1
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Liu Q, Zhang W, Tian T, Liu Y, Bai H, Hu Q, Qi F. Latent myofascial trigger points injection therapy for adult cough variant asthma: A randomized controlled trial. Front Med (Lausanne) 2023; 10:937377. [PMID: 36910483 PMCID: PMC9995510 DOI: 10.3389/fmed.2023.937377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Cough variant asthma (CVA) is a chronic inflammatory airway disease characterized by airway hyper-responsiveness (AHR), of which cough is the only symptom. The cough is a result of the contraction of the vocal cords, diaphragm, sternocleidomastoid muscle, and other respiratory related muscles caused by the AHR. Long-term chronic coughing can lead to repetitive contraction and chronic strain of the muscles involved in the head and neck, ultimately contributing to the formation of latent myofascial trigger points (MTrPs). In turn, latent MTrPs can also irritate or compress the nerves around them, triggering cough. The date indicated that latent MTrPs can induce autonomic phenomena and are effective in allergic rhinitis. But their roles in asthma are unclear. In this article, the efficacy and safety of latent MTrPs injection therapy in CVA were investigated. Methods This randomized controlled trial was conducted with 110 patients. Patients were assigned to the intervention or control group in a 1:1.5 ratio. Intervention group (n = 44): single injection therapy with latent MTrPs. Control group (n = 66): budesonide-formoterol plus montelukast for 8 weeks. During the 36-week follow up period, the recurrence rate at week 36, cough visual analog scale (VAS), ACT (asthma control test)-scores, ACQ5 (asthma control questionnaire)-scores, AQLQ (asthma quality of life questionnaire)-scores, proportion of using rescue medication, and adverse events were evaluated. Results The recurrence rate at week 36 was lower in the intervention group than in the control group (36 weeks, 5.0 vs. 34.55%, p = 0.001). There were significant differences between groups in change from baseline to 36 weeks in VAS [36 weeks, 1.70 (1.49) vs. 3.18 (2.04), p < 0.001]; ACT-score [36 weeks, 21.38 (2.65) vs. 18.53 (3.00), p < 0.001]; ACQ5-score [36 weeks, 0.85 (0.55) vs. 1.52 (0.62), p < 0.001]; AQLQ-score [36w, 174.40 (18.22) vs. 151.69 (24.04), p < 0.001]; proportion of using rescue medication (36 weeks, 5.0 vs. 29.1%, p = 0.003). Fewer adverse events occurred in the two groups. Conclusion Latent myofascial trigger points injection therapy provided long-acting, practical, short treatment duration and safety methods for CVA. Clinical Trials Registration http://www.chictr.org.cn/index.aspx, Chinese Clinical Trial Registry Center, ChiCTR2100044079.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Wenwen Zhang
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Tian Tian
- Department of Respiratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Yu Liu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - He Bai
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Qiya Hu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Feng Qi
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| |
Collapse
|
3
|
Liu M, Jia X, Liu H, He R, Zhang X, Shao Y. Role of TRPV1 in respiratory disease and association with traditional Chinese medicine: A literature review. Biomed Pharmacother 2022; 155:113676. [PMID: 36088856 DOI: 10.1016/j.biopha.2022.113676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1), involved in multiple pathophysiological processes including inflammation, is a thermally activated, non-selective cation channel. It has been identified that TRPV1 is highly involved in some common respiratory diseases including allergic rhinitis, asthma, chronic obstructive pulmonary disease, and pulmonary infection by participating in neurogenic and immunogenic inflammation, sensitization, and oxidative stress. In recent years, the hypothesis of transient receptor potential (TRP) has been introduced in studies on the theory of five flavors and four properties of Chinese medicinal. However, the hypothesis is undetermined due to the multi-component and multi-target characteristics of Chinese medicinal. This study describes the relations between TRPV1 and four types of respiratory diseases based on the literature in recent five years. In the meantime, the therapeutic effect of Chinese medicinal by intervening TRPV1 was reviewed, in an attempt to provide certain evidence for future studies on the medicinal property-effect relationship, mechanism of drug action, the syndrome differentiation in traditional Chinese medicine (TCM) for respiratory diseases and to help for new drug development.
Collapse
Affiliation(s)
- Meiping Liu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong He
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- Development and Planning Office of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Xu J, Ghadiri M, Svolos M, McParland B, Traini D, Ong HX, Young PM. Investigating Potential TRPV1 Positive Feedback to Explain TRPV1 Upregulation in Airway Disease States. Drug Dev Ind Pharm 2022; 47:1924-1934. [PMID: 35473456 DOI: 10.1080/03639045.2022.2070759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The airway epithelium is a potential source of pathophysiology through activation of transient potential receptor vallinoid type 1 (TRPV1) channel. A positive feedback cycle caused by TRPV1 activity is hypothesised to induce upregulation and production of inflammatory cytokines, leading to exacerbations of chronic airway diseases. These cytokine and protein regulation effects were investigated in this study. METHODS Healthy (BEAS-2B) and cancer-derived (Calu-3) airway epithelial cell lines were assessed for changes to TRPV1 protein expression and mRNA expression following exposure to capsaicin (5 µM to 50 µM), and TRPV1 modulators including heat (43 °C), and hydrochloric acid (pH 3.4 to pH 6.4). Cytotoxicity was measured to determine the working concentration ranges of treatment. Subsequent bronchoconstriction by TRPV1 activation with capsaicin was measured on guinea pig airway tissue to confirm locally mediated activity without the action of known neuronal inputs. RESULTS TRPV1 protein expression was not different for all capsaicin, acidity, and heat exposures (P > 0.05), and was replicated in mRNA protein expression (P > 0.05). IL-6 and IL-8 expression were lower in BEAS-2B and Calu-3 cell lines exposed with acidity and heat (P < 0.05), but not consistently with capsaicin exposure, with potential cytotoxic effects possible. CONCLUSIONS TRPV1 expression was present in airway epithelial cells but its expression was not changed after activation by TRPV1 activators. Thus, it was not apparent the reason for reported TRPV1 upregulation in patients with airway disease states. More complex mechanisms are likely involved and will require further investigation.
Collapse
Affiliation(s)
- Jesse Xu
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Maliheh Ghadiri
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia
| | - Maree Svolos
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia
| | - Brent McParland
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Daniela Traini
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Hui Xin Ong
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Paul M Young
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, NSW 2109, Australia
| |
Collapse
|
5
|
Kim SH, Patil MJ, Hadley SH, Bahia PK, Butler SG, Madaram M, Taylor-Clark TE. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets. eNeuro 2022; 9:ENEURO.0026-22.2022. [PMID: 35365503 PMCID: PMC9015009 DOI: 10.1523/eneuro.0026-22.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.
Collapse
Affiliation(s)
- Seol-Hee Kim
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Mayur J Patil
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen H Hadley
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Parmvir K Bahia
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Shane G Butler
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Meghana Madaram
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
6
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
7
|
Reyes-García J, Carbajal-García A, Montaño LM. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur J Pharmacol 2022; 915:174692. [PMID: 34890545 DOI: 10.1016/j.ejphar.2021.174692] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) ion channels play critical roles in physiological and pathological conditions. Increasing evidence has unveiled the contribution of TRP vanilloid (TRPV) family in the development of asthma. The TRPV family is a group (TRPV1-TRPV6) of polymodal channels capable of sensing thermal, acidic, mechanical stress, and osmotic stimuli. TRPVs can be activated by endogenous ligands including, arachidonic acid derivatives or endocannabinoids. While TRPV1-TRPV4 are non-selective cation channels showing a predominance for Ca2+ over Na + influx, TRPV5 and TRPV6 are only Ca2+ permeable selective channels. Asthma is a chronic inflammatory bronchopulmonary disorder involving airway hyperresponsiveness (AHR) and airway remodeling. Patients suffering from allergic asthma display an inflammatory pattern driven by cytokines produced in type-2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). Ion channels are essential regulators in airway smooth muscle (ASM) and immune cells physiology. In this review, we summarize the contribution of TRPV1, TRPV2, and TRPV4 to the pathogenesis of asthma. TRPV1 is associated with hypersensitivity to environmental pollutants and chronic cough, inflammation, AHR, and remodeling. TRPV2 is increased in peripheral lymphocytes of asthmatic patients. TRPV4 contributes to ASM cells proliferation, and its blockade leads to a reduced eosinophilia, neutrophilia, as well as an abolished AHR. In conclusion, TRPV2 may represent a novel biomarker for asthma in children; meanwhile, TRPV1 and TRPV4 seem to be essential contributors to the development and exacerbations of asthma. Moreover, these channels may serve as novel therapeutic targets for this ailment.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| |
Collapse
|
8
|
Su Y, Barr J, Jaquish A, Xu J, Verheyden JM, Sun X. Identification of lung innervating sensory neurons and their target specificity. Am J Physiol Lung Cell Mol Physiol 2022; 322:L50-L63. [PMID: 34755535 PMCID: PMC8721910 DOI: 10.1152/ajplung.00376.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Known as the gas exchange organ, the lung is also critical for responding to the aerosol environment in part through interaction with the nervous system. The diversity and specificity of lung innervating neurons remain poorly understood. Here, we interrogated the cell body location and molecular signature and projection pattern of lung innervating sensory neurons. Retrograde tracing from the lung coupled with whole tissue clearing highlighted neurons primarily in the vagal ganglia. Centrally, they project specifically to the nucleus of the solitary tract in the brainstem. Peripherally, they enter the lung alongside branching airways. Labeling of nociceptor Trpv1+ versus peptidergic Tac1+ vagal neurons showed shared and distinct terminal morphology and targeting to airway smooth muscles, vasculature including lymphatics, and alveoli. Notably, a small population of vagal neurons that are Calb1+ preferentially innervate pulmonary neuroendocrine cells, a demonstrated airway sensor population. This atlas of lung innervating neurons serves as a foundation for understanding their function in lung.
Collapse
Affiliation(s)
- Yujuan Su
- 1Department of Pediatrics, University of California, San Diego, California
| | - Justinn Barr
- 1Department of Pediatrics, University of California, San Diego, California
| | - Abigail Jaquish
- 1Department of Pediatrics, University of California, San Diego, California
| | - Jinhao Xu
- 1Department of Pediatrics, University of California, San Diego, California
| | - Jamie M. Verheyden
- 1Department of Pediatrics, University of California, San Diego, California
| | - Xin Sun
- 1Department of Pediatrics, University of California, San Diego, California,2Division of Biological Sciences, University of California, San Diego, California
| |
Collapse
|
9
|
Taylor-Clark TE, Undem BJ. Neural control of the lower airways: Role in cough and airway inflammatory disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:373-391. [PMID: 35965034 PMCID: PMC10688079 DOI: 10.1016/b978-0-323-91534-2.00013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Airway function is under constant neurophysiological control, in order to maximize airflow and gas exchange and to protect the airways from aspiration, damage, and infection. There are multiple sensory nerve subtypes, whose disparate functions provide a wide array of sensory information into the CNS. Activation of these subtypes triggers specific reflexes, including cough and alterations in autonomic efferent control of airway smooth muscle, secretory cells, and vasculature. Importantly, every aspect of these reflex arcs can be impacted and altered by local inflammation caused by chronic lung disease such as asthma, bronchitis, and infections. Excessive and inappropriate activity in sensory and autonomic nerves within the airways is thought to contribute to the morbidity and symptoms associated with lung disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Gladkikh IN, Sintsova OV, Leychenko EV, Kozlov SA. TRPV1 Ion Channel: Structural Features, Activity Modulators, and Therapeutic Potential. BIOCHEMISTRY (MOSCOW) 2021; 86:S50-S70. [PMID: 33827400 DOI: 10.1134/s0006297921140054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although TRPV1 ion channel has been attracting researchers' attention for many years, its functions in animal organisms, the principles of regulation, and the involvement in pathological processes have not yet been fully clarified. Mutagenesis experiments and structural studies have identified the structural features of the channel and binding sites for its numerous ligands; however, these studies are far from conclusion. This review summarizes recent achievements in the TRPV1 research with special focus on structural and functional studies of the channel and on its ligands, which are extremely diverse in their nature and interaction specificity to TRPV1. Particular attention was given to the effects of numerous endogenous agonists and antagonists that can fine-tune the channel sensitivity to its usual activators, such as capsaicin, heat, acids, or their combination. In addition to the pain sensing not covered in this review, the TRPV1 channel was found to be involved in the regulation of many important physiological and pathological processes and, therefore, can be considered as a promising therapeutic target in the treatment of various diseases, such as pneumonia, ischemia, diabetes, epilepsy, schizophrenia, psoriasis, etc.
Collapse
Affiliation(s)
- Irina N Gladkikh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Oksana V Sintsova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena V Leychenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Sergey A Kozlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
11
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
12
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Zhang X, Ye L, Huang Y, Ding X, Wang L. The potential role of TRPV1 in pulmonary hypertension: Angel or demon? Channels (Austin) 2020; 13:235-246. [PMID: 31189399 PMCID: PMC6602577 DOI: 10.1080/19336950.2019.1631106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a pathological state defined by increased pulmonary artery pressure, the pathogenesis of which is related to genetic mutations, intracellular calcium ([Ca2+]i), inflammation and proliferation. Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a nonselective cation channel expressed in neural and nonneural cells, including pulmonary vessels and nerves. As a calcium channel, TRPV1 can make vessels contracted, and promote smooth muscle cells proliferation through calcium-dependent transcription factors. Activation of TRPV1 in sensory nerves can release neuropeptides, including calcitonin gene-related peptide (CGRP), substance P (SP), and somatostatin (SST), which can regulate inflammation via transcription factor NF-kB. Considering the increased level of [Ca2+]i and inflammation in the pathogenesis of PH, our review summarizes the role of TRPV1 in PH with regard to [Ca2+]i, neuropeptides, and inflammation. In view of the limited research illustrating the relationship between TRPV1 and PH directly, our review also considers the role of TRPV1 in other types of vascular inflammation. Through this review, we hope to raise awareness about the function of TRPV1 in PH.
Collapse
Affiliation(s)
- Xin Zhang
- a The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , China.,b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Lifang Ye
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Yu Huang
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Xueyan Ding
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Lihong Wang
- a The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , China.,b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| |
Collapse
|
14
|
Kollarik M, Sun H, Herbstsomer RA, Ru F, Kocmalova M, Meeker SN, Undem BJ. Different role of TTX-sensitive voltage-gated sodium channel (Na V 1) subtypes in action potential initiation and conduction in vagal airway nociceptors. J Physiol 2019; 596:1419-1432. [PMID: 29435993 DOI: 10.1113/jp275698] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (NaV 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective NaV 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing NaV 1 blocking drugs for topical application to the respiratory tract. ABSTRACT The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (NaV 1s). We evaluated the role of TTX-sensitive and TTX-resistant NaV 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel NaV 1.7 along with TTX-resistant NaV 1.8 and NaV 1.9. Tracheal nodose neurons also expressed NaV 1.7 but, less frequently, NaV 1.8 and NaV 1.9. NaV 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other NaV 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in jugular C-fibres was unaffected by TTX, although it was inhibited by NaV 1.8 blocker (PF-01247324) and abolished by combination of TTX and PF-01247324. However, AP conduction in the majority of jugular C-fibres was abolished by TTX. By contrast, both AP initiation and conduction in nodose nociceptors was abolished by TTX or selective NaV 1.7 blockers. Distinction between the effect of a drug with respect to inhibiting AP in the nerve terminals within the airways vs. at conduction sites along the vagus nerve is relevant to therapeutic strategies involving inhaled NaV 1 blocking drugs.
Collapse
Affiliation(s)
- M Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathophysiology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - H Sun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R A Herbstsomer
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Ru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Kocmalova
- Department of Pharmacology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - S N Meeker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B J Undem
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Hennel M, Harsanyiova J, Ru F, Zatko T, Brozmanova M, Trancikova A, Tatar M, Kollarik M. Structure of vagal afferent nerve terminal fibers in the mouse trachea. Respir Physiol Neurobiol 2018; 249:35-46. [PMID: 29306061 DOI: 10.1016/j.resp.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/20/2022]
Abstract
The structure of primary afferent nerve terminals profoundly influences their function. While the complex vagal airway nerve terminals (stretch receptors, cough receptors and neuroepithelial bodies) were thoroughly characterized, much less is known about the structure of airway nerves that do not form distinct complex terminals (often termed free nerve fibers). We selectively induced expression of GFP in vagal afferent nerves in the mouse by transfection with AAV-GFP virus vector and visualized nerve terminals in the trachea by whole organ confocal imaging. Based on structural characteristics we identified four types of vagal afferent nerve fiber terminals in the trachea. Importantly, we found that distinct compartments of tracheal tissue are innervated by distinct nerve fiber terminal types in a non-overlapping manner. Thus, separate terminal types innervate tracheal epithelium vs. anterolateral tracheal wall containing cartilaginous rings and ligaments vs. dorsal wall containing smooth muscle. Our results will aid the study of structure-function relationships in vagal airway afferent nerves and regulation of respiratory reflexes.
Collapse
Affiliation(s)
- Michal Hennel
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU and Biomedical Center Martin, 036 01 Martin, Slovakia
| | - Jana Harsanyiova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU and Biomedical Center Martin, 036 01 Martin, Slovakia
| | - Fei Ru
- The Johns Hopkins University School of Medicine, Department of Medicine, Division of Allergy and Clinical Immunology, Baltimore, MD 21224, United States
| | - Tomas Zatko
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU and Biomedical Center Martin, 036 01 Martin, Slovakia
| | - Mariana Brozmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU and Biomedical Center Martin, 036 01 Martin, Slovakia
| | - Alzbeta Trancikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU and Biomedical Center Martin, 036 01 Martin, Slovakia
| | - Milos Tatar
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU and Biomedical Center Martin, 036 01 Martin, Slovakia
| | - Marian Kollarik
- The Johns Hopkins University School of Medicine, Department of Medicine, Division of Allergy and Clinical Immunology, Baltimore, MD 21224, United States.
| |
Collapse
|
16
|
Yamamoto Y, Nakamuta N. Morphology of P2X3-immunoreactive nerve endings in the rat tracheal mucosa. J Comp Neurol 2017; 526:550-566. [PMID: 29124772 DOI: 10.1002/cne.24351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Nerve endings with immunoreactivity for the P2X3 purinoreceptor (P2X3) in the rat tracheal mucosa were examined by immunohistochemistry of whole-mount preparations with confocal scanning laser microscopy. P2X3 immunoreactivity was observed in ramified endings distributed in the whole length of the trachea. The myelinated parent axons of P2X3-immunoreactive nerve endings ramified into several branches that extended two-dimensionally in every direction at the interface between the epithelial layer and lamina propria. The axonal branches of P2X3-immunoreactive endings branched off many twigs located just beneath the epithelium, and continued to intraepithelial axon terminals. The axon terminals of P2X3-immunoreactive endings were beaded, rounded, or club-like in shape and terminated between tracheal epithelial cells. Flat axon terminals sometimes partly ensheathed neuroendocrine cells with immunoreactivity for SNAP25 or CGRP. Some axons and axon terminals with P2X3 immunoreactivity were immunoreactive for P2X2, while some terminals were immunoreactive for vGLUT2. Furthermore, a retrograde tracing method using fast blue (FB) revealed that 88.4% of FB-labeled cells with P2X3 immunoreactivity originated from the nodose ganglion. In conclusion, P2X3-immunoreactive nerve endings in the rat tracheal mucosa have unique morphological characteristics, and these endings may be rapidly adapting receptors and/or irritant receptors that are activated by mucosal irritant stimuli.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
17
|
Hutchinson NX, Gibbs A, Tonks A, Hope-Gill BD. Airway expression of Transient Receptor Potential (TRP) Vanniloid-1 and Ankyrin-1 channels is not increased in patients with Idiopathic Pulmonary Fibrosis. PLoS One 2017; 12:e0187847. [PMID: 29149168 PMCID: PMC5693416 DOI: 10.1371/journal.pone.0187847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/29/2017] [Indexed: 01/20/2023] Open
Abstract
Dry cough is a common symptom described in patients with Idiopathic Pulmonary Fibrosis (IPF) and impairs quality of life. The exact mechanisms causing cough in IPF remain unclear, however evidence suggests altered cough neurophysiology and sensitisation plays a role; IPF patients have an enhanced cough reflex sensitivity to inhaled capsaicin. The Transient Receptor Potential Vanniloid-1 channel (TRPV-1) has a role in the cough reflex and airway expression is increased in patients with chronic cough. The Ankyrin-1 receptor (TRPA-1) is often co-expressed. It was hypothesised that, like chronic cough patients, IPF patients have increased airway TRP receptor expression. Bronchial biopsies were obtained from 16 patients with IPF, 11 patients with idiopathic chronic cough and 8 controls without cough. All other causes of cough were rigorously excluded. Real-time quantitative Polymerase Chain Reaction was used to detect TRPV-1 and TRPA-1 mRNA expression with Immunohistochemistry demonstrating protein expression. Mean TRPV-1 and TRPA-1 gene expression was higher in IPF patients compared with controls, but the difference did not reach statistical significance. Immunostaining supported these findings. This study suggests that structural up-regulation of central airway TRP receptors is not the key mechanism for cough in IPF patients. It is probable that IPF cough results from altered neuronal sensitivity at multiple levels of the cough pathway.
Collapse
Affiliation(s)
- Nicola-xan Hutchinson
- Department of Respiratory medicine, Princess of Wales Hospital, Bridgend, United Kingdom
- * E-mail:
| | - Allen Gibbs
- Department of Histopathology, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Amanda Tonks
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Benjamin D. Hope-Gill
- Department of Respiratory Medicine, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| |
Collapse
|
18
|
Pecze L, Viskolcz B, Oláh Z. Molecular Surgery Concept from Bench to Bedside: A Focus on TRPV1+ Pain-Sensing Neurons. Front Physiol 2017. [PMID: 28626428 PMCID: PMC5455100 DOI: 10.3389/fphys.2017.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
"Molecular neurosurgery" is emerging as a new medical concept, and is the combination of two partners: (i) a molecular neurosurgery agent, and (ii) the cognate receptor whose activation results in the selective elimination of a specific subset of neurons in which this receptor is endogenously expressed. In general, a molecular surgery agent is a selective and potent ligand, and the target is a specific cell type whose elimination is desired through the molecular surgery procedure. These target cells have the highest innate sensitivity to the molecular surgery agent usually due to the highest receptor density being in their plasma membrane. The interaction between the ligand and its receptor evokes an overactivity of the receptor. If the receptor is a ligand-activated non-selective cation channel, the overactivity of receptor leads to excess Ca2+ and Na+ influx into the cell and finally cell death. One of the best known examples of such an interaction is the effect of ultrapotent vanilloids on TRPV1-expressing pain-sensing neurons. One intrathecal resiniferatoxin (RTX) dose allows for the receptor-mediated removal of TRPV1+ neurons from the peripheral nervous system. The TRPV1 receptor-mediated ion influx induces necrotic processes, but only in pain-sensing neurons, and usually within an hour. Besides that, target-specific apoptotic processes are also induced. Thus, as a nano-surgery scalpel, RTX removes the neurons responsible for generating pain and inflammation from the peripheral nervous system providing an option in clinical management for the treatment of morphine-insensitive pain conditions. In the future, the molecular surgery concept can also be exploited in cancer research for selectively targeting the specific tumor cell.
Collapse
Affiliation(s)
- László Pecze
- Unit of Anatomy, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Béla Viskolcz
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary
| | - Zoltán Oláh
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary.,Acheuron Ltd.Szeged, Hungary
| |
Collapse
|
19
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
20
|
Capsaicin, Nociception and Pain. Molecules 2016; 21:molecules21060797. [PMID: 27322240 PMCID: PMC6273518 DOI: 10.3390/molecules21060797] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.
Collapse
|
21
|
Zhao Q, Wang W, Wang R, Cheng Y. TRPV1 and neuropeptide receptor immunoreactivity and expression in the rat lung and brainstem after lung ischemia-reperfusion injury. J Surg Res 2016; 203:183-92. [DOI: 10.1016/j.jss.2016.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/02/2016] [Accepted: 03/22/2016] [Indexed: 12/01/2022]
|
22
|
Cabral LDM, Giusti-Paiva A. The Transient Receptor Potential Vanilloid 1 Antagonist Capsazepine Improves the Impaired Lung Mechanics during Endotoxemia. Basic Clin Pharmacol Toxicol 2016; 119:421-427. [PMID: 27090778 DOI: 10.1111/bcpt.12605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/04/2016] [Indexed: 01/13/2023]
Abstract
Acute lung injury (ALI) caused by systemic inflammatory response remains a leading cause of morbidity and mortality in critically ill patients. Management of patients with sepsis is largely limited to supportive therapies, reflecting an incomplete understanding of the underlying pathophysiology. Furthermore, there have been limited advances in the treatments for ALI. In this study, lung function and a histological analysis were performed to evaluate the impact of transient receptor potential vanilloid-1 receptor (TRPV1) antagonist (capsazepine; CPZ) on the lipopolysaccharide (LPS)-induced lung injury in mice. For this, adult mice pre-treated with CPZ or vehicle received intraperitoneal injections of LPS or saline and 24 hr after, the mice were anaesthetized, and lung mechanics was evaluated. The LPS-challenged mice exhibited substantial mechanical impairment, characterized by increases in respiratory system resistance, respiratory system elastance, tissue damping and tissue elastance. The pre-treatment with CPZ prevented the increase in respiratory system resistance and decreased the increase in tissue damping during endotoxemia. In addition, mice pre-treated with CPZ had an attenuated lung injury evidenced by reduction on collapsed area of the lung parenchyma induced by LPS. This suggests that the TRPV1 antagonist capsazepine has a protective effect on lung mechanics in ALI during endotoxemia and that it may be a target for enhanced therapeutic efficacy in ALI.
Collapse
Affiliation(s)
- Layla D M Cabral
- Multicenter Graduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo, SP, Brazil.,Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, MG, Brazil
| | - Alexandre Giusti-Paiva
- Multicenter Graduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo, SP, Brazil. , .,Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, MG, Brazil. ,
| |
Collapse
|
23
|
Olodaterol attenuates citric acid-induced cough in naïve and ovalbumin-sensitized and challenged guinea pigs. PLoS One 2015; 10:e0119953. [PMID: 25781609 PMCID: PMC4364307 DOI: 10.1371/journal.pone.0119953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022] Open
Abstract
Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01). Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001). In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the cough reflex, the mechanism underlying the pro-tussive property of indacaterol is not known.
Collapse
|
24
|
Ryan NM. A review on the efficacy and safety of gabapentin in the treatment of chronic cough. Expert Opin Pharmacother 2014; 16:135-45. [PMID: 25380977 DOI: 10.1517/14656566.2015.981524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Effective antitussives available to control cough are limited. Consolidation among different afferent branches of the vagus nerve is needed to bring about cough. A general, widely accepted view is that the chronic increase in the sensitivity of the cough reflex is associated with inflammatory hypersensitivity such as from gastro-esophageal reflux disease. There is increasing evidence that an important mechanism is a sensory disorder of the laryngeal branches of the vagus nerve. Neuromodulating drugs are effectively used in the treatment of chronic pain and neuropathic disorders and may have a role in the treatment of refractory chronic cough (CC). AREAS COVERED Current evidence on the efficacy and safety of gabapentin in the treatment of CC is reviewed. Relevant randomized controlled trials, case reports and reviews were identified through a PubMed search of English-language literature referring to cough, sensory neuropathy and gabapentin over the last 10 years. EXPERT OPINION Gabapentin appears to be effective and well tolerated in the treatment of CC and in other sensory neuropathic disorders. Relevant clinical trials investigating its efficacy and safety profile in the treatment of cough are limited and further studies are needed. Gabapentin has been shown to cause minimal to no toxicity in overdose.
Collapse
Affiliation(s)
- Nicole M Ryan
- NHMRC Post-Doc Research Fellow, The University of Newcastle, School of Medicine and Public Health, Clinical Toxicology and Pharmacology , Newcastle, NSW 2308 , Australia
| |
Collapse
|
25
|
Aguiar D, Moreira F, Terzian A, Fogaça M, Lisboa S, Wotjak C, Guimaraes F. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channels. Neurosci Biobehav Rev 2014; 46 Pt 3:418-28. [DOI: 10.1016/j.neubiorev.2014.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
26
|
Ji P, Jiang T, Wang M, Wang R, Zhang L, Li Y. Denervation of capsaicin-sensitive C fibers increases pulmonary inflammation induced by ischemia-reperfusion in rabbits. J Surg Res 2013; 184:782-9. [DOI: 10.1016/j.jss.2012.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/25/2012] [Accepted: 12/07/2012] [Indexed: 01/07/2023]
|
27
|
Spina D, Page CP. Regulating cough through modulation of sensory nerve function in the airways. Pulm Pharmacol Ther 2013; 26:486-90. [PMID: 23524012 DOI: 10.1016/j.pupt.2013.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 01/12/2023]
Abstract
Whilst local anaesthetics when applied directly to laryngeal nerves or topically to the lung can suppress cough, their chronic use is constrained because of dose limiting side effects. However, the effectiveness of local anaesthetics suggests that selectivity targeting nerves in the airway may provide novel approaches for the treatment of cough in the future. There is a considerable wealth of evidence showing that there are different afferent nerve subtypes in the airways. Traditionally C-fibres have been the focus of much research in the cough field since the stimulation of these afferents by capsaicin is able to elicit cough in guinea-pigs and in man, and drugs targeting various proteins expressed in these nerves (e.g. mu-opioid, NOP1, TRPV1, sodium channels) have been shown to be anti-tussive in preclinical models of cough. However, interest in Aδ fibres has increased recently in light of the discovery of a specific cough receptor in the guinea-pig that is provoked by citric acid and punctate stimulation, but not capsaicin and which has been anatomically linked to Aδ fibres. There is also some evidence that as a result of inflammation in the airways, Aδ fibres can begin to express neuropeptides and TRPV1 receptors so that they can become responsive to endogenous activators of this ion channel and to irritants like capsaicin. Consequently, there is considerable interest in targeting either one or both afferent nerve types for the treatment of chronic cough. However, to date the translation of preclinical studies into man has largely been disappointing and certainly there is a need for better preclinical models in this field. There also remain many challenges to overcome at a clinical level, such as what patient group(s) should be used to assess anti-tussive drugs and whether the use of irritants that induce cough in healthy volunteers (such as citric acid or capsaicin) is of any value in the assessment of novel anti-tussive drugs. The development of several continuous monitoring methodologies for measuring cough will hopefully allow better evaluation of treatments in patients with chronic cough. Nonetheless, cough remains a major unmet clinical need in respiratory medicine where new drugs are urgently required.
Collapse
Affiliation(s)
- D Spina
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK.
| | | |
Collapse
|
28
|
Dudášová A, Keir SD, Parsons ME, Molleman A, Page CP. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig. Pulm Pharmacol Ther 2013; 26:373-9. [PMID: 23428645 DOI: 10.1016/j.pupt.2013.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/14/2022]
Abstract
(-)-Δ(9)-Tetrahydrocannabinol has been demonstrated to have beneficial effects in the airways, but its psychoactive effects preclude its therapeutic use for the treatment of airways diseases. In the present study we have investigated the effects of (-)-cannabidiol, a non-psychoactive component of cannabis for its actions on bronchial smooth muscle in vitro and in vivo. Guinea-pig bronchial smooth muscle contractions induced by exogenously applied spasmogens were measured isometrically. In addition, contractile responses of bronchial smooth muscle from ovalbumin-sensitized guinea-pigs were investigated in the absence or presence of (-)-cannabidiol. Furthermore, the effect of (-)-cannabidiol against ovalbumin-induced airway obstruction was investigated in vivo in ovalbumin-sensitized guinea-pigs. (-)-Cannabidiol did not influence the bronchial smooth muscle contraction induced by carbachol, histamine or neurokinin A. In contrast, (-)-cannabidiol inhibited anandamide- and virodhamine-induced responses of isolated bronchi. A fatty acid amide hydrolase inhibitor, phenylmethanesulfonyl fluoride reversed the inhibitory effect of (-)-cannabidiol on anandamide-induced contractions. In addition, (-)-cannabidiol inhibited the contractile response of bronchi obtained from allergic guinea-pigs induced by ovalbumin. In vivo, (-)-cannabidiol reduced ovalbumin-induced airway obstruction. In conclusion, our results suggest that cannabidiol can influence antigen-induced airway smooth muscle tone suggesting that this molecule may have beneficial effects in the treatment of obstructive airway disorders.
Collapse
Affiliation(s)
- A Dudášová
- School of Life Sciences, University of Hertfordshire, CP Snow Building, Hatfield, UK
| | | | | | | | | |
Collapse
|
29
|
Abstract
It is increasingly accepted that the effects of gastro-oesophageal reflux are not limited to the gastrointestinal tract. The adjacent respiratory structures are also at risk from material ejected from the proximal oesophagus as a result of the failure of anatomical and physiological barriers. There is evidence of the influence of reflux on several respiratory and otorhinological conditions and although in many cases the precise mechanism has yet to be elucidated, the association alone opens potential novel avenues of therapy to clinicians struggling to treat patients with apparently intractable respiratory complaints. This review provides a description of the airway reflux syndrome, its effects on the lung and current and future therapeutic options.
Collapse
Affiliation(s)
- Ian D Molyneux
- Cardiovascular and Respiratory Studies, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, UK
| | | |
Collapse
|
30
|
TRPV1 Agonist Capsaicin Attenuates Lung Ischemia-Reperfusion Injury in Rabbits. J Surg Res 2012; 173:153-60. [DOI: 10.1016/j.jss.2010.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/14/2010] [Accepted: 08/27/2010] [Indexed: 11/21/2022]
|
31
|
Rogerio AP, Andrade EL, Calixto JB. C-fibers, but not the transient potential receptor vanilloid 1 (TRPV1), play a role in experimental allergic airway inflammation. Eur J Pharmacol 2011; 662:55-62. [DOI: 10.1016/j.ejphar.2011.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/24/2011] [Accepted: 04/12/2011] [Indexed: 01/21/2023]
|
32
|
Gibson PG, Ryan NM. Cough pharmacotherapy: current and future status. Expert Opin Pharmacother 2011; 12:1745-55. [PMID: 21524236 DOI: 10.1517/14656566.2011.576249] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chronic cough is responsible for a significant illness burden in the community. Refractory cough causes substantial quality-of-life impairment in people with this problem. Neuromodulators for sensory neuropathic cough and new compounds to block transient receptor potential (TRP) receptors hold promise for chronic cough and upper airway hypersensitivity. AREAS COVERED The authors examine current evidence on the new concepts of chronic cough that relate to the study of idiopathic/refractory cough, the role of central nervous system control of cough and the role of laryngeal irritability and sensory neuropathy in cough. Compounds in development to block TRP receptors, treatment for a neuropathic disorder with neuromodulators and cough suppression with opioids, especially codeine and morphine, are investigated. Relevant randomized control trials and case reports were identified through a PubMed search of English-language literature referring to these concepts. EXPERT OPINION The concept that sensory neuropathic disorder may underlie some cases of chronic cough is useful in characterizing cough, understanding its mechanisms and guiding drug development.
Collapse
Affiliation(s)
- Peter G Gibson
- University of Newcastle, School of Medicine and Public Health, Centre for Asthma and Respiratory Diseases, Newcastle, NSW 2308, Australia.
| | | |
Collapse
|
33
|
Bozkurt TE, Sahin-Erdemli I, Ilhan M. The investigation into indomethacin-induced potentiation of the contractile response to antigen in ovalbumin-sensitized guinea-pig tracheas. Fundam Clin Pharmacol 2011; 26:332-9. [DOI: 10.1111/j.1472-8206.2010.00918.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
TRPV1: A Therapy Target That Attracts the Pharmaceutical Interests. TRANSIENT RECEPTOR POTENTIAL CHANNELS 2011; 704:637-65. [DOI: 10.1007/978-94-007-0265-3_34] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Inhibitory effect of Iboga-type indole alkaloids on capsaicin-induced contraction in isolated mouse rectum. J Nat Med 2010; 65:157-65. [DOI: 10.1007/s11418-010-0478-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/17/2010] [Indexed: 12/25/2022]
|
36
|
Abstract
Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | | |
Collapse
|
37
|
Abstract
The lung, like many other organs, is innervated by a variety of sensory nerves and by nerves of the parasympathetic and sympathetic nervous systems that regulate the function of cells within the respiratory tract. Activation of sensory nerves by both mechanical and chemical stimuli elicits a number of defensive reflexes, including cough, altered breathing pattern, and altered autonomic drive, which are important for normal lung homeostasis. However, diseases that afflict the lung are associated with altered reflexes, resulting in a variety of symptoms, including increased cough, dyspnea, airways obstruction, and bronchial hyperresponsiveness. This review summarizes the current knowledge concerning the physiological role of different sensory nerve subtypes that innervate the lung, the factors which lead to their activation, and pharmacological approaches that have been used to interrogate the function of these nerves. This information may potentially facilitate the identification of novel drug targets for the treatment of respiratory disorders such as cough, asthma, and chronic obstructive pulmonary disease.
Collapse
|
38
|
Modulation of sensory nerve function and the cough reflex: understanding disease pathogenesis. Pharmacol Ther 2009; 124:354-75. [PMID: 19818366 DOI: 10.1016/j.pharmthera.2009.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/29/2022]
Abstract
To cough is a protective defence mechanism that is vital to remove foreign material and secretions from the airways and which in the normal state serves its function appropriately. Modulation of the cough reflex pathway in disease can lead to inappropriate chronic coughing and an augmented cough response. Chronic cough is a symptom that can present in conjunction with a number of diseases including chronic obstructive pulmonary disease (COPD) and asthma, although often the cause of chronic cough may be unknown. As current treatments for cough have proved to exhibit little efficacy and are largely ineffective, there is a need to develop novel, efficacious and safe antitussive therapies. The underlying mechanisms of the cough reflex are complex and involve a network of events, which are not fully understood. It is accepted that the cough reflex is initiated following activation of airway sensory nerves. Therefore, in the hope of identifying novel antitussives, much research has focused on understanding the neural mechanisms of cough provocation. Experimentally this has been undertaken using chemical or mechanical tussive stimuli in conjunction with animal models of cough and clinical cough assessments. This review will discuss the neural mechanisms involved in the cough, changes that occur under pathophysiological conditions and and how current research may lead to novel therapeutic opportunities for the treatment of cough.
Collapse
|
39
|
Vagal afferent nerves with the properties of nociceptors. Auton Neurosci 2009; 153:12-20. [PMID: 19751993 DOI: 10.1016/j.autneu.2009.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
Vagal afferent nerves are essential for optimal neural regulation of visceral organs, but are not often considered important for their defense. However, there are well-defined subsets of vagal afferent nerves that have activation properties indicative of specialization to detect potentially harmful stimuli (nociceptors). This is clearly exemplified by the vagal bronchopulmonary C-fibers that are quiescent in healthy lungs but are readily activated by noxious chemicals and inflammatory molecules. Vagal afferent nerves with similar activation properties have been also identified in the esophagus and probably exist in other visceral tissues. In addition, these putative vagal nociceptors often initiate defensive reflexes, can be sensitized, and have the capacity to induce central sensitization. This set of properties is a characteristic of nociceptors in somatic tissues.
Collapse
|
40
|
Abstract
Systems biology is being increasingly used to probe the underlying pathophysiology of asthma, although serious challenges remain to decipher the physiologic significance of the information revealed in these studies relating to gene expression and regulatory gene networks often used to understand gene-gene interactions. One phenotypic change characteristic of asthma is increased airway irritability, or bronchial hyperresponsiveness (BHR) which is still poorly understood. While the precise mechanism(s) remain(s) to be identified, a number of hypotheses have been posited to account for this phenomenon, including airways inflammation, alteration in airway smooth muscle function, and airway remodeling. However, the role of sensory nerves in this phenomenon has received scant attention yet offers a potentially new target for the development of novel drugs.
Collapse
Affiliation(s)
- Domenico Spina
- The Sackler Institute of Pulmonary Pharmacology, Pharmaceutical Science Division, 5th Floor Hodgkin Building, Kings College London, London SE1 1UL, United Kingdom.
| | | |
Collapse
|
41
|
Fisher JT. The TRPV1 ion channel: Implications for respiratory sensation and dyspnea. Respir Physiol Neurobiol 2009; 167:45-52. [DOI: 10.1016/j.resp.2009.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/05/2023]
|
42
|
Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 2009; 23:360-70. [PMID: 19074743 DOI: 10.1152/physiol.00026.2008] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species, and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough, and airway inflammation in asthma, COPD, and reactive airway dysfunction syndrome.
Collapse
Affiliation(s)
- Bret F Bessac
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
43
|
Chung KF, Widdicombe J. Peripheral mechanisms II: the pharmacology of peripherally active antitussive drugs. Handb Exp Pharmacol 2009; 187:155-86. [PMID: 18825340 PMCID: PMC7122788 DOI: 10.1007/978-3-540-79842-2_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cough is an indispensable defensive reflex. Although generally beneficial, it is also a common symptom of diseases such as asthma, chronic obstructive pulmonary disease, upper respiratory tract infections, idiopathic pulmonary fibrosis and lung cancer. Cough remains a major unmet medical need and although the centrally acting opioids have remained the antitussive of choice for decades, they have many unwanted side effects. However, new research into the behaviour of airway sensory nerves has provided greater insight into the mechanisms of cough and new avenues for the discovery of novel non-opioid antitussive drugs. In this review, the pathophysiological mechanisms of cough and the development of novel antitussive drugs are reviewed.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart & Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY UK
| | | |
Collapse
|
44
|
Materazzi S, Nassini R, Gatti R, Trevisani M, Geppetti P. Cough sensors. II. Transient receptor potential membrane receptors on cough sensors. Handb Exp Pharmacol 2009:49-61. [PMID: 18825335 DOI: 10.1007/978-3-540-79842-2_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transient receptor potential (TRP) family of channels is represented by at least six members in primary sensory neurons. These include the TRP vanilloid subtypes 1 (TRPV1), 2, 3, and 4, the cold and menthol receptor TRPM8, and TRPA1. Much interest has been directed to the study of the TRPV1, because capsaicin has been instrumental in discovering the unique role of a subset of primary sensory neurons in causing nociceptive responses, in activating reflex pathways including cough, and in producing neurogenic inflammation. TRPV1 is now regarded as an integrator of diverse sensory modalities because it undergoes marked plasticity and sensitization through a variety of mechanisms, including activation of G-protein-coupled or tyrosine kinase receptors. Evidence in experimental animals and in patients with airway diseases indicates a marked hypersensitivity to cough induced by TRPV1 agonists. Recent studies with newly developed high-affinity and selective TRPV1 antagonists have revealed that TRPV1 inhibition reduces cough induced by citric acid or antigen challenge.
Collapse
Affiliation(s)
- S Materazzi
- Department of Critical Care Medicine and Surgery, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | | | | | | | | |
Collapse
|
45
|
Takahama K, Wakuda Etoh I. [New methods for evaluation of intractable cough in guinea pigs]. Nihon Yakurigaku Zasshi 2008; 132:334-338. [PMID: 19075527 DOI: 10.1254/fpj.132.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
46
|
Is TRPV1 a useful target in respiratory diseases? Pulm Pharmacol Ther 2008; 21:833-9. [PMID: 18992356 DOI: 10.1016/j.pupt.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/15/2008] [Accepted: 09/24/2008] [Indexed: 11/23/2022]
Abstract
This review focuses on the transient receptor potential vanilloid 1 (TRPV1). TRPV1 is a non-selective cation channel predominantly expressed in the cell membranes of sensory afferent fibers, which are activated multi-modally. In the mammalian respiratory system, immunohistochemical and electrophysiological studies have revealed heterogeneous localizations of TRPV1 channels in the airways and their presence in pleural afferents. TRPV1 channels in afferents are not only involved with sensory inputs, but also release several neuropeptides upon stimulation. These processes trigger pathophysiological effects (e.g. reflex bronchoconstriction, hypersecretion, cough, etc.) that cause various symptoms of airway diseases. Recent studies have identified several endogenous and exogenous substances that can activate TRPV1 in the lung. Because of its key role in initiating inflammatory processes, TRPV1 receptor antagonists have been proposed as therapeutic candidates. Therefore, a critical update of recent therapeutic results is also given in this review.
Collapse
|
47
|
Shioya T, Sato K, Sano M, Watanabe H. [Transient receptor potential (TRP) channel and cough]. Nihon Yakurigaku Zasshi 2008; 131:417-22. [PMID: 18552442 DOI: 10.1254/fpj.131.417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Abstract
The active component of the marijuana plant Cannabis sativa, Delta9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the "cannabinergic" field to the retinal community. All of the fundamental works on cannabinoids have been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptations, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases.
Collapse
Affiliation(s)
- Stephen Yazulla
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| |
Collapse
|
49
|
Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 2008; 118:1899-910. [PMID: 18398506 DOI: 10.1172/jci34192] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 02/13/2008] [Indexed: 11/17/2022] Open
Abstract
Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca(2+) influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1(-/-) mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide-induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo.
Collapse
Affiliation(s)
- Bret F Bessac
- Department of Pharmacology and Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
50
|
Takahama K, Shirasaki T, Zhou JR. [Lower airway nervous system as a putative target of antitussive drugs effective for treatment of chronic cough]. Nihon Yakurigaku Zasshi 2008; 131:423-8. [PMID: 18552443 DOI: 10.1254/fpj.131.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|