1
|
Jiang F, Yu M, Liang Y, Ding K, Wang Y. Discovery of Novel Diaryl-Substituted Fused Heterocycles Targeting Katanin and Tubulin with Potent Antitumor and Antimultidrug Resistance Efficacy. J Med Chem 2024; 67:12118-12142. [PMID: 38996194 DOI: 10.1021/acs.jmedchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Disrupting microtubule dynamics has emerged as a promising strategy for cancer treatment. However, drug resistance remains a challenge hindering the development of microtubule-targeting agents. In this work, a novel class of diaryl substituted fused heterocycles were designed, synthesized, and evaluated, which were demonstrated as effective dual katanin and tubulin regulators with antitumor activity. Following three rounds of stepwise optimization, compound 21b, featuring a 3H-imidazo[4,5-b]pyridine core, displayed excellent targeting capabilities on katanin and tubulin, along with notable antiproliferative and antimetastatic effects. Mechanistic studies revealed that 21b disrupts the microtubule network in tumor cells, leading to G2/M cell cycle arrest and apoptosis induction. Importantly, 21b exhibited significant inhibition of tumor growth in MDA-MB-231 and A549/T xenograft tumor models without evident toxicity and side effects. In conclusion, compound 21b presents a novel mechanism for disrupting microtubule dynamics, warranting further investigation as a dual-targeted antitumor agent with potential antimultidrug resistance properties.
Collapse
Affiliation(s)
- Fuhao Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Israr J, Alam S, Kumar A. Approaches of pre-clinical and clinical trials of repurposed drug. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:259-275. [PMID: 38789183 DOI: 10.1016/bs.pmbts.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Medications that are currently on the market and have proven therapeutic usage can have new therapeutic indications discovered through a process called drug repurposing, which is also called drug repositioning. This approach presents a viable method for drug developers and pharmaceutical companies to discern novel targets for FDA-approved medications. Drug repurposing presents several advantages, including reduced time consumption, lower costs, and diminished risk of failure. Sildenafil, commonly known as Viagra, serves as a notable illustration of a repurposed pharmaceutical agent, initially developed and introduced to the market as an antianginal medication. However, in the current context, its application has been redirected towards serving as a pharmaceutical intervention for the treatment of erectile dysfunction. Comparably, a multitude of pharmaceutical agents exist that have demonstrated efficacy in repurposing for therapeutic management of various clinical conditions. Focusing on the historical use of repurposed pharmaceuticals and their present state of application in disease therapies, this chapter seeks to offer a thorough review of drug repurposing methodologies. Furthermore, the rules and regulations that control the repurposing of drugs will be covered in detail in this chapter.
Collapse
Affiliation(s)
- Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, India; Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Shabroz Alam
- Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
3
|
Exertier C, Salerno A, Antonelli L, Fiorillo A, Ocello R, Seghetti F, Caciolla J, Uliassi E, Masetti M, Fiorentino E, Orsini S, Di Muccio T, Ilari A, Bolognesi ML. Fragment Merging, Growing, and Linking Identify New Trypanothione Reductase Inhibitors for Leishmaniasis. J Med Chem 2024; 67:402-419. [PMID: 38164929 PMCID: PMC10788915 DOI: 10.1021/acs.jmedchem.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Trypanothione reductase (TR) is a suitable target for drug discovery approaches against leishmaniasis, although the identification of potent inhibitors is still challenging. Herein, we harnessed a fragment-based drug discovery (FBDD) strategy to develop new TR inhibitors. Previous crystallographic screening identified fragments 1-3, which provided ideal starting points for a medicinal chemistry campaign. In silico investigations revealed critical hotspots in the TR binding site, guiding our structure- and ligand-based structure-actvity relationship (SAR) exploration that yielded fragment-derived compounds 4-14. A trend of improvement in Leishmania infantum TR inhibition was detected along the optimization and confirmed by the crystal structures of 9, 10, and 14 in complex with Trypanosoma brucei TR. Compound 10 showed the best TR inhibitory profile (Ki = 0.2 μM), whereas 9 was the best one in terms of in vitro and ex vivo activity. Although further fine-tuning is needed to improve selectivity, we demonstrated the potentiality of FBDD on a classic but difficult target for leishmaniasis.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council of Italy (CNR), c/o Department of Biochemical Sciences, Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Lorenzo Antonelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Riccardo Ocello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Francesca Seghetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Fiorentino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy
| | - Stefania Orsini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy
| | - Trentina Di Muccio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council of Italy (CNR), c/o Department of Biochemical Sciences, Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| |
Collapse
|
4
|
Moreira-Filho JT, Neves BJ, Cajas RA, Moraes JD, Andrade CH. Artificial intelligence-guided approach for efficient virtual screening of hits against Schistosoma mansoni. Future Med Chem 2023; 15:2033-2050. [PMID: 37937522 DOI: 10.4155/fmc-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Background: The impact of schistosomiasis, which affects over 230 million people, emphasizes the urgency of developing new antischistosomal drugs. Artificial intelligence is vital in accelerating the drug discovery process. Methodology & results: We developed classification and regression machine learning models to predict the schistosomicidal activity of compounds not experimentally tested. The prioritized compounds were tested on schistosomula and adult stages of Schistosoma mansoni. Four compounds demonstrated significant activity against schistosomula, with 50% effective concentration values ranging from 9.8 to 32.5 μM, while exhibiting no toxicity in animal and human cell lines. Conclusion: These findings represent a significant step forward in the discovery of antischistosomal drugs. Further optimization of these active compounds can pave the way for their progression into preclinical studies.
Collapse
Affiliation(s)
- José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Rayssa Araujo Cajas
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets (CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Tsebriy O, Khomiak A, Miguel-Blanco C, Sparkes PC, Gioli M, Santelli M, Whitley E, Gamo FJ, Delves MJ. Machine learning-based phenotypic imaging to characterise the targetable biology of Plasmodium falciparum male gametocytes for the development of transmission-blocking antimalarials. PLoS Pathog 2023; 19:e1011711. [PMID: 37801466 PMCID: PMC10584170 DOI: 10.1371/journal.ppat.1011711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/18/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Preventing parasite transmission from humans to mosquitoes is recognised to be critical for achieving elimination and eradication of malaria. Consequently developing new antimalarial drugs with transmission-blocking properties is a priority. Large screening campaigns have identified many new transmission-blocking molecules, however little is known about how they target the mosquito-transmissible Plasmodium falciparum stage V gametocytes, or how they affect their underlying cell biology. To respond to this knowledge gap, we have developed a machine learning image analysis pipeline to characterise and compare the cellular phenotypes generated by transmission-blocking molecules during male gametogenesis. Using this approach, we studied 40 molecules, categorising their activity based upon timing of action and visual effects on the organisation of tubulin and DNA within the cell. Our data both proposes new modes of action and corroborates existing modes of action of identified transmission-blocking molecules. Furthermore, the characterised molecules provide a new armoury of tool compounds to probe gametocyte cell biology and the generated imaging dataset provides a new reference for researchers to correlate molecular target or gene deletion to specific cellular phenotype. Our analysis pipeline is not optimised for a specific organism and could be applied to any fluorescence microscopy dataset containing cells delineated by bounding boxes, and so is potentially extendible to any disease model.
Collapse
Affiliation(s)
| | | | | | - Penny C. Sparkes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | | | - Edgar Whitley
- Department of Management, London School of Economics and Political Science, London, United Kingdom
| | | | - Michael J. Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
6
|
Varela MT, Romanelli M, Amaral M, Tempone AG, Fernandes JPS. Piperazine amides with desirable solubility, physicochemical and drug-like properties: Synthesis and evaluation of the anti- Trypanosoma cruzi activity. Saudi Pharm J 2023; 31:1265-1273. [PMID: 37287509 PMCID: PMC10242637 DOI: 10.1016/j.jsps.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
The absence of effective chronic treatment, expansion to non-endemic countries and the significant burden in public health have stimulated the search for novel therapeutic options to treat Chagas disease, a protozoan disease caused by Trypanosoma cruzi. Despite current efforts, no new drug candidates were approved in clinical trials in the past five decades. Considering this, our group has focused on the expansion of a series (LINS03) with low micromolar activity against amastigotes, considering the optimization of pharmacokinetic properties through increasing drug-likeness and solubility. In this work, we report a new set of 13 compounds with modifications in both the arylpiperazine and the aromatic region linked by an amide group. Five analogues showed activity against intracellular amastigotes (IC50 17.8 to 35.9 µM) and no relevant cytotoxicity to mammalian cells (CC50 > 200 µM). Principal component analysis (PCA) was performed to identify structural features associated to improved activity. The data revealed that polarity, hydrogen bonding ability and flexibility were key properties that influenced the antiparasitic activity. In silico drug-likeness assessments indicated that compounds with the 4-methoxycinammyl (especially compound 2b) had the most prominent balance between properties and activity in the series, as confirmed by SAR analysis.
Collapse
Affiliation(s)
- Marina T. Varela
- Departamento de Medicina, Universidade Federal de São Paulo, Rua Botucatu 740, 04023-062 São Paulo, SP, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, Brazil
| | - Maiara Romanelli
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo, SP, Brazil
| | - Maiara Amaral
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Andre G. Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo, SP, Brazil
| | - João Paulo S. Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, Brazil
| |
Collapse
|
7
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
8
|
Doijen J, Temmerman K, Van den Eynde C, Diels A, Van den Broeck N, Van Gool M, Heo I, Jaensch S, Zwaagstra M, Diosa Toro M, Chiu W, De Jonghe S, Leyssen P, Bojkova D, Ciesek S, Cinatl J, Verschueren L, Buyck C, Van Kuppeveld F, Neyts J, Van Loock M, Van Damme E. Identification of Z-Tyr-Ala-CHN 2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2. Microorganisms 2023; 11:717. [PMID: 36985290 PMCID: PMC10055926 DOI: 10.3390/microorganisms11030717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication.
Collapse
Affiliation(s)
- Jordi Doijen
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Koen Temmerman
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Annick Diels
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | - Inha Heo
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Steffen Jaensch
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Mayra Diosa Toro
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Winston Chiu
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Denisa Bojkova
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Lore Verschueren
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Christophe Buyck
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frank Van Kuppeveld
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Marnix Van Loock
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ellen Van Damme
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
9
|
Targeting VPS41 induces methuosis and inhibits autophagy in cancer cells. Cell Chem Biol 2023; 30:130-143.e5. [PMID: 36708709 DOI: 10.1016/j.chembiol.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
The homotypic fusion and vacuole protein sorting (HOPS) complex mediates membrane trafficking involved in endocytosis, autophagy, lysosome biogenesis, and phagocytosis. Defects in HOPS subunits are associated with various forms of cancer, but their potential as drug targets has rarely been examined. Here, we identified vacuolar protein sorting-associated protein 41 homolog (VPS41), a subunit of the HOPS complex, as a target of methyl 2,4-dihydroxy-3-(3-methyl-2-butenyl)-6-phenethylbenzoate (DMBP), a natural small molecule with preferable anticancer activity. DMBP induced methuosis and inhibited autophagic flux in cancer cells by inhibiting the function of VPS41, leading to the restrained fusion of late endosomes and autophagosomes with lysosomes. Moreover, DMBP effectively inhibited metastasis in a mouse metastatic melanoma model. Collectively, the current work revealed that targeting VPS41 would provide a valuable method of inhibiting cancer proliferation through methuosis.
Collapse
|
10
|
Espinoza-Chávez R, Salerno A, Liuzzi A, Ilari A, Milelli A, Uliassi E, Bolognesi ML. Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS BIO & MED CHEM AU 2023; 3:32-45. [PMID: 37101607 PMCID: PMC10125329 DOI: 10.1021/acsbiomedchemau.2c00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 04/28/2023]
Abstract
Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.
Collapse
Affiliation(s)
- Rocío
Marisol Espinoza-Chávez
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anastasia Liuzzi
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Ilari
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
11
|
Screening the Pathogen Box to Discover and Characterize New Cruzain and TbrCatL Inhibitors. Pathogens 2023; 12:pathogens12020251. [PMID: 36839523 PMCID: PMC9967275 DOI: 10.3390/pathogens12020251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chagas disease and Human African Trypanosomiasis, caused by Trypanosoma cruzi and T. brucei, respectively, pose relevant health challenges throughout the world, placing 65 to 70 million people at risk each. Given the limited efficacy and severe side effects associated with current chemotherapy, new drugs are urgently needed for both diseases. Here, we report the screening of the Pathogen Box collection against cruzain and TbrCatL, validated targets for Chagas disease and Human African Trypanosomiasis, respectively. Enzymatic assays were applied to screen 400 compounds, validate hits, determine IC50 values and, when possible, mechanisms of inhibition. In this case, 12 initial hits were obtained and ten were prioritized for follow-up. IC50 values were obtained for six of them (hit rate = 1.5%) and ranged from 0.46 ± 0.03 to 27 ± 3 µM. MMV687246 was found to be a mixed inhibitor of cruzain (Ki = 57 ± 6 µM) while MMV688179 was found to be a competitive inhibitor of cruzain with a nanomolar potency (Ki = 165 ± 63 nM). A putative binding mode for MMV688179 was obtained by docking. The six hits discovered against cruzain and TbrCatL are of great interest for further optimization by the medicinal chemistry community.
Collapse
|
12
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
13
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Bakker A, Kotsogianni I, Mirenda L, Straub VM, Avalos M, van den Berg RJBH, Florea BI, van Wezel GP, Janssen APA, Martin NI, van der Stelt M. Chemical Proteomics Reveals Antibiotic Targets of Oxadiazolones in MRSA. J Am Chem Soc 2022; 145:1136-1143. [PMID: 36584241 PMCID: PMC9853856 DOI: 10.1021/jacs.2c10819] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenotypic screening is a powerful approach to identify novel antibiotics, but elucidation of the targets responsible for the antimicrobial activity is often challenging in the case of compounds with a polypharmacological mode of action. Here, we show that activity-based protein profiling maps the target interaction landscape of a series of 1,3,4-oxadiazole-3-ones identified in a phenotypic screen to have high antibacterial potency against multidrug-resistant Staphylococcus aureus. In situ competitive and comparative chemical proteomics with a tailor-made activity-based probe, in combination with transposon and resistance studies, revealed several cysteine and serine hydrolases as relevant targets. Our data showcase oxadiazolones as a novel antibacterial chemotype with a polypharmacological mode of action, in which FabH, FphC, and AdhE play a central role.
Collapse
Affiliation(s)
- Alexander
T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Ioli Kotsogianni
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Liza Mirenda
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Verena M. Straub
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mariana Avalos
- Department
of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | | | - Bogdan I. Florea
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gilles P. van Wezel
- Department
of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Antonius P. A. Janssen
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands,
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands,
| |
Collapse
|
15
|
Ma C, Zhou Z, Liu H, Koslicki D. KGML-xDTD: a knowledge graph-based machine learning framework for drug treatment prediction and mechanism description. Gigascience 2022; 12:giad057. [PMID: 37602759 PMCID: PMC10441000 DOI: 10.1093/gigascience/giad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/05/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Computational drug repurposing is a cost- and time-efficient approach that aims to identify new therapeutic targets or diseases (indications) of existing drugs/compounds. It is especially critical for emerging and/or orphan diseases due to its cheaper investment and shorter research cycle compared with traditional wet-lab drug discovery approaches. However, the underlying mechanisms of action (MOAs) between repurposed drugs and their target diseases remain largely unknown, which is still a main obstacle for computational drug repurposing methods to be widely adopted in clinical settings. RESULTS In this work, we propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting Drugs Treating Diseases. It is a 2-module framework that not only predicts the treatment probabilities between drugs/compounds and diseases but also biologically explains them via knowledge graph (KG) path-based, testable MOAs. We leverage knowledge-and-publication-based information to extract biologically meaningful "demonstration paths" as the intermediate guidance in the Graph-based Reinforcement Learning (GRL) path-finding process. Comprehensive experiments and case study analyses show that the proposed framework can achieve state-of-the-art performance in both predictions of drug repurposing and recapitulation of human-curated drug MOA paths. CONCLUSIONS KGML-xDTD is the first model framework that can offer KG path explanations for drug repurposing predictions by leveraging the combination of prediction outcomes and existing biological knowledge and publications. We believe it can effectively reduce "black-box" concerns and increase prediction confidence for drug repurposing based on predicted path-based explanations and further accelerate the process of drug discovery for emerging diseases.
Collapse
Affiliation(s)
- Chunyu Ma
- Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Zhihan Zhou
- Department of Computer Science, Northwestern University, Evanston, IL 60208, USA
| | - Han Liu
- Department of Computer Science, Northwestern University, Evanston, IL 60208, USA
| | - David Koslicki
- Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
- Department of Computer Science and Engineering, Pennsylvania State University, State College, PA 16801, USA
- Department of Biology, Pennsylvania State University, State College, PA 16801, USA
| |
Collapse
|
16
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
17
|
Girod V, Houssier R, Sahmer K, Ghoris MJ, Caby S, Melnyk O, Dissous C, Senez V, Vicogne J. A self-purifying microfluidic system for identifying drugs acting against adult schistosomes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220648. [PMID: 36465675 PMCID: PMC9709518 DOI: 10.1098/rsos.220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several Schistosoma flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity. We describe here a self-purifying microfluidic system enabling the selection of healthy adult worms and the identification of molecules acting instantly on the parasite. The worms are assayed in a dynamic environment that eliminates unhealthy worms that cannot attach firmly to the chip walls prior to being exposed to the drug. The detachment of the worms is also used as second step readout for identifying active compounds. We have validated this new fluidic screening approach using the two major antihelmintic drugs, praziquantel and artemisinin. The reported dynamic system is simple to produce and to parallelize. Importantly, it enables a quick and sensitive detection of antischistosomal compounds in no more than one hour.
Collapse
Affiliation(s)
- Vincent Girod
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
- University of Lille, CNRS, UPHF, JUNIA, CLI, UMR 8520 – IEMN – Institut d'Electronique, de Microélectronique et de Nanotechnologie, Villeneuve d'Ascq F-59650, France
| | - Robin Houssier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Karin Sahmer
- University of Lille, IMT Lille Douai, University of Artois, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Marie-José Ghoris
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Caby
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Colette Dissous
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Senez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
18
|
Bajusz D, Keserű GM. Maximizing the integration of virtual and experimental screening in hit discovery. Expert Opin Drug Discov 2022; 17:629-640. [PMID: 35671403 DOI: 10.1080/17460441.2022.2085685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Experimental and virtual screening contributes to the discovery of more than 50% of clinical candidates. Considering the similar concept and goals, early-phase drug discovery would benefit from the effective integration of these approaches. AREAS COVERED After reviewing the recent trends in both experimental and virtual screening, the authors discuss different integration strategies from parallel, focused, sequential, and iterative screening. Strategic considerations are demonstrated in a number of real-life case studies. EXPERT OPINION Experimental and virtual screening are complementary approaches that should be integrated in lead discovery settings. Virtual screening can access extremely large synthetically feasible chemical space that can be effectively searched on GPU clusters or cloud architectures. Experimental screening provides reliable datasets by quantitative HTS applications, and DNA-encoded libraries (DEL) have enlarged the chemical space covered by these technologies. These developments, together with the use of artificial intelligence methods, represent new options for their efficient integration. The case studies discussed here demonstrate the benefits of complementary strategies, such as focused and iterative screening.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
19
|
Lu X, Hackman GL, Saha A, Rathore AS, Collins M, Friedman C, Yi SS, Matsuda F, DiGiovanni J, Lodi A, Tiziani S. Metabolomics-based phenotypic screens for evaluation of drug synergy via direct-infusion mass spectrometry. iScience 2022; 25:104221. [PMID: 35494234 PMCID: PMC9046262 DOI: 10.1016/j.isci.2022.104221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Drugs used in combination can synergize to increase efficacy, decrease toxicity, and prevent drug resistance. While conventional high-throughput screens that rely on univariate data are incredibly valuable to identify promising drug candidates, phenotypic screening methodologies could be beneficial to provide deep insight into the molecular response of drug combination with a likelihood of improved clinical outcomes. We developed a high-content metabolomics drug screening platform using stable isotope-tracer direct-infusion mass spectrometry that informs an algorithm to determine synergy from multivariate phenomics data. Using a cancer drug library, we validated the drug screening, integrating isotope-enriched metabolomics data and computational data mining, on a panel of prostate cell lines and verified the synergy between CB-839 and docetaxel both in vitro (three-dimensional model) and in vivo. The proposed unbiased metabolomics screening platform can be used to rapidly generate phenotype-informed datasets and quantify synergy for combinatorial drug discovery.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA
| | - Atul Singh Rathore
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Chelsea Friedman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA
| | - S. Stephen Yi
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA,Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - John DiGiovanni
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA,Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Corresponding author
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA,Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Corresponding author
| |
Collapse
|
20
|
Herath HMPD, Taki AC, Rostami A, Jabbar A, Keiser J, Geary TG, Gasser RB. Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol Adv 2022; 57:107937. [PMID: 35271946 DOI: 10.1016/j.biotechadv.2022.107937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/17/2023]
Abstract
Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec H9X3V9, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, Ireland
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Sturm A, Vos MW, Henderson R, Eldering M, Koolen KMJ, Sheshachalam A, Favia G, Samby K, Herreros E, Dechering KJ. Barcoded Asaia bacteria enable mosquito in vivo screens and identify novel systemic insecticides and inhibitors of malaria transmission. PLoS Biol 2021; 19:e3001426. [PMID: 34928952 PMCID: PMC8726507 DOI: 10.1371/journal.pbio.3001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/04/2022] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes. An arrayed screen of a collection of pesticides showed that chemical classes of avermectins, phenylpyrazoles, and neonicotinoids were enriched for compounds with systemic adulticide activity against Anopheles. Using a luminescent Plasmodium falciparum reporter strain, barcoded screens identified 48 drug-like transmission-blocking compounds from a 400-compound antimicrobial library. The approach significantly increases the throughput in phenotypic screening campaigns using adult insects and identifies novel candidate small molecules for disease control. This study presents a barcoding strategy that enables high-throughput phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and applies this to the discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector.
Collapse
|
22
|
Marine dissolved organic matter: a vast and unexplored molecular space. Appl Microbiol Biotechnol 2021; 105:7225-7239. [PMID: 34536106 PMCID: PMC8494709 DOI: 10.1007/s00253-021-11489-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 01/02/2023]
Abstract
Abstract Marine dissolved organic matter (DOM) comprises a vast and unexplored molecular space. Most of it resided in the oceans for thousands of years. It is among the most diverse molecular mixtures known, consisting of millions of individual compounds. More than 1 Eg of this material exists on the planet. As such, it comprises a formidable source of natural products promising significant potential for new biotechnological purposes. Great emphasis has been placed on understanding the role of DOM in biogeochemical cycles and climate attenuation, its lifespan, interaction with microorganisms, as well as its molecular composition. Yet, probing DOM bioactivities is in its infancy, largely because it is technically challenging due to the chemical complexity of the material. It is of considerable interest to develop technologies capable to better discern DOM bioactivities. Modern screening technologies are opening new avenues allowing accelerated identification of bioactivities for small molecules from natural products. These methods diminish a priori the need for laborious chemical fractionation. We examine here the application of untargeted metabolomics and multiplexed high-throughput molecular-phenotypic screening techniques that are providing first insights on previously undetectable DOM bioactivities. Key points • Marine DOM is a vast, unexplored biotechnological resource. • Untargeted bioscreening approaches are emerging for natural product screening. • Perspectives for developing bioscreening platforms for marine DOM are discussed.
Collapse
|
23
|
Rietdijk J, Tampere M, Pettke A, Georgiev P, Lapins M, Warpman-Berglund U, Spjuth O, Puumalainen MR, Carreras-Puigvert J. A phenomics approach for antiviral drug discovery. BMC Biol 2021; 19:156. [PMID: 34334126 PMCID: PMC8325993 DOI: 10.1186/s12915-021-01086-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence and continued global spread of the current COVID-19 pandemic has highlighted the need for methods to identify novel or repurposed therapeutic drugs in a fast and effective way. Despite the availability of methods for the discovery of antiviral drugs, the majority tend to focus on the effects of such drugs on a given virus, its constituent proteins, or enzymatic activity, often neglecting the consequences on host cells. This may lead to partial assessment of the efficacy of the tested anti-viral compounds, as potential toxicity impacting the overall physiology of host cells may mask the effects of both viral infection and drug candidates. Here we present a method able to assess the general health of host cells based on morphological profiling, for untargeted phenotypic drug screening against viral infections. RESULTS We combine Cell Painting with antibody-based detection of viral infection in a single assay. We designed an image analysis pipeline for segmentation and classification of virus-infected and non-infected cells, followed by extraction of morphological properties. We show that this methodology can successfully capture virus-induced phenotypic signatures of MRC-5 human lung fibroblasts infected with human coronavirus 229E (CoV-229E). Moreover, we demonstrate that our method can be used in phenotypic drug screening using a panel of nine host- and virus-targeting antivirals. Treatment with effective antiviral compounds reversed the morphological profile of the host cells towards a non-infected state. CONCLUSIONS The phenomics approach presented here, which makes use of a modified Cell Painting protocol by incorporating an anti-virus antibody stain, can be used for the unbiased morphological profiling of virus infection on host cells. The method can identify antiviral reference compounds, as well as novel antivirals, demonstrating its suitability to be implemented as a strategy for antiviral drug repurposing and drug discovery.
Collapse
Affiliation(s)
- Jonne Rietdijk
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Marianna Tampere
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- National Veterinary Institute, SE-756 51, Uppsala, Sweden
| | - Aleksandra Pettke
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Polina Georgiev
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Maris Lapins
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Ulrika Warpman-Berglund
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Marjo-Riitta Puumalainen
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
24
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
26
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Chen S, Liu X, Peng C, Tan C, Sun H, Liu H, Zhang Y, Wu P, Cui C, Liu C, Yang D, Li Z, Lu J, Guan J, Ke X, Wang R, Bo X, Xu X, Han J, Liu J. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab 2021; 33:565-580.e7. [PMID: 33657393 DOI: 10.1016/j.cmet.2021.02.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/22/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.
Collapse
Affiliation(s)
- Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China; Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| | - Xiaoxiao Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chang Tan
- Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Honglin Sun
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - He Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Yao Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Can Cui
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuchu Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Di Yang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Zhiqiang Li
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaohai Bo
- Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Junfeng Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| |
Collapse
|
28
|
Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chem Biol 2021; 28:283-299. [PMID: 33740433 DOI: 10.1016/j.chembiol.2021.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
The use of phenotypic screening was central to the discovery and development of novel thalidomide analogs, the IMiDs (immunomodulatory drugs) agents. With the discovery that these agents bind the E3 ligase, CRL4CRBN, and alter its substrate specificity, there has been a great deal of endeavor to discover other small molecules that can modulate alternative E3 ligases. Furthermore, the chemical properties necessary for drug discovery and the rules by which neo-substrates are selected for degradation are being defined in the context of phenotypic alterations in specific cellular systems. This review gives a detailed summary of these recent advances and the methodologies being exploited to understand the mechanism of action of emerging protein degradation therapies.
Collapse
|
29
|
Veale CGL. Into the Fray! A Beginner's Guide to Medicinal Chemistry. ChemMedChem 2021; 16:1199-1225. [PMID: 33591595 DOI: 10.1002/cmdc.202000929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/31/2022]
Abstract
Modern medicinal chemistry is a complex, multidimensional discipline that operates at the interface of the chemical and biological sciences. The medicinal chemistry contribution to drug discovery is typically described in the context of the well-recited linear progression of the drug discovery pipeline. However, compound optimization is idiosyncratic to each project, and clear definitions of hit and lead molecules and the subsequent progress along the pipeline becomes easily blurred. In addition, this description lacks insight into the entangled relationship between chemical and pharmacological properties, and thus provides limited guidance on how innovative medicinal chemistry strategies can be applied to solve optimization problems, regardless of the stage in the pipeline. Through discussion and illustrative examples, this article seeks to provide insights into the finesse of medicinal chemistry and the subtlety of balancing chemical properties pharmacology. In so doing, it aims to serve as an accessible and simple-to-digest guide for anyone who wishes to learn about the underlying principles of medicinal chemistry, in a context that has been decoupled from the pipeline description.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville, 3209, South Africa
| |
Collapse
|
30
|
Seal S, Yang H, Vollmers L, Bender A. Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays. Chem Res Toxicol 2021; 34:422-437. [PMID: 33522793 DOI: 10.1021/acs.chemrestox.0c00303] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell morphology features, such as those from the Cell Painting assay, can be generated at relatively low costs and represent versatile biological descriptors of a system and thereby compound response. In this study, we explored cell morphology descriptors and molecular fingerprints, separately and in combination, for the prediction of cytotoxicity- and proliferation-related in vitro assay endpoints. We selected 135 compounds from the MoleculeNet ToxCast benchmark data set which were annotated with Cell Painting readouts, where the relatively small size of the data set is due to the overlap of required annotations. We trained Random Forest classification models using nested cross-validation and Cell Painting descriptors, Morgan and ErG fingerprints, and their combinations. While using leave-one-cluster-out cross-validation (with clusters based on physicochemical descriptors), models using Cell Painting descriptors achieved higher average performance over all assays (Balanced Accuracy of 0.65, Matthews Correlation Coefficient of 0.28, and AUC-ROC of 0.71) compared to models using ErG fingerprints (BA 0.55, MCC 0.09, and AUC-ROC 0.60) and Morgan fingerprints alone (BA 0.54, MCC 0.06, and AUC-ROC 0.56). While using random shuffle splits, the combination of Cell Painting descriptors with ErG and Morgan fingerprints further improved balanced accuracy on average by 8.9% (in 9 out of 12 assays) and 23.4% (in 8 out of 12 assays) compared to using only ErG and Morgan fingerprints, respectively. Regarding feature importance, Cell Painting descriptors related to nuclei texture, granularity of cells, and cytoplasm as well as cell neighbors and radial distributions were identified to be most contributing, which is plausible given the endpoint considered. We conclude that cell morphological descriptors contain complementary information to molecular fingerprints which can be used to improve the performance of predictive cytotoxicity models, in particular in areas of novel structural space.
Collapse
Affiliation(s)
- Srijit Seal
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luis Vollmers
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
31
|
Ansbro MR, Itkin Z, Chen L, Zahoranszky-Kohalmi G, Amaratunga C, Miotto O, Peryea T, Hobbs CV, Suon S, Sá JM, Dondorp AM, van der Pluijm RW, Wellems TE, Simeonov A, Eastman RT. Modulation of Triple Artemisinin-Based Combination Therapy Pharmacodynamics by Plasmodium falciparum Genotype. ACS Pharmacol Transl Sci 2020; 3:1144-1157. [PMID: 33344893 PMCID: PMC7737215 DOI: 10.1021/acsptsci.0c00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 01/19/2023]
Abstract
The first-line treatments for uncomplicated Plasmodium falciparum malaria are artemisinin-based combination therapies (ACTs), consisting of an artemisinin derivative combined with a longer acting partner drug. However, the spread of P. falciparum with decreased susceptibility to artemisinin and partner drugs presents a significant challenge to malaria control efforts. To stem the spread of drug resistant parasites, novel chemotherapeutic strategies are being evaluated, including the implementation of triple artemisinin-based combination therapies (TACTs). Currently, there is limited knowledge on the pharmacodynamic and pharmacogenetic interactions of proposed TACT drug combinations. To evaluate these interactions, we established an in vitro high-throughput process for measuring the drug concentration-response to three distinct antimalarial drugs present in a TACT. Sixteen different TACT combinations were screened against 15 parasite lines from Cambodia, with a focus on parasites with differential susceptibilities to piperaquine and artemisinins. Analysis revealed drug-drug interactions unique to specific genetic backgrounds, including antagonism between piperaquine and pyronaridine associated with gene amplification of plasmepsin II/III, two aspartic proteases that localize to the parasite digestive vacuole. From this initial study, we identified parasite genotypes with decreased susceptibility to specific TACTs, as well as potential TACTs that display antagonism in a genotype-dependent manner. Our assay and analysis platform can be further leveraged to inform drug implementation decisions and evaluate next-generation TACTs.
Collapse
Affiliation(s)
- Megan R. Ansbro
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Wellcome Sanger Institute, Hinxton CB10 1SA, U.K.
| | - Zina Itkin
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Lu Chen
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Gergely Zahoranszky-Kohalmi
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Chanaki Amaratunga
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton CB10 1SA, U.K.
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
- Medical Research Council (MRC) Centre for Genomics and
Global Health, University of Oxford, Oxford OX3 7BN, U.K.
| | - Tyler Peryea
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Charlotte V. Hobbs
- Division of Infectious Diseases, Children’s
Hospital, University of Mississippi Medical
Center, Jackson, Mississippi 39216, United States
| | - Seila Suon
- National Center for Parasitology, Entomology,
and Malaria Control, Phnom Penh, Cambodia
| | - Juliana M. Sá
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
| | - Rob W. van der Pluijm
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
| | - Thomas E. Wellems
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Richard T. Eastman
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
32
|
Dhameliya TM, Patel KI, Tiwari R, Vagolu SK, Panda D, Sriram D, Chakraborti AK. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem 2020; 107:104538. [PMID: 33349456 DOI: 10.1016/j.bioorg.2020.104538] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/17/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Tuberculosis is the leading cause of death globally among infectious diseases. Due to the development of resistance of Mycobacterium tuberculosis to currently used anti-TB medicines and the TB-HIV synergism the urgent need to develop novel anti-mycobacterial agents has been realized. The drug-to-target path has been the successful strategy for new anti-TB drug development. All the six drug candidates that have shown promise during the clinical trials and some of these being approved for treatment against MDR TB are the results of phenotype screening of small molecule compound libraries. In search of compounds belonging to novel pharmacophoric class that could be subjected to whole cell assay to generate new anti-TB leads the benzo[d]imidazole-2-carboxamide moiety has been designed as a novel anti-TB scaffold. The design was based on the identification of the benzimidazole ring as a prominent substructure of the FDA approved drugs, the structural analysis of reported anti-TB benzimidazoles, and the presence of the C-2 carboxamido functionality in novel bioisoteric anti-TB benzothiazoles. Twenty seven final compounds have been prepared via NH4Cl-catalyzed amidation of ethyl benzo[d]imidazole-2-carboxylates, as the required intermediates, obtained through a green "all water" one-pot synthetic route following a tandem N-arylation-reduction-cyclocondensation procedure. All of the synthesised target compounds were assessed for anti-TB potential using H37Rv ATCC27294 strain. Thirteen compounds were found with better MIC (0.78-6.25 µg/mL) than the standard drugs and being non-cytotoxic nature (<50% inhibition against RAW 264.7 cell lines at 50 µg/mL). The compound 8e exhibited best anti-TB activity (MIC: 2.15 µM and selectivity index: > 60) and a few others e.g., 8a, 8f, 8k and 8o are the next best anti-TB hits (MIC: 1.56 µg/mL). The determination and analysis of various physiochemical parameters revealed favorable druglike properties of the active compounds. The compounds 8a-l and 8o, with MIC values of ≤ 6.25 μg/mL, have high LipE values (10.66-11.77) that are higher than that of the suggested value of > 6 derived from empirical evidence for quality drug candidates and highlight their therapeutic potential. The highest LipE value of 11.77 of the best active compound 8e with the MIC of 0.78 μg/mL indicates its better absorption and clearance as a probable clinical candidate for anti-TB drug discovery. These findings highlight the discovery of benzimidazole-2-carboxamides for further development as new anti-TB agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Rishu Tiwari
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Siva Krishna Vagolu
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India; Department of Chemistry, Indian Institute of Technology - Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
33
|
Nixon SA, Welz C, Woods DJ, Costa-Junior L, Zamanian M, Martin RJ. Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. Int J Parasitol Drugs Drug Resist 2020; 14:8-16. [PMID: 32814269 PMCID: PMC7452592 DOI: 10.1016/j.ijpddr.2020.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Abstract
Control of helminth parasites is a key challenge for human and veterinary medicine. In the absence of effective vaccines and adequate sanitation, prophylaxis and treatment commonly rely upon anthelmintics. There are concerns about the development of drug resistance, side-effects, lack of efficacy and cost-effectiveness that drive the need for new classes of anthelmintics. Despite this need, only three new drug classes have reached the animal market since 2000 and no new classes of anthelmintic have been approved for human use. So where are all the anthelmintics? What are the barriers to anthelmintic discovery, and what emerging opportunities can be used to address this? This was a discussion group focus at the 2019 8th Consortium for Anthelmintic Resistance and Susceptibility (CARS) in Wisconsin, USA. Here we report the findings of the group in the broader context of the human and veterinary anthelmintic discovery pipeline, highlighting challenges unique to antiparasitic drug discovery. We comment on why the development of novel anthelmintics has been so rare. Further, we discuss potential opportunities for drug development moving into the 21st Century.
Collapse
Affiliation(s)
- Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia; CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | | | - Debra J Woods
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Livio Costa-Junior
- Federal University of Maranhão, Pathology Department, São Luís, Maranhão, Brazil
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| |
Collapse
|
34
|
Mignani S, Shi X, Steinmetz A, Majoral JP. Multivalent Copper(II)-Conjugated Phosphorus Dendrimers with Noteworthy In Vitro and In Vivo Antitumor Activities: A Concise Overview. Mol Pharm 2020; 18:65-73. [PMID: 33236637 DOI: 10.1021/acs.molpharmaceut.0c00892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendrimers are macromolecules with well-defined, homogeneous, and monodispersed structures that form a branch-like structure. In general, they have a symmetric core, inner shells, and an outer shell. Over the past decade, metallodendritic architectures have developed into a new area in nanomedicine. Due to their versatility and facile customization, phosphorus dendrimers represent interesting platforms for biomedical applications. Metallo-conjugated phosphorus dendrimers have been developed within the dendrimer space, an important part of the chemical space. The first investigation was made using phosphorus dendrimers bearing copper(II) groups on their surface as the original anticancer drug candidates. The aim of this minireview is to present our powerful strategy to find and develop original multivalent copper(II)-conjugated phosphorus dendrimers. The most potent of them is G3 dendrimers with N-(pyridine-2-ylmethylene)ethanamine as the chelating motif complexed with Cu(II) (1G3-Cu), showing very good in vitro and in vivo antiproliferative efficacy. On the basis of these results, 1G3-Cu is a potential clinical candidate having progressed from hit to preclinical candidate status.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45 rue des Saints Peres, 75006 Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Anke Steinmetz
- Sanofi R&D, Integrated Drug Discovery, Centre de Recherche Vitry-Alfortville, 94403 Cedex Vitry-sur-Seine, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France.,Université Toulouse, 118 route de Narbonne, 31077 Cedex 4 Toulouse, France
| |
Collapse
|
35
|
Mansoldo FRP, Carta F, Angeli A, Cardoso VDS, Supuran CT, Vermelho AB. Chagas Disease: Perspectives on the Past and Present and Challenges in Drug Discovery. Molecules 2020; 25:E5483. [PMID: 33238613 PMCID: PMC7700143 DOI: 10.3390/molecules25225483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Chagas disease still has no effective treatment option for all of its phases despite being discovered more than 100 years ago. The development of commercial drugs has been stagnating since the 1960s, a fact that sheds light on the question of how drug discovery research has progressed and taken advantage of technological advances. Could it be that technological advances have not yet been sufficient to resolve this issue or is there a lack of protocol, validation and standardization of the data generated by different research teams? This work presents an overview of commercial drugs and those that have been evaluated in studies and clinical trials so far. A brief review is made of recent target-based and phenotypic studies based on the search for molecules with anti-Trypanosoma cruzi action. It also discusses how proteochemometric (PCM) modeling and microcrystal electron diffraction (MicroED) can help in the case of the lack of a 3D protein structure; more specifically, Trypanosoma cruzi carbonic anhydrase.
Collapse
Affiliation(s)
- Felipe Raposo Passos Mansoldo
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Fabrizio Carta
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Andrea Angeli
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Veronica da Silva Cardoso
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| |
Collapse
|
36
|
Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. J Control Release 2020; 327:500-511. [PMID: 32858073 DOI: 10.1016/j.jconrel.2020.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
To cater to medication needs in the future healthcare system, we need to shift from the conventional system of drug delivery to modern molecular signature-based drug delivery systems. The current drug therapies are either less effective, ineffective, or produce numerous adverse reactions. One scientific principle or discipline cannot adequately address all the problems, so we need an innovative application of the current scientific principles. Here we are proposing a novel concept of nanoformulation based on pharmacogenomics and theranostics for personalized error-free and targeted therapeutic agent delivery. The addition of more knowledge about the human genome opens the new way to study disease-gene, gene-drug, and drug-effect interactions, which is the basis of future medicines. Pharmacogenomics provides information about the disease etiology, role in genes in disease pathophysiology, disease biomarkers, drug targets, drug effects, and the fate of drugs inside the body. Theranostics approach utilizes the above information in diagnosis, treatment, and monitoring of the disease on a real-time basis. Personalized dosage forms can be formulated into a nanoformulation that provides a better therapeutic effect and minimizes adverse drug reactions. The therapeutic system needs to be shifted from the principle of one drug fits all to one drug unique population. In the present manuscript, we tried to conceptualize a modern therapeutic system by combining the three approaches viz. pharmacogenomics, theranostics, and nanotechnology applied in the area of formulation development to produce a multifunctional single tiny entity.
Collapse
Affiliation(s)
- Vikas Jhawat
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India.
| | - Monika Gulia
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, Haryana, India
| | - Balaji Maddiboyina
- Department of Pharmaceutical Sciences, Vishwa Bharathi College of Pharmaceutical Sciences, Guntur, A.P, India
| | - Rohit Dutt
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
37
|
Dhingra S, Rahman NAA, Peile E, Rahman M, Sartelli M, Hassali MA, Islam T, Islam S, Haque M. Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Front Public Health 2020; 8:535668. [PMID: 33251170 PMCID: PMC7672122 DOI: 10.3389/fpubh.2020.535668] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics changed medical practice by significantly decreasing the morbidity and mortality associated with bacterial infection. However, infectious diseases remain the leading cause of death in the world. There is global concern about the rise in antimicrobial resistance (AMR), which affects both developed and developing countries. AMR is a public health challenge with extensive health, economic, and societal implications. This paper sets AMR in context, starting with the history of antibiotics, including the discovery of penicillin and the golden era of antibiotics, before exploring the problems and challenges we now face due to AMR. Among the factors discussed is the low level of development of new antimicrobials and the irrational prescribing of antibiotics in developed and developing countries. A fundamental problem is the knowledge, attitude, and practice (KAP) regarding antibiotics among medical practitioners, and we explore this aspect in some depth, including a discussion on the KAP among medical students. We conclude with suggestions on how to address this public health threat, including recommendations on training medical students about antibiotics, and strategies to overcome the problems of irrational antibiotic prescribing and AMR.
Collapse
Affiliation(s)
- Sameer Dhingra
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Nor Azlina A. Rahman
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Ed Peile
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Motiur Rahman
- Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Massimo Sartelli
- Department of General and Emergency Surgery, Macerata Hospital, Macerata, Italy
| | - Mohamed Azmi Hassali
- The Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Childers WE, Elokely KM, Abou-Gharbia M. The Resurrection of Phenotypic Drug Discovery. ACS Med Chem Lett 2020; 11:1820-1828. [PMID: 33062159 DOI: 10.1021/acsmedchemlett.0c00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Prior to genetic mapping, the majority of drug discovery efforts involved phenotypic screening, wherein compounds were screened in either in vitro or in vivo models thought to mimic the disease state of interest. While never completely abandoning phenotypic approaches, the labor intensive nature of such tests encouraged the pharmaceutical industry to move away from them in favor of target-based drug discovery, which facilitated throughput and allowed for the efficient screening of large numbers of compounds. However, a consequence of reliance on target-based screening was an increased number of failures in clinical trials due to poor correlation between novel mechanistic targets and the actual disease state. As a result, the field has seen a recent resurrection in phenotypic drug discovery approaches. In this work, we highlight some recent phenotypic projects from our industrial past and in our current academic drug discovery environment that have provided encouraging results.
Collapse
Affiliation(s)
- Wayne E. Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Khaled M. Elokely
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
- Department of Chemistry, College of Science and Technology, Temple University, 1925 N. 12th Street, Philadelphia, Pennsylvania 19122, United States
- Department of Pharmaceutical Chemistry, Tanta University, Tanta 31527, Egypt
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
39
|
Usha T, Middha SK, Kukanur AA, Shravani RV, Anupama MN, Harshitha N, Rahamath A, Kukanuri SA, Goyal AK. Drug Repurposing Approaches: Existing Leads For Novel Threats And Drug Targets. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-110124. [PMID: 32957901 DOI: 10.2174/1389203721666200921152853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022]
Abstract
Drug Repurposing (DR) is an alternative to the traditional drug discovery process. It is cost and time effective, with high returns and low risk process that can tackle the increasing need for interventions for varied diseases and new outbreaks. Repurposing of old drugs for other diseases has gained a wider attention, as there have been several old drugs approved by FDA for new diseases. In the global emergency of COVID19 pandemic, this is one of the strategies implemented in repurposing of old anti-infective, anti-rheumatic and anti-thrombotic drugs. The goal of the current review is to elaborate the process of DR, its advantages, repurposed drugs for a plethora of disorders, and the evolution of related academic publications. Further, detailed are the computational approaches: literature mining and semantic inference, network-based drug repositioning, signature matching, retrospective clinical analysis, molecular docking and experimental phenotypic screening. We discuss the legal and economical potential barriers in DR, existent collaborative models and recommendations for overcoming these hurdles and leveraging the complete potential of DR in finding new indications.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry, Bangalore University, Bengaluru, Karnataka. India
| | - Sushil K Middha
- DBT-BIF Centre, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women(mLAC), Bengaluru, Karnataka. India
| | | | | | | | | | - Ameena Rahamath
- Department of Biochemistry, mLAC, Bengaluru, Karnataka. India
| | | | - Arvind K Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar783370, BTAD, Assam. India
| |
Collapse
|
40
|
Haroun M. In Silico Design, Synthesis and Evaluation of Novel Series of Benzothiazole- Based Pyrazolidinediones as Potent Hypoglycemic Agents. Med Chem 2020; 16:812-825. [DOI: 10.2174/1573406416666191227113716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/26/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022]
Abstract
Background:
The discovery of novel ligand binding domain (LBD) of peroxisome proliferator-
activated receptor γ (PPARγ) has recently attracted attention to few research groups in order
to develop more potent and safer antidiabetic agents.
Objective:
This study is focused on docking-based design and synthesis of novel compounds combining
benzothiazole and pyrazolidinedione scaffold as potential antidiabetic agents.
Methods:
Several benzothiazole-pyrazolidinedione hybrids were synthesized and tested for their in
vivo anti-hyperglycemic activity. Interactions profile of title compounds against PPARγ was examined
through molecular modelling approach.
Results:
All tested compounds exhibited anti-hyperglycemic activity similar or superior to the reference
drug Rosiglitazone. Introducing chlorine atom and alkyl group at position-6 and -5 respectively
on benzothiazole core resulted in enhancing the anti-hyperglycemic effect. Docking study
revealed that such groups demonstrated favorable hydrophobic interactions with novel LBD Ω-
pocket of PPARγ protein.
Conclusion:
Among the tested compounds, N-(6-chloro-5-methylbenzo[d]thiazol-2-yl-4-(4((3,5-
dioxopyrazolidin-4-ylidene)methyl)phenoxy)butanamide 5b was found to be the most potent compound
and provided valuable insights to further develop novel hybrids as anti-hyperglycemic
agents.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
41
|
Davis RL. Mechanism of Action and Target Identification: A Matter of Timing in Drug Discovery. iScience 2020; 23:101487. [PMID: 32891054 PMCID: PMC7479624 DOI: 10.1016/j.isci.2020.101487] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/14/2023] Open
Abstract
Two opposing viewpoints are held regarding the need for understanding a drug's molecular target and mechanism of action. One extreme viewpoint is that it is unnecessary, because, after all, there are many beneficial drugs in use for which the target and mechanism of action remain unknown. A second extreme viewpoint is that target identification and mechanism of action should be elucidated very early in the drug discovery process due to the tangible benefits provided by this knowledge. I offer an intermediate perspective that considers the complexity of the disease of interest, the existence of a standard-of-care treatment, and the resources available to the investigator.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
42
|
Lundström-Stadelmann B, Rufener R, Hemphill A. Drug repurposing applied: Activity of the anti-malarial mefloquine against Echinococcus multilocularis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:121-129. [PMID: 32636148 PMCID: PMC7389337 DOI: 10.1016/j.ijpddr.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The current chemotherapeutical treatment against alveolar echinococcosis relies exclusively on benzimidazoles, which are not parasiticidal and can induce severe toxicity. There are no alternative treatment options. To identify novel drugs with activity against Echinococcus multilocularis metacestodes, researchers have studied potentially interesting drug targets (e.g. the parasite's energy metabolism), and/or adopted drug repurposing approaches by undertaking whole organism screenings. We here focus on drug screening approaches, which utilize an in vitro screening cascade that includes assessment of the drug-induced physical damage of metacestodes, the impact on metacestode viability and the viability of isolated parasite stem cells, structure-activity relationship (SAR) analysis of compound derivatives, and the mode of action. Finally, once in vitro data are indicative for a therapeutic window, the efficacy of selected compounds is assessed in experimentally infected mice. Using this screening cascade, we found that the anti-malarial mefloquine was active against E. multilocularis metacestodes in vitro and in vivo. To shed more light into the mode of action of mefloquine, SAR analysis on mefloquine analogues was performed. E. multilocularis ferritin was identified as a mefloquine-binding protein, but its precise role as a drug target remains to be elucidated. In mice that were infected either intraperitoneally with metacestodes or orally with eggs, oral treatment with mefloquine led to a significant reduction of parasite growth compared to the standard treatment with albendazole. However, mefloquine was not acting parasiticidally. Assessment of mefloquine plasma concentrations in treated mice showed that levels were reached which are close to serum concentrations that are achieved in humans during long-term malaria prophylaxis. Mefloquine might be applied in human AE patients as a salvage treatment. Future studies should focus on other repurposed anti-infective compounds (MMV665807, niclosamide, atovaquone), which showed stronger in vitro activity against E. multilocularis than mefloquine.
Collapse
Affiliation(s)
- Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längggassstrasse 122, 3012, Bern, Switzerland.
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längggassstrasse 122, 3012, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längggassstrasse 122, 3012, Bern, Switzerland
| |
Collapse
|
43
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
44
|
López-López E, Barrientos-Salcedo C, Prieto-Martínez FD, Medina-Franco JL. In silico tools to study molecular targets of neglected diseases: inhibition of TcSir2rp3, an epigenetic enzyme of Trypanosoma cruzi. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:203-229. [PMID: 32951812 DOI: 10.1016/bs.apcsb.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest to study and address neglected tropical diseases (NTD). To this end, in silico methods can serve as the bridge that connects academy and industry, encouraging the development of future treatments against these diseases. This chapter discusses current challenges in the development of new therapies, available computational methods and successful cases in computer-aided design with particular focus on human trypanosomiasis. Novel targets are also discussed. As a case study, we identify amentoflavone as a potential inhibitor of TcSir2rp3 (sirtuine) from Trypanosoma cruzi (20.03 μM) with a workflow that integrates chemoinformatic approaches, molecular modeling, and theoretical affinity calculations, as well as in vitro assays.
Collapse
Affiliation(s)
- Edgar López-López
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico; Department of Pharmacology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
45
|
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020. [PMID: 32272481 DOI: 10.1016/j.dyepig.2018.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.
Collapse
Affiliation(s)
- Zhenming Jin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Du
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yechun Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongqiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Meiqin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaofeng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Leike Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rendi Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Tian You
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoce Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Liu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Gengfu Xiao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chengfeng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
46
|
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582:289-293. [PMID: 32272481 DOI: 10.1101/2020.02.26.964882] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/01/2020] [Indexed: 05/25/2023]
Abstract
A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.
Collapse
Affiliation(s)
- Zhenming Jin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Du
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yechun Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongqiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Meiqin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaofeng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Leike Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rendi Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Tian You
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoce Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Liu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Gengfu Xiao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chengfeng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
47
|
Different Cases of SARS-CoV-2 Infection and Its Impact on Health and Economy with Special Emphasis on Antiviral Drug Targets. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.spl1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 has not only issued a pandemic situation but also lead to economic disaster and unprecedented health emergency. Being a close relative of Bat corona-virus, SARS and MERS it’s structural and sequence similarity has abled scientists for repurposing of popular drugs like hydroxychloroquine, cloroquine and also scavenging for lead molecules by in-silico and in-vivo or in-vitro approach. The potent drug targets are ACE2; spike protein binding receptor to host cell surface, Mpro; proteo-lytic polyprotein processing enzymes needed for virion maturation and RdRp; RNA dependent RNA polymerase needed for RNA replication. The recent trend focuses on the fact that cocktail of anti-corona virus treatment will be available soon by broad spectrum antiviral compounds. It takes time to develop such drug targets till then social distancing and following of hygiene are the only way to thrive well. This article incorporates the present World scenario related to COVID infection, focuses on its origin and also future possibilities for a COVID free future.
Collapse
|
48
|
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582:289-293. [DOI: 10.1038/s41586-020-2223-y] [Citation(s) in RCA: 2158] [Impact Index Per Article: 539.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/01/2020] [Indexed: 11/09/2022]
|
49
|
Singh N, Chaput L, Villoutreix BO. Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief Bioinform 2020; 22:1790-1818. [PMID: 32187356 PMCID: PMC7986591 DOI: 10.1093/bib/bbaa034] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interplay between life sciences and advancing technology drives a continuous cycle of chemical data growth; these data are most often stored in open or partially open databases. In parallel, many different types of algorithms are being developed to manipulate these chemical objects and associated bioactivity data. Virtual screening methods are among the most popular computational approaches in pharmaceutical research. Today, user-friendly web-based tools are available to help scientists perform virtual screening experiments. This article provides an overview of internet resources enabling and supporting chemical biology and early drug discovery with a main emphasis on web servers dedicated to virtual ligand screening and small-molecule docking. This survey first introduces some key concepts and then presents recent and easily accessible virtual screening and related target-fishing tools as well as briefly discusses case studies enabled by some of these web services. Notwithstanding further improvements, already available web-based tools not only contribute to the design of bioactive molecules and assist drug repositioning but also help to generate new ideas and explore different hypotheses in a timely fashion while contributing to teaching in the field of drug development.
Collapse
Affiliation(s)
- Natesh Singh
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ludovic Chaput
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Bruno O Villoutreix
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| |
Collapse
|
50
|
Hellewell L, Bhakta S. Chalcones, stilbenes and ketones have anti-infective properties via inhibition of bacterial drug-efflux and consequential synergism with antimicrobial agents. Access Microbiol 2020; 2:acmi000105. [PMID: 33005869 PMCID: PMC7523622 DOI: 10.1099/acmi.0.000105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
With antimicrobial resistance creating a major public health crisis, the designing of novel antimicrobial compounds that effectively combat bacterial infection is becoming increasingly critical. Interdisciplinary approaches integrate the best features of whole-cell phenotypic evaluation to validate novel therapeutic targets and discover new leads to combat antimicrobial resistance. In this project, whole-cell phenotypic evaluation such as testing inhibitors on bacterial growth, viability, efflux pump, biofilm formation and their interaction with other drugs were performed on a panel of Gram-positive, Gram-negative and acid-fast group of bacterial species. This enabled additional antimicrobial activities of compounds belonging to the flavonoid family including ketones, chalcones and stilbenes, to be identified. Flavonoids have received renewed attention in literature over the past decade, and a variety of beneficial effects of these compounds have been illuminated, including anti-cancer, anti-inflammatory, anti-tumour as well as anti-fungal and anti-bacterial. However, their mechanisms of action are yet to be identified. In this paper, we found that the compounds belonging to the flavonoid family exerted a range of anti-infective properties being identified as novel efflux pump inhibitors, whilst offering the opportunity to be used in combination therapy. The compound 2-phenylacetophenone displayed broad-spectrum efflux pump inhibition activity, whilst trans-chalcone, displayed potent activity against Gram-negative and mycobacterial efflux pumps causing inhibition higher than known potent efflux pump inhibitors, verapamil and chlorpromazine. Drug-drug interaction studies also highlighted that 2-phenylacetophenone not only has the potential to work additively with known antibacterial agents that affect the cell-wall and DNA replication but also trans-chalcone has the potential to work synergistically with anti-tubercular agents. Overall, this paper shows how whole-cell phenotypic analysis allows for the discovery of new antimicrobial agents and their consequent mode of action whilst offering the opportunity for compounds to be repurposed, in order to contribute in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Lauren Hellewell
- Division of Biosciences, Institue of Structual and Molecular Biology, University College London, London, WC1E 6PT, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, WC1E 7HX, UK
| |
Collapse
|