1
|
Achary AS, Mahapatra C. Reactive nitrogen species-mediated cell proliferation during tail regeneration and retinoic acid as a putative modulator of tissue regeneration in the geckos. Cells Dev 2024; 177:203901. [PMID: 38278363 DOI: 10.1016/j.cdev.2024.203901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Reactive nitrogen species (RNS), a mediator of nitrosative stress, plays a vital role during wound healing but its role during tissue regeneration is poorly understood. In the present study, the role of RNS was investigated post-tail autotomy and limb amputation in a gecko species, Hemidactylus murrayi Gleadow, 1887. Tail autotomy led to an increased expression of iNOS and nitrosative stress leading to protein S-nitrosylation that probably restricted the acute inflammatory response caused by wounding. Increased nitrosative stress was also associated with proliferation of the wound epithelium and the tail blastema. Nitric oxide synthase inhibitor (L-NAME) caused retarded growth and structural abnormalities in the regenerating tail while peroxynitrite inhibitor (FeTmPyp) arrested tail regeneration. Spermine NONOate and retinoic acid, used as NO donors generated small outgrowths post-amputation of limbs with an increased number of proliferating cells and s-nitrosylation indicating the role of nitric oxide signalling in cell proliferation during regeneration. Additionally, retinoic acid treatment caused regeneration of nerve, muscle and adipose tissue in the regenerated limb structure 105 days post-amputation suggesting it to be a putative modulator of tissue regeneration in the non-regenerating limbs.
Collapse
Affiliation(s)
- A Sarada Achary
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India.
| | - Cuckoo Mahapatra
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India.
| |
Collapse
|
2
|
Sagar RC, Ajjan RA, Naseem KM. Non-Traditional Pathways for Platelet Pathophysiology in Diabetes: Implications for Future Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23094973. [PMID: 35563363 PMCID: PMC9104718 DOI: 10.3390/ijms23094973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular complications remain the leading cause of morbidity and mortality in individuals with diabetes, driven by interlinked metabolic, inflammatory, and thrombotic changes. Hyperglycaemia, insulin resistance/deficiency, dyslipidaemia, and associated oxidative stress have been linked to abnormal platelet function leading to hyperactivity, and thus increasing vascular thrombotic risk. However, emerging evidence suggests platelets also contribute to low-grade inflammation and additionally possess the ability to interact with circulating immune cells, further driving vascular thrombo-inflammatory pathways. This narrative review highlights the role of platelets in inflammatory and immune processes beyond typical thrombotic effects and the impact these mechanisms have on cardiovascular disease in diabetes. We discuss pathways for platelet-induced inflammation and how platelet reprogramming in diabetes contributes to the high cardiovascular risk that characterises this population. Fully understanding the mechanistic pathways for platelet-induced vascular pathology will allow for the development of more effective management strategies that deal with the causes rather than the consequences of platelet function abnormalities in diabetes.
Collapse
|
3
|
Ravi Y, Sai-Sudhakar CB, Kuppusamy P. PTEN as a Therapeutic Target in Pulmonary Hypertension Secondary to Left-heart Failure: Effect of HO-3867 and Supplemental Oxygenation. Cell Biochem Biophys 2021; 79:593-607. [PMID: 34133009 DOI: 10.1007/s12013-021-01010-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/27/2023]
Abstract
Pulmonary hypertension (PH) is a condition when the pressure in the lung blood vessels is elevated. This leads to increase in thickness of the blood vessels and increases the workload of the heart and lungs. The incidence and prevalence of PH has been on the increase in the last decade. It is estimated that PH affects about 1% of the global population and about 10% of individuals >65 years of age. Of the various types, Group 2 PH is the most common type seen in the elderly population. Fixed PH or PH refractive to therapies is considered a contraindication for heart transplantation; the 30-day mortality in heart transplant recipients is significantly increased in the subset of this population. In general, the pathobiology of PH involves multiple factors including hypoxia, oxidative stress, growth factor receptors, vascular stress, etc. Hence, it is challenging and important to identify specific mechanisms, diagnosis and develop effective therapeutic strategies. The focus of this manuscript is to review some of the important pathobiological processes and mechanisms in the development of PH. Results from our previously reported studies, including targeted treatments along with some new data on PH secondary to left-heart failure, are presented.
Collapse
Affiliation(s)
- Yazhini Ravi
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Periannan Kuppusamy
- Departments of Radiology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
4
|
Lekovic MH, Drekovic NE, Granica ND, Mahmutovic EH, Djordjevic NZ. Extremely low-frequency electromagnetic field induces a change in proliferative capacity and redox homeostasis of human lung fibroblast cell line MRC-5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39466-39473. [PMID: 32651790 DOI: 10.1007/s11356-020-10039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have shown that extremely low-frequency electromagnetic field (ELF-EMF) by modulating oxidative-antioxidative balance in the cells achieved beneficial and harmful effects on living organisms. The aim of this study was to research changes of both proliferative capacity and redox homeostasis of human lung fibroblast cell line MRC-5 during exposure to ELF-EMF (50 Hz). The human lung fibroblast cell line MRC-5 were exposed to ELF-EMF once a day in duration of 1 h during 24 h (1 treatment 1 h/day), 48 h (2 treatments 1 h/day), 72 h (3 treatments 1 h/day), and 7 days (7 treatments 1 h/day). After 24 h of the last treatment, the proliferative capacity of the cells and the concentrations and activities of the components of the oxidative/antioxidative system were determined: superoxide anion (O2.-), hydrogen peroxide (H2O2), nitric oxide (NO), peroxynitrite (ONOO-), reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glutathione-S-transferase (GST). The results of this study show that ELF-EMF may affect a cell cycle regulation of human lung fibroblast cell line MRC-5 through modulation of oxidative/antioxidative defense system. The effects of ELF-EMF on proliferation and redox balance of human lung fibroblast cell line MRC-5 depend on exposure time.
Collapse
Affiliation(s)
- Maida H Lekovic
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadzica bb, Novi Pazar, 36300, Serbia
| | - Nerkesa E Drekovic
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadzica bb, Novi Pazar, 36300, Serbia
| | - Nihat Dz Granica
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadzica bb, Novi Pazar, 36300, Serbia
| | - Elvis H Mahmutovic
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadzica bb, Novi Pazar, 36300, Serbia
| | - Natasa Z Djordjevic
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadzica bb, Novi Pazar, 36300, Serbia.
| |
Collapse
|
5
|
Yue Y, Li YQ, Fu S, Wu YT, Zhu L, Hua L, Lv JY, Li YL, Yang DL. Osthole inhibits cell proliferation by regulating the TGF-β1/Smad/p38 signaling pathways in pulmonary arterial smooth muscle cells. Biomed Pharmacother 2020; 121:109640. [DOI: 10.1016/j.biopha.2019.109640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
|
6
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
7
|
Zhao Y, Xiang R, Peng X, Dong Q, Li D, Yu G, Xiao L, Qin S, Huang W. Transection of the cervical sympathetic trunk inhibits the progression of pulmonary arterial hypertension via ERK-1/2 Signalling. Respir Res 2019; 20:121. [PMID: 31200778 PMCID: PMC6567667 DOI: 10.1186/s12931-019-1090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Abnormal sympathetic hyperactivity has been shown to lead to pulmonary arterial hypertension (PAH) deterioration. The purpose of this study was to examine whether the transection of the cervical sympathetic trunk (TCST) can inhibit the progression of PAH in a monocrotaline (MCT)-induced PAH model and elucidate the underlying mechanisms. Methods Rats were randomly divided into four groups, including a control group, an MCT group, an MCT + sham group and an MCT + TCST group. After performing haemodynamic and echocardiographic measurements, the rats were sacrificed for the histological study, and the norepinephrine (NE) concentrations and protein expression level of tyrosine hydroxylase (TH) were evaluated. The protein expression levels of extracellular signal-regulated kinase (ERK)-1/2, proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1 in pulmonary artery vessels and pulmonary arterial smooth muscle cells (PASMCs) were determined. Results Compared with the MCT + sham group, TCST profoundly reduced the mean pulmonary arterial pressure (mPAP) (22.02 ± 4.03 mmHg vs. 31.71 ± 2.94 mmHg), right ventricular systolic pressure (RVSP) (35.21 ± 5.59 mmHg vs. 48.36 ± 5.44 mmHg), medial wall thickness (WT%) (22.48 ± 1.75% vs. 46.10 ± 3.16%), and right ventricular transverse diameter (RVTD) (3.78 ± 0.40 mm vs. 4.36 ± 0.29 mm) and increased the tricuspid annular plane systolic excursion (TAPSE) (2.00 ± 0.12 mm vs. 1.41 ± 0.24 mm) (all P < 0.05). The NE concentrations and protein expression levels of TH were increased in the PAH rats but significantly decreased after TCST. Furthermore, TCST reduced the increased protein expression of PCNA, cyclin A2 and cyclin D1 induced by MCT in vivo. We also found that NE promoted PASMC viability and activated the ERK-1/2 pathway. However, the abovementioned NE-induced changes could be suppressed by the specific ERK-1/2 inhibitor U0126. Conclusion TCST can suppress pulmonary artery remodelling and right heart failure in MCT-induced PAH. The main mechanism may be that TCST decreases the NE concentrations in lung tissues, thereby preventing NE from promoting PASMC proliferation mediated by the ERK-1/2 signalling pathway. Electronic supplementary material The online version of this article (10.1186/s12931-019-1090-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongpeng Zhao
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Rui Xiang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Xin Peng
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Qian Dong
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Dan Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Guiquan Yu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Lei Xiao
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.,Present Address: Lung Vascular Biology Program, NHLBI/NIH, Bethesda, MD, USA
| | - Shu Qin
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Wei Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
8
|
Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:241-260. [PMID: 29047090 DOI: 10.1007/978-3-319-63245-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.
Collapse
|
9
|
Jiang R, Shi Y, Zeng C, Yu W, Zhang A, Du Y. Protein kinase Cα stimulates hypoxia‑induced pulmonary artery smooth muscle cell proliferation in rats through activating the extracellular signal‑regulated kinase 1/2 pathway. Mol Med Rep 2017; 16:6814-6820. [PMID: 28901444 PMCID: PMC5865839 DOI: 10.3892/mmr.2017.7478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 07/18/2017] [Indexed: 01/11/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) may contribute to vascular remodeling, and pulmonary artery smooth muscle cell (PASMC) proliferation has an important role in this process. However, no relevant information concerning the role and mechanism of protein kinase C (PKC)α in hypoxia-induced rat PASMC proliferation has been elucidated. The present study aimed to further investigate this by comparison of rat PASMC proliferation among normoxia for 72 h (21% O2), hypoxia for 72 h (3% O2), hypoxia + promoter 12-myristate 13-acetate control, hypoxia + safingol control, hypoxia + PD98059 control and hypoxia + U0126 control groups. The present study demonstrated that protein expression levels of PKCα in rat PASMCs were elevated. In conclusion, through activating the extracellular signal-regulated 1/2 signaling pathway, PKCα is involved in and initiates PASMC proliferation, thus bringing about pulmonary artery hypertension. These results add to the understanding of the mechanism PKCα in PH formation and lays a theoretical basis for prevention as well as treatment of HPH.
Collapse
Affiliation(s)
- Rui Jiang
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Chao Zeng
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenyan Yu
- Respiratory Department, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Aizhen Zhang
- Department of Respiratory and Critical Care Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| | - Yongcheng Du
- Department of Respiratory and Critical Care Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
10
|
Liu R, Zhang Q, Luo Q, Qiao H, Wang P, Yu J, Cao Y, Lu B, Qu L. Norepinephrine stimulation of alpha1D-adrenoceptor promotes proliferation of pulmonary artery smooth muscle cells via ERK-1/2 signaling. Int J Biochem Cell Biol 2017; 88:100-112. [PMID: 28476501 DOI: 10.1016/j.biocel.2017.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/20/2017] [Accepted: 05/02/2017] [Indexed: 11/25/2022]
Abstract
It has been shown that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH). Norepinephrine (NE) levels are increased by chemoreflex-dependent sympathetic overactivation and involved in pulmonary vascular remodeling. However, the underlying mechanisms of the remodeling induced by NE are poorly understood. In this study, we found that, in vivo, the expression of tyrosine hydroxylase and the concentration of plasma NE were increased in PAH rats compared with normal rats. Increases in ventricular hypertrophy and medial width of the pulmonary arteries were reversed by prazosin, α1-adrenoceptor (α1-AR) antagonists, in PAH rats. Elevated expression of α1D-AR was detected in PAH rats. In addition, prazosin reduced the increasing expression of PCNA, CyclinA and CyclinE induced by hypoxia. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of NE on proliferation of pulmonary artery smooth muscle cells (PASMCs). We revealed that NE promoted PASMCs viability, increased the expression of PCNA, CyclinA and CyclinE, made more cells from G0/G1 phase to G2/M+S phase and enhanced the microtubule formation. Above NE-induced changes could be suppressed by BMY 7378, an inhibitor of α1D-AR. Furthermore, ERK-1/2 pathway was activated by NE. U0126, a specific inhibitor for ERK-1/2, attenuated the NE-induced proliferation of PASMCs under normoxia and hypoxia. Taken together, our results suggest that NE which stimulates α1D-AR promotes proliferation of PASMCs and the effect is, at least in part, mediated via the ERK-1/2 pathway.
Collapse
Affiliation(s)
- Ruxia Liu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Qianlong Zhang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Qian Luo
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hui Qiao
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Peng Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Juan Yu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Bo Lu
- Department of Genetics and Cell Biology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Lihui Qu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
11
|
Evans CE, Zhao YY. Molecular Basis of Nitrative Stress in the Pathogenesis of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:33-45. [PMID: 29047079 DOI: 10.1007/978-3-319-63245-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) is a lung vascular disease with marked increases in pulmonary vascular resistance and pulmonary artery pressure (>25 mmHg at rest). In PH patients, increases in pulmonary vascular resistance lead to impaired cardiac output and reduced exercise tolerance. If untreated, PH progresses to right heart failure and premature lethality. The mechanisms that control the pathogenesis of PH are incompletely understood, but evidence from human and animal studies implicate nitrative stress in the development of PH. Increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) result in nitrative stress, which in turn induces posttranslational modification of key proteins important for maintaining pulmonary vascular homeostasis. This affects their functions and thereby contributes to the pathogenesis of PH. In this chapter, molecular mechanisms underlying nitrative stress-induced PH are reviewed, molecular sources of ROS and RNS are delineated, and evidence of nitrative stress in PH patients is described. A better understanding of such mechanisms could lead to the development of novel treatments for PH.
Collapse
Affiliation(s)
- Colin E Evans
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, E403-MSB, M/C 868, Chicago, IL, 60612, USA.,Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.,British Heart Foundation Center of Research Excellence, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, E403-MSB, M/C 868, Chicago, IL, 60612, USA. .,Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Zhang W, Li X, Xu T, Ma M, Zhang Y, Gao MQ. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis. Exp Cell Res 2016; 349:45-52. [DOI: 10.1016/j.yexcr.2016.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/11/2016] [Accepted: 09/24/2016] [Indexed: 01/11/2023]
|
13
|
Sysol JR, Natarajan V, Machado RF. PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 2016; 310:C983-92. [PMID: 27099350 DOI: 10.1152/ajpcell.00059.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease for which there is currently no curative treatment available. Pathologic changes in this disease involve remodeling of the pulmonary vasculature, including marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Recently, the bioactive lipid sphingosine-1-phosphate (S1P) and its activating kinase, sphingosine kinase 1 (SphK1), have been shown to be upregulated in PAH and promote PASMC proliferation. The mechanisms regulating the transcriptional upregulation of SphK1 in PASMCs are unknown. In this study, we investigated the role of platelet-derived growth factor (PDGF), a PAH-relevant stimuli associated with enhanced PASMC proliferation, on SphK1 expression regulation. In human PASMCs (hPASMCs), PDGF significantly increased SphK1 mRNA and protein expression and induced cell proliferation. Selective inhibition of SphK1 attenuated PDGF-induced hPASMC proliferation. In silico promoter analysis for SphK1 identified several binding sites for early growth response protein 1 (Egr-1), a PDGF-associated transcription factor. Luciferase assays demonstrated that PDGF activates the SphK1 promoter in hPASMCs, and truncation of the 5'-promoter reduced PDGF-induced SphK1 expression. Stimulation of hPASMCs with PDGF induced Egr-1 protein expression, and direct binding of Egr-1 to the SphK1 promoter was confirmed by chromatin immunoprecipitation analysis. Inhibition of ERK signaling prevented induction of Egr-1 by PDGF. Silencing of Egr-1 attenuated PDGF-induced SphK1 expression and hPASMC proliferation. These studies demonstrate that SphK1 is regulated by PDGF in hPASMCs via the transcription factor Egr-1, promoting cell proliferation. This novel mechanism of SphK1 regulation may be a therapeutic target in pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Justin R Sysol
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and
| | - Roberto F Machado
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
14
|
Fan J, Fan X, Li Y, Ding L, Zheng Q, Guo J, Xia D, Xue F, Wang Y, Liu S, Gong Y. Chronic Normobaric Hypoxia Induces Pulmonary Hypertension in Rats: Role of NF-κB. High Alt Med Biol 2016; 17:43-9. [PMID: 26788753 DOI: 10.1089/ham.2015.0086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To investigate whether nuclear factor-kappa B (NF-κB) activation is involved in chronic normobaric hypoxia-induced pulmonary hypertension (PH), rats were treated with saline or an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC, 150 mg/kg, sc, twice daily), and exposed to normoxia or chronic normobaric hypoxia with a fraction of inspired oxygen of ∼0.1 for 14 days. Lung tissue levels of NF-κB activity, and interleukin (IL)-1β, IL-6, and cyclooxygenase-2 mRNAs, were determined, and mean pulmonary arterial pressure, right ventricular hypertrophy, and right heart function were evaluated. Compared to the normoxia exposure group, rats exposed to chronic normobaric hypoxia showed an increased NF-κB activity, measured by increased nuclear translocation of p50 and p65 proteins, an increased inflammatory gene expression in the lungs, elevated mean pulmonary arterial blood pressure and mean right ventricular pressure, right ventricular hypertrophy, as assessed by right ventricle-to-left ventricle plus septum weight ratio, and right heart dysfunction. Treatment of hypoxia-exposed rats with PDTC inhibited NF-κB activity, decreased pulmonary arterial blood pressure and right ventricular pressure, and ameliorated right ventricular hypertrophy and right heart dysfunction. Hypoxia exposure increased protein kinase C activity and promoted pulmonary artery smooth muscle cell proliferation in vitro. Our data suggest that NF-κB activation may contribute to chronic normobaric hypoxia-induced PH.
Collapse
Affiliation(s)
- Junming Fan
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Xiaofang Fan
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Yang Li
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Lu Ding
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Qingqing Zheng
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Jinbin Guo
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Dongmei Xia
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Feng Xue
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Yongyu Wang
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Shufang Liu
- 2 The Feinstein Institute for Medical Research and Hofstra North Shore LIJ School of Medicine , Manhasset, New York
| | - Yongsheng Gong
- 1 Institute of Hypoxia Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
(1)H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats. DISEASE MARKERS 2016; 2016:5803031. [PMID: 27057080 PMCID: PMC4745193 DOI: 10.1155/2016/5803031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
AIMS To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). METHODS Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. RESULTS The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. CONCLUSIONS Metabolic dysfunction is involved in the development and progression of PAH.
Collapse
|
16
|
Li W, Guo A, Wang L, Kong Q, Wang R, Han L, Zhao C. Expression of peptide fragments from proADM and involvement of mitogen-activated protein kinase signaling pathways in pulmonary remodeling induced by high pulmonary blood flow. Congenit Anom (Kyoto) 2016; 56:28-34. [PMID: 25990643 DOI: 10.1111/cga.12114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/09/2015] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary arterial remodeling and right ventricular failure. Despite recent advances in pathophysiological mechanism exploration and new therapeutic approaches, PAH remains a challenging condition. In this study, we investigated the roles of the peptide fragments from proadrenomedullin (proADM) such as adrenomedullin (ADM), adrenotensin (ADT), and proadrenomedullin N-terminal 20 peptide (PAMP) during pulmonary remodeling caused by high pulmonary blood flow, and probed the possible involvement of mitogen-activated protein kinase (MAPK) signal transduction pathways. Sixteen rat models of PAH were artificially established by surgically connecting the left common carotid artery to the external jugular vein. We subcutaneously injected an extracellular signal-regulated protein kinase (ERK1/2) inhibitor, PD98059, in eight rats, treated another eight rats with an equal volume of saline. Eight rats without connections served as the control group. We observed that mRNA expression levels of ADM, stress-activated protein kinase (SAPK), and ERK1/2 were significantly elevated in the shunted rats; furthermore, ERK1/2 levels were significantly inhibited by PD98059. Protein levels of ADM, PAMP, p-SAPK, and p-ERK1/2 were significantly higher ADT was lower, and p-p38 remained unchanged in the rat models compared with the controls. However, the protein expression of both ADM and p-ERK1/2 was significantly inhibited by PD98059. Our results suggest that levels of ADM, ADT, and PAMP respond to pulmonary remodeling, and that activation of the SAPK and ERK1/2 signaling pathways is involved in pulmonary hypertension and artery remodeling caused by high pulmonary blood flow.
Collapse
Affiliation(s)
- Wei Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Aili Guo
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Lijuan Wang
- Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qingyu Kong
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Rong Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Li Han
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
17
|
Aitken E, Jackson A, Kong C, Coats P, Kingsmore D. Renal function, uraemia and early arteriovenous fistula failure. BMC Nephrol 2014; 15:179. [PMID: 25403339 PMCID: PMC4239391 DOI: 10.1186/1471-2369-15-179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/28/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Guidance varies regarding the optimal timing of arteriovenous fistula (AVF) creation. The aim of this study was to evaluate the association between uraemia, haemodialysis and early AVF failure. METHODS Immunoblotting and cell proliferation assays were performed on vascular smooth muscle cells (VSM) cells isolated from long saphenous vein samples to evaluate the cells' ability to proliferate when stimulated with uraemic (post-dialysis) and hyperuraemic (pre-dialysis) serum. Clinical data was collected prospectively for 569 consecutive radiocephalic (RCF) and brachiocephalic (BCF) fistulae. The primary outcome was AVF failure at 6 weeks. Dialysis status (haemodialysis (HD); pre-dialysis (Pre-D)), eGFR and serum urea were evaluated to determine if they affected early AVF failure. RESULTS Human VSM cells demonstrated increased capacity to proliferate when stimulated with hyperuraemic serum. There was no significant difference in early failure rate of either RCF or BCF depending on dialysis status (pre-D RCF 31.4% (n=188); pre-D BCF 22.4% (n=165); HD RCF 29.3% (n=99); HD BCF 25.9% (n=116); p=0.34). There was no difference in mean eGFR between those patients with early AVF failure and those without (11.2+/-0.2 ml/min/1.73 m2 vs. 11.6+/-0.4 ml/min/1.73 m2; p=0.47). Uraemia was associated with early AVF failure (serum urea: 35.0+/-0.7 mg/dl vs. 26.6+/-0.3 mg/dl (p<0.001)). CONCLUSIONS We present the first in vivo evidence of an association between adverse early AVF outcomes and uraemia. This is supported mechanistically by in vitro work demonstrating a pro-mitogenic effect of hyperuraemic serum. We hypothesise that uraemia-driven upregulation of VSM cell proliferation at the site of surgical insult in contributes to higher early AVF failure rates.
Collapse
Affiliation(s)
- Emma Aitken
- />Department of Renal Surgery, Western Infirmary, Dumbarton Road, G11 6NY Glasgow, UK
| | - Andrew Jackson
- />Department of Renal Surgery, Western Infirmary, Dumbarton Road, G11 6NY Glasgow, UK
- />Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Chia Kong
- />University of Glasgow Medical School, Glasgow University, Glasgow, UK
| | - Paul Coats
- />Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David Kingsmore
- />Department of Renal Surgery, Western Infirmary, Dumbarton Road, G11 6NY Glasgow, UK
| |
Collapse
|
18
|
Liu Y, Zhang Y, Gu Z, Hao L, Du J, Yang Q, Li S, Wang L, Gong S. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells. Neural Regen Res 2014; 9:1402-8. [PMID: 25221599 PMCID: PMC4160873 DOI: 10.4103/1673-5374.137596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2014] [Indexed: 11/13/2022] Open
Abstract
Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Yueling Zhang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Zhaohui Gu
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Lina Hao
- Department of Ophthalmology, Hebei Province People's Hospital, Shijiazhuang, Hebei Province, China
| | - Juan Du
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Qian Yang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Suping Li
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Liying Wang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Shilei Gong
- Department of Endoscope Room, First Central Hospital of Baoding, Baoding, Hebei Province, China
| |
Collapse
|
19
|
Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS One 2014; 9:e98532. [PMID: 24906007 PMCID: PMC4048210 DOI: 10.1371/journal.pone.0098532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/05/2014] [Indexed: 01/11/2023] Open
Abstract
Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.
Collapse
Affiliation(s)
- Kristi M. Porter
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Bum-Yong Kang
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Sherry E. Adesina
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Tamara C. Murphy
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - C. Michael Hart
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Roy L. Sutliff
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
CHEN CHANGGUI, TANG YANHONG, DENG WEI, HUANG CONGXIN, WU TIANYI. Salidroside blocks the proliferation of pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB. Mol Med Rep 2014; 10:917-22. [DOI: 10.3892/mmr.2014.2238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/21/2014] [Indexed: 11/05/2022] Open
|
21
|
Dick AS, Ivanovska J, Kantores C, Belcastro R, Keith Tanswell A, Jankov RP. Cyclic stretch stimulates nitric oxide synthase-1-dependent peroxynitrite formation by neonatal rat pulmonary artery smooth muscle. Free Radic Biol Med 2013; 61:310-9. [PMID: 23619128 DOI: 10.1016/j.freeradbiomed.2013.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/27/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Peroxynitrite, the reaction product of nitric oxide and superoxide, contributes to the pathogenesis of chronic pulmonary hypertension in immature animals by stimulating proliferation of pulmonary arterial smooth muscle cells (PASMCs). Pulmonary vasoconstriction, secondary to hypoxia and other stimuli, leads to enhanced pulsatile stretch of cells in the vascular wall, particularly in smooth muscle, which we hypothesized would cause increased peroxynitrite generation. Our objectives in this study were to determine whether cyclic mechanical stretch, at supraphysiologic levels, would cause increased production of reactive oxygen species (ROS), nitric oxide, and peroxynitrite in vitro. Early passage neonatal rat PASMCs were seeded and grown to subconfluence on collagen-coated elastomer-bottom plates and subjected to cyclic mechanical stretch (10% ("physiologic") or 20% ("supraphysiologic") at 0.5 Hz) for up to 24 h. Compared to nonstretched controls and to cells subjected to 10% stretch, 20% stretch increased H2O2 (stable marker of ROS) and nitrate/nitrite (stable marker of nitric oxide) in conditioned medium. These effects were accompanied by increased peroxynitrite, as evidenced by increased in situ dihydroethidium fluorescence and immunoreactive nitrotyrosine and by increased expression of nitric oxide synthase (NOS)-1 and NADPH oxidase 4 (NOX4), but not NOS-2. Stretch-induced H2O2 release and increased dihydroethidium fluorescence were prevented by pretreatment with a superoxide scavenger, nonspecific inhibitors of NADPH oxidase or NOS, or a peroxynitrite decomposition catalyst. Short-interfering RNA-mediated knockdown of NOS-1 or NOX4 attenuated increased nitric oxide and H2O2 content, respectively, in stretched-cell-conditioned medium. Knockdown of NOS-1 also attenuated increased immunoreactive nitrotyrosine content and stretch-induced proliferation, whereas knockdown of NOS-2 had no effect. We conclude that increased peroxynitrite generation by neonatal rat PASMCs subjected to supraphysiologic levels of cyclic stretch is NOS-1-dependent and that increased ROS production is predominantly mediated by NADPH oxidase, specifically NOX4.
Collapse
Affiliation(s)
- Andrew S Dick
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Rosetta Belcastro
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - A Keith Tanswell
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert P Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8; Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
22
|
Fan YF, Zhang R, Jiang X, Wen L, Wu DC, Liu D, Yuan P, Wang YL, Jing ZC. The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. Cardiovasc Res 2013; 99:395-403. [DOI: 10.1093/cvr/cvt109] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Ravi Y, Selvendiran K, Naidu SK, Meduru S, Citro LA, Bognár B, Khan M, Kálai T, Hideg K, Kuppusamy P, Sai-Sudhakar CB. Pulmonary hypertension secondary to left-heart failure involves peroxynitrite-induced downregulation of PTEN in the lung. Hypertension 2013; 61:593-601. [PMID: 23339168 DOI: 10.1161/hypertensionaha.111.00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) that occurs after left-heart failure (LHF), classified as Group 2 PH, involves progressive pulmonary vascular remodeling induced by smooth muscle cell (SMC) proliferation. However, mechanisms involved in the activation of SMCs remain unknown. The objective of this study was to determine the involvement of peroxynitrite and phosphatase-and-tensin homolog on chromosome 10 (PTEN) in vascular SMC proliferation and remodeling in the LHF-induced PH (LHF-PH). LHF was induced by permanent ligation of left anterior descending coronary artery in rats for 4 weeks. MRI, ultrasound, and hemodynamic measurements were performed to confirm LHF and PH. Histopathology, Western blot, and real-time polymerase chain reaction analyses were used to identify key molecular signatures. Therapeutic intervention was demonstrated using an antiproliferative compound, HO-3867. LHF-PH was confirmed by significant elevation of pulmonary artery pressure (mean pulmonary artery pressure/mm Hg: 35.9±1.8 versus 14.8±2.0, control; P<0.001) and vascular remodeling. HO-3867 treatment decreased mean pulmonary artery pressure to 22.6±0.8 mm Hg (P<0.001). Substantially higher levels of peroxynitrite and significant loss of PTEN expression were observed in the lungs of LHF rats when compared with control. In vitro studies using human pulmonary artery SMCs implicated peroxynitrite-mediated downregulation of PTEN expression as a key mechanism of SMC proliferation. The results further established that HO-3867 attenuated LHF-PH by decreasing oxidative stress and increasing PTEN expression in the lung. In conclusion, peroxynitrite and peroxynitrite-mediated PTEN inactivation seem to be key mediators of lung microvascular remodeling associated with PH secondary to LHF.
Collapse
|
24
|
Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med 2012; 52:1970-86. [PMID: 22401856 PMCID: PMC3856647 DOI: 10.1016/j.freeradbiomed.2012.02.041] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/23/2012] [Accepted: 02/25/2012] [Indexed: 02/07/2023]
Abstract
Pulmonary vascular disease can be defined as either a disease affecting the pulmonary capillaries and pulmonary arterioles, termed pulmonary arterial hypertension, or a disease affecting the left ventricle, called pulmonary venous hypertension. Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation characterized by endothelial dysfunction, as well as intimal and smooth muscle proliferation. Progressive increases in pulmonary vascular resistance and pressure impair the performance of the right ventricle, resulting in declining cardiac output, reduced exercise capacity, right-heart failure, and ultimately death. While the primary and heritable forms of the disease are thought to affect over 5000 patients in the United States, the disease can occur secondary to congenital heart disease, most advanced lung diseases, and many systemic diseases. Multiple studies implicate oxidative stress in the development of PAH. Further, this oxidative stress has been shown to be associated with alterations in reactive oxygen species (ROS), reactive nitrogen species (RNS), and nitric oxide (NO) signaling pathways, whereby bioavailable NO is decreased and ROS and RNS production are increased. Many canonical ROS and NO signaling pathways are simultaneously disrupted in PAH, with increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and xanthine oxidoreductase, uncoupling of endothelial NO synthase (eNOS), and reduction in mitochondrial number, as well as impaired mitochondrial function. Upstream dysregulation of ROS/NO redox homeostasis impairs vascular tone and contributes to the pathological activation of antiapoptotic and mitogenic pathways, leading to cell proliferation and obliteration of the vasculature. This paper will review the available data regarding the role of oxidative and nitrosative stress and endothelial dysfunction in the pathophysiology of pulmonary hypertension, and provide a description of targeted therapies for this disease.
Collapse
Affiliation(s)
- Diana M. Tabima
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Sheila Frizzell
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Mark T. Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| |
Collapse
|
25
|
Woo JG, Park SY, Lim JC, Joo MJ, Kim HR, Sohn UD. Acid-induced COX-2 expression and prostaglandin E2 production via activation of ERK1/2 and p38 MAPK in cultured feline esophageal smooth muscle cells. Arch Pharm Res 2011; 34:2131-40. [PMID: 22210040 DOI: 10.1007/s12272-011-1217-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 05/14/2011] [Accepted: 07/06/2011] [Indexed: 11/29/2022]
Abstract
Cyclooxygenase (COX)-2 is known to play an important role in inflammatory conditions such as reflux esophagitis resulting from acid reflux. In this study, we tested whether an acidic medium (pH 4.0) induces an increase in COX-2 expression or PGE(2) production, and explored the implication of mitogen-activated protein kinases (MAPKs) activation in these responses in cultured cat esophageal smooth muscle cells. Acidic cytotoxicity was assessed and expression changes in COXs or phosphorylated MAPKs were analyzed by Western blotting. PGE(2) production was measured by immunoassay. No significant decrease in cell viability was observed for 6 h exposure to acidic medium. COX-2 expression and PGE(2) production significantly increased to maximal levels at 6 h exposure to acidic medium. The cells also exhibited significant activation of ERK1/2 and p38 MAPK, but not JNK within 10 min under acidic medium. The increments of COX-2 expression and PGE(2) production by acidic medium were decreased by pretreatment with PD98059 or SB202190, respectively. These results suggest that acidic environments may enhance the COX-2 expression and PGE(2) production through activation of ERK1/2 and p38 MAPK in the cultured cat esophageal smooth muscle cells.
Collapse
Affiliation(s)
- Jae Gwang Woo
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Devadasu VR, Wadsworth RM, Ravi Kumar MNV. Tissue localization of nanoparticles is altered due to hypoxia resulting in poor efficacy of curcumin nanoparticles in pulmonary hypertension. Eur J Pharm Biopharm 2011; 80:578-84. [PMID: 22227367 DOI: 10.1016/j.ejpb.2011.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
The present study is an attempt to leverage therapeutic benefits of curcumin in pulmonary hypertension by encapsulating it in biodegradable poly(lactide-co-glycolic) acid nanoparticles. Pulmonary hypertension is induced in experimental animals by subjecting them to chronic hypoxic conditions. The ability of curcumin encapsulated nanoparticles to manage pulmonary hypertension is measured by right ventricular hypertrophy, haematocrit, vascular remodelling and target tissue levels of curcumin. Further, single oral dose tissue distribution of the nanoparticulate curcumin was also assessed under normoxic and hypoxic conditions. Orally administered nanoparticulate curcumin failed to offer any protection against hypoxia induced pulmonary hypertension as indicated by insignificant changes in right ventricular hypertrophy and vascular remodelling that are similar to untreated groups. A significant difference in the target tissue levels was observed between normoxic vs. hypoxic rats. The study suggests that hypoxia has a major role in the particle localization in lungs probably due to the altered blood flow, increased barrier properties of the lung vasculature and decreased endocytosis. The target tissue levels of curcumin under hypoxia are much lower to that achieved in normoxic rats probably due to difference in particle dynamics, resulting in the failure of treatment.
Collapse
Affiliation(s)
- Venkat Ratnam Devadasu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
27
|
Agbani E, Coats P, Wadsworth RM. Threshold of peroxynitrite cytotoxicity in bovine pulmonary artery endothelial and smooth muscle cells. Toxicol In Vitro 2011; 25:1680-6. [DOI: 10.1016/j.tiv.2011.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 11/29/2022]
|
28
|
Prevención y tratamiento de la enfermedad venooclusiva hepática. GASTROENTEROLOGIA Y HEPATOLOGIA 2011; 34:635-40. [DOI: 10.1016/j.gastrohep.2011.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/01/2011] [Indexed: 01/04/2023]
|
29
|
Weng M, Baron DM, Bloch KD, Luster AD, Lee JJ, Medoff BD. Eosinophils are necessary for pulmonary arterial remodeling in a mouse model of eosinophilic inflammation-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2011; 301:L927-36. [PMID: 21908591 DOI: 10.1152/ajplung.00049.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is increasing evidence that inflammation plays a pivotal role in the pathogenesis of some forms of pulmonary hypertension (PH). We recently demonstrated that deficiency of adiponectin (APN) in a mouse model of PH induced by eosinophilic inflammation increases pulmonary arterial remodeling, pulmonary pressures, and the accumulation of eosinophils in the lung. Based on these data, we hypothesized that APN deficiency exacerbates PH indirectly by increasing eosinophil recruitment. Herein, we examined the role of eosinophils in the development of inflammation-induced PH. Elimination of eosinophils in APN-deficient mice by treatment with anti-interleukin-5 antibody attenuated pulmonary arterial muscularization and PH. In addition, we observed that transgenic mice that are devoid of eosinophils also do not develop pulmonary arterial muscularization in eosinophilic inflammation-induced PH. To investigate the mechanism by which APN deficiency increased eosinophil accumulation in response to an allergic inflammatory stimulus, we measured expression levels of the eosinophil-specific chemokines in alveolar macrophages isolated from the lungs of mice with eosinophilic inflammation-induced PH. In these experiments, the levels of CCL11 and CCL24 were higher in macrophages isolated from APN-deficient mice than in macrophages from wild-type mice. Finally, we demonstrate that the extracts of eosinophil granules promoted the proliferation of pulmonary arterial smooth muscle cells in vitro. These data suggest that APN deficiency may exacerbate PH, in part, by increasing eosinophil recruitment into the lung and that eosinophils could play an important role in the pathogenesis of inflammation-induced PH. These results may have implications for the pathogenesis and treatment of PH caused by vascular inflammation.
Collapse
Affiliation(s)
- M Weng
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | |
Collapse
|