1
|
Valadares DG, Clay OS, Chen Y, Scorza BM, Cassel SL, Sutterwala FS, Wilson ME. NLRP12-expressing dendritic cells mediate both dissemination of infection and adaptive immune responses in visceral leishmaniasis. iScience 2023; 26:106163. [PMID: 36879824 PMCID: PMC9985045 DOI: 10.1016/j.isci.2023.106163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023] Open
Abstract
The NLR protein NLRP12 contributes to innate immunity, but the mechanism remains elusive. Infection of Nlrp12 -/- or wild-type mice with Leishmania infantum led to aberrant parasite tropism. Parasites replicated to higher levels in livers of Nlrp12 -/- mice than in the livers of WT mice and failed to disseminate to spleens. Most retained liver parasites resided in dendritic cells (DCs), with correspondingly fewer infected DCs in spleens. Furthermore, Nlrp12 -/- DCs expressed lower CCR7 than WT DCs, failed to migrate toward CCL19 or CCL21 in chemotaxis assays, and migrated poorly to draining lymph nodes after sterile inflammation. Leishmania-infected Nlpr12 -/- DCs were significantly less effective at transporting parasites to lymph nodes than WT DCs. Consistently, adaptive immune responses were also impaired in infected Nlrp12 -/- mice. We hypothesize that Nlrp12-expressing DCs are required for efficient dissemination and immune clearance of L. infantum from the site of initial infection. This is at least partly due to the defective expression of CCR7.
Collapse
Affiliation(s)
- Diogo Garcia Valadares
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Owen Scott Clay
- Department of Pediatrics, Division of Pediatric Rheumatology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yani Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna Mary Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Suzanne Louise Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fayyaz Shiraz Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mary Edythe Wilson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Veterans’ Affairs Medical Center, Iowa City, IA 52246, USA
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Sandoval Pacheco CM, Araujo Flores GV, Ferreira AF, da Matta VLR, de Castro Gomes CM, Sosa-Ochoa WH, Zúniga C, Silveira FT, Corbett CEP, Laurenti MD. Role of antigen-presenting cells in non-ulcerated skin lesions caused by Leishmania (Leishmania) infantum chagasi. Parasite Immunol 2023; 45:e12971. [PMID: 36695719 DOI: 10.1111/pim.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
In Central America, infection by Leishmania (Leishmania) infantum chagasi causes visceral leishmaniasis and non-ulcerated cutaneous leishmaniasis (NUCL). This work aimed to evaluate the participation of subpopulations of antigen-presenting cells in skin lesions of patients affected by NUCL through double-staining immunohistochemistry using cellular and intracellular markers. Twenty-three skin biopsies from patients affected by NUCL were used. Histological sections stained by HE were used for histopathological study. Immunohistochemical studies were performed using primary antibodies against Langerhans cells, dermal dendritic cells, T lymphocytes, and the cytokines IL-12, IFN-γ, TNF-α, iNOS, and IL-10. The histopathological lesions were characterized by an inflammatory infiltrate, predominantly lymphohistiocytic, of variable intensity, with a diffuse arrangement associated with epithelioid granulomas and discreet parasitism. Double-staining immunohistochemistry showed higher participation of dendritic cells producing the proinflammatory cytokine IL-12 in relation to the other evaluated cytokines. Activation of the cellular immune response was marked by a higher density of CD8 Tc1-lymphocytes followed by CD4 Th1-lymphocytes producing mainly IFN-γ. The data obtained in the present study suggest that antigen-presenting cells play an important role in the in situ immune response through the production of proinflammatory cytokines, directing the cellular immune response preferentially to the Th1 and Tc1 types in NUCL caused by L. (L.) infantum chagasi.
Collapse
Affiliation(s)
- Carmen M Sandoval Pacheco
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriela V Araujo Flores
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aurea F Ferreira
- Laboratorio de Investigação Médica, LIM50, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, HCFMUSP, São Paulo, SP, Brazil
| | - Vânia L R da Matta
- Laboratorio de Investigação Médica, LIM50, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, HCFMUSP, São Paulo, SP, Brazil
| | - Claudia M de Castro Gomes
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Wilfredo H Sosa-Ochoa
- Instituto de Investigaciones en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Concepción Zúniga
- Departamento de Vigilancia de la Salud, Hospital Escuela, Tegucigalpa, Honduras
| | - Fernando T Silveira
- Instituto Evandro Chagas, Belém, PA, Brazil.,Universidade Federal do Pará, Belém, PA, Brazil
| | - Carlos E P Corbett
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Márcia D Laurenti
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
In vitro anti-Leishmania activity of new isomeric cobalt(II)complexes and in silico insights: Mitochondria impairment and apoptosis-like cell death of the parasite. J Inorg Biochem 2023; 240:112088. [PMID: 36630792 DOI: 10.1016/j.jinorgbio.2022.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
The synthesis, physico-chemical characterization and in vitro antiproliferative activity against the promastigote form of Leishmania amazonensis of two new cobalt(II) coordination compounds (i.e. [Co(HL1)Cl2]0.4,2H2O (1) and [Co(HL2)(Cl)(CH3OH)](ClO4).2H2O (2)) are reported, where HL1 = 4-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one and HL2 = 7-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one. X-ray diffraction studies were performed for complex (2) and the structure of complex (1) was built through Density Functional Theory (DFT) calculations. Complex (1) presented no cytotoxicity to LLC-MK2, but complex (2) was toxic. IC50 against promastigotes of L. amazonensis for complex (1) were 4.90 (24 h), 3.50 (48 h) and 3. 80 μmol L-1 (72 h), and for complex (2) were 2.09, 4.20 and 2.80 μmol L-1, respectively. Due to the high toxicity presented by complex (2) against LLC-MK2 host cells, mechanistic studies, to shed light on the probable mode of leishmanicidal activity, were carried out only for the non-cytotoxic complex. Complex (1) was able to elevate mitochondrial membrane potential of the parasites after treatment. Transmission electron microscopy revealed typical apoptotic condensation of chromatin, altered kinetoplast and mitochondria structures, suggesting that apoptosis-like cell death of the protozoa is probably mediated by an apoptotic mechanism associated with mitochondrial dysfunction (intrinsic pathway). Molecular docking studies with complex (1) upon protein tyrosine phosphatase (LmPRL-1) suggests a plausible positive complex anchoring mainly by hydrophobic and hydrogen bond forces close to the enzyme's catalytic site. These promising results for complex 1 will prompt future investigations against amastigote form of L. amazonensis.
Collapse
|
4
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Lecoeur H, Prina E, Gutiérrez-Sanchez M, Späth GF. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2021; 38:205-216. [PMID: 34666937 DOI: 10.1016/j.pt.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Intracellular parasites have evolved intricate strategies to subvert host cell functions for their own survival. These strategies are particularly damaging to the host if the infection involves immune cells, as illustrated by protozoan parasites of the genus Leishmania that thrive inside mononuclear phagocytic cells, causing devastating immunopathologies. While the impact of Leishmania infection on host cell phenotype and functions has been well documented, the regulatory mechanisms underlying host cell subversion were only recently investigated. Here we summarize the current knowledge on how Leishmania infection affects host nuclear activities and propose thought-provoking new concepts on the reciprocal relationship between epigenetic and transcriptional regulation in host cell phenotypic plasticity, its potential subversion by the intracellular parasite, and its relevance for host-directed therapy.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Maria Gutiérrez-Sanchez
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gerald F Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
6
|
Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed Pharmacother 2021; 139:111671. [PMID: 33957562 DOI: 10.1016/j.biopha.2021.111671] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniasis, a neglected parasitic disease caused by a unicellular protozoan of the genus Leishmania, is transmitted through the bite of a female sandfly. The disease remains a major public health problem and is linked to tropical and subtropical regions, with an endemic picture in several regions, including East Africa, the Mediterranean basin and South America. The different causative species display a diversity of clinical presentations; therefore, the immunological data on leishmaniasis are both scarce and controversial for the different forms and infecting species of the parasite. The present review highlights the main immune parameters associated with leishmaniasis that might contribute to a better understanding of the pathogenicity of the parasite and the clinical outcomes of the disease. Our aim was to provide a concise overview of the immunobiology of the disease and the factors that influence it, as this knowledge may be helpful in developing novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt.
| | | | - Amira A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zgazig, Egypt
| |
Collapse
|
7
|
Rostami MN, Khamesipour A. Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol 2021; 210:81-100. [PMID: 33934238 PMCID: PMC8088758 DOI: 10.1007/s00430-021-00703-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease endemic in over 100 countries around the world. Available control measures are not always successful, therapeutic options are limited, and there is no vaccine available against human leishmaniasis, although several candidate antigens have been evaluated over the last decades. Plenty of studies have aimed to evaluate the immune response development and a diverse range of host immune factors have been described to be associated with protection or disease progression in leishmaniasis; however, to date, no comprehensive biomarker(s) have been identified as surrogate marker of protection or exacerbation, and lack of enough information remains a barrier for vaccine development. Most of the current understanding of the role of different markers of immune response in leishmaniasis has been collected from experimental animal models. Although the data generated from the animal models are crucial, it might not always be extrapolated to humans. Here, we briefly review the events during Leishmania invasion of host cells and the immune responses induced against Leishmania in animal models and humans and their potential role as a biomarker of protection against human leishmaniasis.
Collapse
Affiliation(s)
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, 14155-6383, Tehran, Iran.
| |
Collapse
|
8
|
Ikeogu NM, Edechi CA, Akaluka GN, Feiz-Barazandeh A, Zayats RR, Salako ES, Onwah SS, Onyilagha C, Jia P, Mou Z, Shan L, Murooka TT, Gounni AS, Uzonna JE. Semaphorin 3E Promotes Susceptibility to Leishmania major Infection in Mice by Suppressing CD4 + Th1 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 206:588-598. [PMID: 33443083 DOI: 10.4049/jimmunol.2000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
Protective immunity to cutaneous leishmaniasis is mediated by IFN-γ-secreting CD4+ Th1 cells. IFN-γ binds to its receptor on Leishmania-infected macrophages, resulting in their activation, production of NO, and subsequent destruction of parasites. This study investigated the role of Semaphorin 3E (Sema3E) in host immunity to Leishmania major infection in mice. We observed a significant increase in Sema3E expression at the infection site at different timepoints following L. major infection. Sema3E-deficient (Sema3E knockout [KO]) mice were highly resistant to L. major infection, as evidenced by significantly (p < 0.05-0.01) reduced lesion sizes and lower parasite burdens at different times postinfection when compared with their infected wild-type counterpart mice. The enhanced resistance of Sema3E KO mice was associated with significantly (p < 0.05) increased IFN-γ production by CD4+ T cells. CD11c+ cells from Sema3E KO mice displayed increased expression of costimulatory molecules and IL-12p40 production following L. major infection and were more efficient at inducing the differentiation of Leishmania-specific CD4+ T cells to Th1 cells than their wild-type counterpart cells. Furthermore, purified CD4+ T cells from Sema3E KO mice showed increased propensity to differentiate into Th1 cells in vitro, and this was significantly inhibited by the addition of recombinant Sema3E in vitro. These findings collectively show that Sema3E is a negative regulator of protective CD4+ Th1 immunity in mice infected with L. major and suggest that its neutralization may be a potential therapeutic option for treating individuals suffering from cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Nnamdi M Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada; and
| | - Gloria N Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Aida Feiz-Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Romaniya R Zayats
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Enitan S Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Somtochukwu S Onwah
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chukuwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
9
|
Combination of Mycobacterium indicus pranii and Heat-Induced Promastigotes Cures Drug-Resistant Leishmania Infection: Critical Role of Interleukin-6-Producing Classical Dendritic Cells. Infect Immun 2020; 88:IAI.00222-19. [PMID: 32229617 DOI: 10.1128/iai.00222-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The major issues in available therapeutic modalities against leishmaniasis are cost, toxicity, and the emergence of drug resistance. The aim of this work was to develop a successful therapeutic adjuvant against drug-resistant Leishmania donovani infection by means of combining Mycobacterium indicus pranii with heat-induced promastigotes (HIP). One-month postinfected BALB/c mice were administered subcutaneously with M. indicus pranii (108 cells) and HIP (100 μg) for 5 days. Spleens were harvested for flow cytometric and reverse transcriptase PCR analysis. The antileishmanial effect of the combination strategy was associated with induction of a disease-resolving Th1 and Th17 response with simultaneous downregulation of CD4+ CD25+ Foxp3+ (nTreg) cells and CD4+ CD25- Foxp3- (Tr1) cells in the spleen. The significant expansion of CD4+ TCM (CD4+ CD44hi CD11ahi CD62Lhi) cells was a further interesting outcome of this therapeutic strategy in the context of long-term protection of hosts against secondary infection. Toll-like receptor 2 (TLR2) was also found instrumental in this antiparasitic therapy. Induced interleukin-6 (IL-6) production from expanded CD11c+ CD8α+ (cDC1) and CD11c+ CD11b+ (cDC2) dendritic cells (DCs) but not from the CD11b+ Ly6c+ inflammatory monocytes (iMOs), was found critical in the protective expansion of Th17 as evidenced by an in vivo IL-6 neutralization assay. It also promoted the hematopoietic conversion toward DC progenitors (pre-DCs) from common dendritic cell progenitors (CDPs), the immediate precursors, in bone marrow. This novel combinational strategy demonstrated that expansion of Th17 by IL-6 released from CD11c+ classical DCs is crucial, together with the conventional Th1 response, to control drug-resistant infection.
Collapse
|
10
|
von Stebut E, Tenzer S. Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int J Med Microbiol 2017; 308:206-214. [PMID: 29129568 DOI: 10.1016/j.ijmm.2017.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is transmitted by sand flies leading to parasite inoculation into skin. In the mammalian host, the parasite primarily resides in skin macrophages (MΦ) and dendritic cells (DC). MΦ are silently invaded by the parasite eliciting a stress response, whereas DC become activated, release IL-12, and prime antigen-specific T cells. Here we review the basics of the immune response against this human pathogen and elucidate the role and function DC and MΦ for establishment of protective immunity against leishmaniasis. We focus on cell type-specific differences in parasite uptake, phagocyte activation and processing of parasite antigens to facilitate an understanding how their respective function may be modulated e.g. under therapeutic considerations.
Collapse
Affiliation(s)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Siefert AL, Ehrlich A, Corral MJ, Goldsmith-Pestana K, McMahon-Pratt D, Fahmy TM. Immunomodulatory nanoparticles ameliorate disease in the Leishmania (Viannia) panamensis mouse model. Biomaterials 2016; 108:168-76. [PMID: 27636154 DOI: 10.1016/j.biomaterials.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022]
Abstract
Leishmania (Viannia) panamensis (L. (V.) panamensis) is a species of protozoan parasites that causes New World leishmaniasis, which is characterized by a hyper-inflammatory response. Current treatment strategies, mainly chemotherapeutic, are suboptimal due to adverse effects, long treatment regimens, and increasing drug resistance. Recently, immunotherapeutic approaches have shown promise in preclinical studies of leishmaniasis. As NPs may enable broad cellular immunomodulation through internalization in phagocytic and antigen-presenting cells, we tested the therapeutic efficacy of biodegradable NPs encapsulating a pathogen-associated molecular pattern (PAMP), CpG-rich oligonucleotide (CpG; NP-CpG), in mice infected with L. (V.) panamensis. NP-CpG treatment reduced lesion size and parasite burden, while neither free CpG nor empty NP showed therapeutic effects. NP-encapsulation led to CpG persistence at the site of infection along with an unexpected preferential cellular uptake by myeloid derived suppressor cells (MDSCs; CD11b(+)Ly6G(+)Ly6C(-)) as well as CD19(+) dendritic cells. This corresponded with the suppression of the ongoing immune response measured by the reduction of pathogenic cytokines IL-10 and IL-13, as well as IL-17 and IFNγ, in comparison to other treatment groups. As chronic inflammation is generally associated with the accumulation of MDSCs, this study may enable the rational design of cost-effective, safe, and scalable delivery systems for the treatment of inflammation-mediated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Tarek M Fahmy
- Yale School of Engineering and Applied Science, USA; Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Pinna RA, Silva-Dos-Santos D, Perce-da-Silva DS, Oliveira-Ferreira J, Villa-Verde DMS, De Luca PM, Banic DM. Malaria-Cutaneous Leishmaniasis Co-infection: Influence on Disease Outcomes and Immune Response. Front Microbiol 2016; 7:982. [PMID: 27446022 PMCID: PMC4921482 DOI: 10.3389/fmicb.2016.00982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022] Open
Abstract
Malaria and Cutaneous Leishmaniasis (CL) are co-endemic throughout large regions in tropical countries and co-infection may impact the evolution of host-parasite interactions. In the present study, we evaluate Malaria/Leishmaniasis disease outcome, Th1/Th2 cytokine levels and the CD4 and CD8 T-cell profiles in a co-infection murine model (BALB/c) of Plasmodium yoelii 17XNL (Py) and Leishmania amazonensis (La) or L. braziliensis (Lb). Malaria parasitaemia was assessed through blood strains stained with Giemsa. Leishmania lesions were monitored with a digital caliper and parasite loads determined by limiting-dilution assay. Serum levels of IFN-γ, TNF, IL-2, IL-4, IL-6, IL-10, and IL-17 were determined using multiplexed bead assay and expression of CD3, CD4, and CD8 T-cells markers were determined by Flow Cytometry in the thymus, spleens and lymph nodes. Parasitaemia in Lb+Py co-infected group was lower than in Py single-infected group, suggesting a protective effect of Lb co-infection in Malaria progression. In contrast, La+Py co-infection increased parasitaemia, patent infection and induced mortality in non-lethal Malaria infection. Regarding Leishmaniasis, Lb+Py co-infected group presented smaller lesions and less ulceration than Lb single-infected animals. In contrast, La+Py co-infected group presented only a transitory delay on the development of lesions when compared to La single-infected mice. Decreased levels of IFN-γ, TNF, IL-6, and IL-10 were observed in the serum of co-infected groups, demonstrating a modulation of Malaria immune response by Leishmania co-infections. We observed an intense thymic atrophy in Py single-infected and co-infected groups, which recovered earlier in co-infected animals. The CD4 and CD8 T cell profiles in thymus, spleens and lymph nodes did not differ between Py single and co-infected groups, except for a decrease in CD4+CD8+ T cells which also increased faster in co-infected mice. Our results suggest that Py and Leishmania co-infection may change disease outcome. Interestingly Malaria outcome can be altered according to the Leishmania specie involved. Alternatively Malaria infection reduced the severity or delayed the onset of leishmanial lesions. These alterations in Malaria and CL development seem to be closely related with changes in the immune response as demonstrated by alteration in serum cytokine levels and thymus/spleens T cell phenotypes dynamics during infection.
Collapse
Affiliation(s)
- Raquel A Pinna
- Laboratory of Simulids, Onchocerciasis and Sympatric Diseases: Mansonelliasis and Malaria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Danielle Silva-Dos-Santos
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Daiana S Perce-da-Silva
- Laboratory of Simulids, Onchocerciasis and Sympatric Diseases: Mansonelliasis and Malaria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Dea M S Villa-Verde
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Paula M De Luca
- Laboratory of Immunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Dalma M Banic
- Laboratory of Simulids, Onchocerciasis and Sympatric Diseases: Mansonelliasis and Malaria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Dendritic Cells and Leishmania Infection: Adding Layers of Complexity to a Complex Disease. J Immunol Res 2016; 2016:3967436. [PMID: 26904694 PMCID: PMC4745329 DOI: 10.1155/2016/3967436] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/28/2015] [Indexed: 01/21/2023] Open
Abstract
Leishmaniasis is a group of neglected diseases whose clinical manifestations depend on factors from the host and the pathogen. It is an important public health problem worldwide caused by the protozoan parasite from the Leishmania genus. Cutaneous Leishmaniasis (CL) is the most frequent form of this disease transmitted by the bite of an infected sandfly into the host skin. The parasites can be uptook and/or recognized by macrophages, neutrophils, and/or dendritic cells (DCs). Initially, DCs were described to play a protective role in activating the immune response against Leishmania parasites. However, several reports showed a dichotomic role of DCs in modulating the host immune response to susceptibility or resistance in CL. In this review, we discuss (1) the interactions between DCs and parasites from different species of Leishmania and (2) the crosstalk of DCs and other cells during CL infection. The complexity of these interactions profoundly affects the adaptive immune response and, consequently, the disease outcome, especially from Leishmania species of the New World.
Collapse
|
14
|
Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells. PLoS Negl Trop Dis 2015; 9:e0004238. [PMID: 26630499 PMCID: PMC4667916 DOI: 10.1371/journal.pntd.0004238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Leishmania major infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction. Methodology/Principal Findings Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-), or generally deficient for all PGs, (FV1 lpg2-). Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription. Conclusions/Significance These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12. Leishmaniasis is a group of parasitic diseases caused by intracellular protozoa belonging to the genus Leishmania, pathological manifestations ranging from self-healing cutaneous forms to severe visceral infections that result in death. These clinical outcomes are dictated by the Leishmania species initiating the infection and are influenced by early responses of host immune cells, which ultimately initiate an IL12 mediated immune response in resolving infections. Like the diseases themselves, the magnitude of IL12 induction in hDCs is Leishmania-species and strain specific, where species that elicit visceral disease do not induce IL12, while most cutaneous disease-causing L. major strains induce robust IL12 responses and confer life-long immunity. The molecular mechanisms that mediate the ability of these innate immune cells to discriminate between pathogens remain elusive and have been primarily investigated in murine model systems. Here we identified L. major LPG as a major PAMP that induces IL12 in hDCs. Elucidation of this critical component of human immunity to L. major has ramifications for leishmaniasis vaccine development.
Collapse
|
15
|
Toll-like receptor 9 signaling in dendritic cells regulates neutrophil recruitment to inflammatory foci following Leishmania infantum infection. Infect Immun 2015; 83:4604-16. [PMID: 26371124 DOI: 10.1128/iai.00975-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/06/2015] [Indexed: 11/20/2022] Open
Abstract
Leishmania infantum is a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by different Leishmania species. We demonstrated that TLR9 is upregulated in vitro and in vivo during infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9(-/-) mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9(-/-) mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9(-/-) mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore, L. infantum failed to activate both plasmacytoid and myeloid DCs from TLR9(-/-) mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected both in vitro and in vivo when DCs were derived from TLR9(-/-) mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response against L. infantum infection that could be associated with DC activation.
Collapse
|