 11:e1005236. [PMID: 26492041 PMCID: PMC4619645 DOI: 10.1371/journal.ppat.1005236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/28/2015] [Indexed: 12/29/2022] Open
Abstract
Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes. The mechanisms by which pathogens interact with their environment are of major importance, both for fulfilling the basic needs of the parasite and understanding immune evasion. For African trypanosomes, the surface is dominated by the variant surface glycoprotein (VSG), but recent data has demonstrated an important role for ubiquitylation in mediating turnover of invariant surface glycoproteins (ISGs) and maintaining ISG copy number independent of VSG. Further, ISG expression is required for suramin-sensitivity. Here we describe mechanisms mediating ISG turnover, uncovered using a screen for genes involved in sensitivity to suramin. These involve multiple aspects of the ubiquitylation machinery, and connect ISG turnover with additional surface proteins. Our data provide a first insight into the complexity of regulation of the ISG family, identifying further aspects to the control of a drug-sensitivity pathway in trypanosomes, and offering insights into metabolism of the parasite surface proteome.
Collapse
Affiliation(s)
- Martin Zoltner
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - David Horn
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Bart JM, Cordon-Obras C, Vidal I, Reed J, Perez-Pastrana E, Cuevas L, Field MC, Carrington M, Navarro M. Localization of serum resistance-associated protein in Trypanosoma brucei rhodesiense and transgenic Trypanosoma brucei brucei. Cell Microbiol 2015; 17:1523-35. [PMID: 25924022 DOI: 10.1111/cmi.12454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/10/2015] [Accepted: 04/23/2015] [Indexed: 11/29/2022]
Abstract
African trypanosomes infect a broad range of mammals, but humans and some higher primates are protected by serum trypanosome lytic factors that contain apolipoprotein L1 (ApoL1). In the human-infective subspecies of Trypanosoma brucei, Trypanosoma brucei rhodesiense, a gene product derived from the variant surface glycoprotein gene family member, serum resistance-associated protein (SRA protein), protects against ApoL1-mediated lysis. Protection against trypanosome lytic factor requires the direct interaction between SRA protein and ApoL1 within the endocytic apparatus of the trypanosome, but some uncertainty remains as to the precise mechanism and location of this interaction. In order to provide more insight into the mechanism of SRA-mediated resistance to trypanosome lytic factor, we assessed the localization of SRA in T. b. rhodesiense EATRO3 using a novel monoclonal antibody raised against SRA together with a set of well-characterized endosomal markers. By three-dimensional deconvolved immunofluorescence single-cell analysis, combined with double-labelling immunoelectron microscopy, we found that ≈ 50% of SRA protein localized to the lysosome, with the remaining population being distributed through the endocytic pathway, but apparently absent from the flagellar pocket membrane. These data suggest that the SRA/trypanolytic factor interaction is intracellular, with the concentration within the endosomes potentially crucial for ensuring a high efficiency.
Collapse
Affiliation(s)
- Jean-Mathieu Bart
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain.,Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Isabel Vidal
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jennifer Reed
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Laureano Cuevas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
45
|
Manna PT, Gadelha C, Puttick AE, Field MC. ENTH and ANTH domain proteins participate in AP2-independent clathrin-mediated endocytosis. J Cell Sci 2015; 128:2130-42. [PMID: 25908855 PMCID: PMC4450294 DOI: 10.1242/jcs.167726] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/13/2015] [Indexed: 01/17/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is a major route of entry into eukaryotic cells. A core of evolutionarily ancient genes encodes many components of this system but much of our mechanistic understanding of CME is derived from a phylogenetically narrow sampling of a few model organisms. In the parasite Trypanosoma brucei, which is distantly related to the better characterised animals and fungi, exceptionally fast endocytic turnover aids its evasion of the host immune system. Although clathrin is absolutely essential for this process, the adaptor protein complex 2 (AP2) has been secondarily lost, suggesting mechanistic divergence. Here, we characterise two phosphoinositide-binding monomeric clathrin adaptors, T. brucei (Tb)EpsinR and TbCALM, which in trypanosomes are represented by single genes, unlike the expansions present in animals and fungi. Depletion of these gene products reveals essential, but partially redundant, activities in CME. Ultrastructural analysis of TbCALM and TbEpsinR double-knockdown cells demonstrated severe defects to clathrin-coated pit formation and morphology associated with a dramatic inhibition of endocytosis. Depletion of TbCALM alone, however, produced a distinct lysosomal segregation phenotype, indicating an additional non-redundant role for this protein. Therefore, TbEpsinR and TbCALM represent ancient phosphoinositide-binding proteins with distinct and vital roles in AP2-independent endocytosis.
Collapse
Affiliation(s)
- Paul T Manna
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Amy E Puttick
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
46
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
47
|
Hovel-Miner G, Mugnier M, Papavasiliou FN, Pinger J, Schulz D. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei. Results Probl Cell Differ 2015; 57:23-46. [PMID: 26537376 DOI: 10.1007/978-3-319-20819-0_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antigenic variation is a common microbial survival strategy, powered by diversity in expressed surface antigens across the pathogen population over the course of infection. Even so, among pathogens, African trypanosomes have the most comprehensive system of antigenic variation described. African trypanosomes (Trypanosoma brucei spp.) are unicellular parasites native to sub-Saharan Africa, and the causative agents of sleeping sickness in humans and of n'agana in livestock. They cycle between two habitats: a specific species of fly (Glossina spp. or, colloquially, the tsetse) and the bloodstream of their mammalian hosts, by assuming a succession of proliferative and quiescent developmental forms, which vary widely in cell architecture and function. Key to each of the developmental forms that arise during these transitions is the composition of the surface coat that covers the plasma membrane. The trypanosome surface coat is extremely dense, covered by millions of repeats of developmentally specified proteins: procyclin gene products cover the organism while it resides in the tsetse and metacyclic gene products cover it while in the fly salivary glands, ready to make the transition to the mammalian bloodstream. But by far the most interesting coat is the Variant Surface Glycoprotein (VSG) coat that covers the organism in its infectious form (during which it must survive free living in the mammalian bloodstream). This coat is highly antigenic and elicits robust VSG-specific antibodies that mediate efficient opsonization and complement mediated lysis of the parasites carrying the coat against which the response was made. Meanwhile, a small proportion of the parasite population switches coats, which stimulates a new antibody response to the prevalent (new) VSG species and this process repeats until immune system failure. The disease is fatal unless treated, and treatment at the later stages is extremely toxic. Because the organism is free living in the blood, the VSG:antibody surface represents the interface between pathogen and host, and defines the interaction of the parasite with the immune response. This interaction (cycles of VSG switching, antibody generation, and parasite deletion) results in stereotypical peaks and troughs of parasitemia that were first recognized more than 100 years ago. Essentially, the mechanism of antigenic variation in T. brucei results from a need, at the population level, to maintain an extensive repertoire, to evade the antibody response. In this chapter, we will examine what is currently known about the VSG repertoire, its depth, and the mechanisms that diversify it both at the molecular (DNA) and at the phenotypic (surface displayed) level, as well as how it could interact with antibodies raised specifically against it in the host.
Collapse
Affiliation(s)
- Galadriel Hovel-Miner
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Monica Mugnier
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jason Pinger
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Danae Schulz
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
48
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|
49
|
Allison H, O'Reilly AJ, Sternberg J, Field MC. An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids. MICROBIAL CELL 2014; 1:325-345. [PMID: 26167471 PMCID: PMC4497807 DOI: 10.15698/mic2014.10.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
African trypanosomes are evolutionarily highly divergent parasitic protozoa, and
as a consequence the vast majority of trypanosome membrane proteins remain
uncharacterised in terms of location, trafficking or function. Here we describe
a novel family of type I membrane proteins which we designate ‘invariant
glycoproteins’ (IGPs). IGPs are trypanosome-restricted, with extensive,
lineage-specific paralogous expansions in related taxa. In T.
brucei three IGP subfamilies, IGP34, IGP40 and IGP48 are
recognised; all possess a putative C-type lectin ectodomain and are
ER-localised, despite lacking a classical ER-retention motif. IGPs exhibit
highest expression in stumpy stage cells, suggesting roles in developmental
progression, but gene silencing in mammalian infective forms suggests that each
IGP subfamily is also required for normal proliferation. Detailed analysis of
the IGP48 subfamily indicates a role in maintaining ER morphology, while the ER
lumenal domain is necessary and sufficient for formation of both oligomeric
complexes and ER retention. IGP48 is detected by antibodies from T. b.
rhodesiense infected humans. We propose that the IGPs represent a
trypanosomatid-specific family of ER-localised glycoproteins, with potential
contributions to life cycle progression and immunity, and utilise
oligomerisation as an ER retention mechanism.
Collapse
Affiliation(s)
- Harriet Allison
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland, DD1 5EH
| | - Amanda J O'Reilly
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland, DD1 5EH
| | - Jeremy Sternberg
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland, DD1 5EH
| |
Collapse
|
50
|
Sethi A, Delatte J, Foil L, Husseneder C. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts. PLoS One 2014; 9:e106199. [PMID: 25198727 PMCID: PMC4157778 DOI: 10.1371/journal.pone.0106199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a ‘Trojan-Horse’ that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (AS); (CH)
| | - Jennifer Delatte
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Lane Foil
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (AS); (CH)
| |
Collapse
|