1
|
The role of PGE2 and EP receptors on lung's immune and structural cells; possibilities for future asthma therapy. Pharmacol Ther 2023; 241:108313. [PMID: 36427569 DOI: 10.1016/j.pharmthera.2022.108313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Asthma is the most common airway chronic disease with treatments aimed mainly to control the symptoms. Adrenergic receptor agonists, corticosteroids and anti-leukotrienes have been used for decades, and the development of more targeted asthma treatments, known as biological therapies, were only recently established. However, due to the complexity of asthma and the limited efficacy as well as the side effects of available treatments, there is an urgent need for a new generation of asthma therapies. The anti-inflammatory and bronchodilatory effects of prostaglandin E2 in asthma are promising, yet complicated by undesirable side effects, such as cough and airway irritation. In this review, we summarize the most important literature on the role of all four E prostanoid (EP) receptors on the lung's immune and structural cells to further dissect the relevance of EP2/EP4 receptors as potential targets for future asthma therapy.
Collapse
|
2
|
Joshi R, Hamed O, Yan D, Michi AN, Mostafa MM, Wiehler S, Newton R, Giembycz MA. Prostanoid Receptors of the EP 4-Subtype Mediate Gene Expression Changes in Human Airway Epithelial Cells with Potential Anti-Inflammatory Activity. J Pharmacol Exp Ther 2020; 376:161-180. [PMID: 33158942 DOI: 10.1124/jpet.120.000196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022] Open
Abstract
There is a clear, unmet clinical need to identify new drugs to treat individuals with asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) in whom current medications are either inactive or suboptimal. In preclinical models, EP4-receptor agonists display efficacy, but their mechanism of action is unclear. In this study, using human bronchial epithelial cells as a therapeutically relevant drug target, we hypothesized that changes in gene expression may play an important role. Several prostanoid receptor mRNAs were detected in BEAS-2B cells, human primary bronchial epithelial cells (HBECs) grown in submersion culture and HBECs grown at an air-liquid interface with PTGER4 predominating. By using the activation of a cAMP response element reporter in BEAS-2B cells as a surrogate of gene expression, Schild analysis determined that PTGER4 mRNAs encoded functional EP4-receptors. Moreover, inhibitors of phosphodiesterase 4 (roflumilast N-oxide [RNO]) and cAMP-dependent protein kinase augmented and attenuated, respectively, reporter activation induced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329), a selective EP4-receptor agonist. ONO-AE1-329 also enhanced dexamethasone-induced activation of a glucocorticoid response element reporter in BEAS-2B cells, which was similarly potentiated by RNO. In each airway epithelial cell variant, numerous genes that may impart therapeutic benefit in asthma, COPD, and/or IPF were differentially expressed by ONO-AE1-329, and those changes were often augmented by RNO and/or dexamethasone. We submit that an EP4-receptor agonist, either alone or as a combination therapy, may be beneficial in individuals with chronic lung diseases in whom current treatment options are inadequate. SIGNIFICANCE STATEMENT: Using human bronchial epithelial cells as a therapeutically relevant drug target, we report that EP4-receptor activation promoted gene expression changes that could provide therapeutic benefit in individuals with asthma, COPD, and IPF in whom current treatment options are ineffective or suboptimal.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Yan
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aubrey N Michi
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shahina Wiehler
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Robb CT, Goepp M, Rossi AG, Yao C. Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br J Pharmacol 2020; 177:4899-4920. [PMID: 32700336 PMCID: PMC7405053 DOI: 10.1111/bph.15206] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the novel coronavirus disease 2019 (COVID-19), a highly pathogenic and sometimes fatal respiratory disease responsible for the current 2020 global pandemic. Presently, there remains no effective vaccine or efficient treatment strategies against COVID-19. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines very widely used to alleviate fever, pain, and inflammation (common symptoms of COVID-19 patients) through effectively blocking production of prostaglandins (PGs) via inhibition of cyclooxyganase enzymes. PGs can exert either proinflammatory or anti-inflammatory effects depending on the inflammatory scenario. In this review, we survey the potential roles that NSAIDs and PGs may play during SARS-CoV-2 infection and the development and progression of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
4
|
Shen Y, Liu B, Mao W, Gao R, Feng S, Qian Y, Wu J, Zhang S, Gao L, Fu C, Li Q, Deng Y, Cao J. PGE 2 downregulates LPS-induced inflammatory responses via the TLR4-NF-κB signaling pathway in bovine endometrial epithelial cells. Prostaglandins Leukot Essent Fatty Acids 2018; 129:25-31. [PMID: 29482767 DOI: 10.1016/j.plefa.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
Postpartum bacterial infections of the uterus cause endometritis in dairy cows. Inflammatory responses to bacterial infections in the bovine uterus were generated through pattern recognition receptors (PRRs) that bind to pathogen-associated molecules such as lipopolysaccharide (LPS) from Escherichia coli. Among these PRRs, Toll-like receptor 4 (TLR4) is primarily responsible for LPS recognition, which triggers inflammatory responses via mitogen-activated protein kinases (MAPKs) and NF-κB signaling activation, resulting in the expression of inflammatory mediators in mammals such as IL-8 and IL-6. Previous studies indicate that PGE2 plays an important role in bacterial endometritis, although details on the mechanism underlying how it regulates LPS-induced inflammatory responses in bovine endometrial epithelial cells (bEECs) remain elusive. In the present study, bEECs were pre-treated with exogenous PGE2 and/or PGF2α prior to LPS stimulation. With PGE2 pre-treatment, we observed an augmentation in LPS-stimulated PKA, ERK, and IκBα phosphorylation and cyclooxygenase-2 (COX-2) and anti-inflammatory cytokine IL-6 expression and downregulation of prostaglandin E2 receptor 4 (EP4) and TLR4 in bEECs. These results indicate that LPS-induced inflammatory responses through TLR4 signaling in bEECs could be downregulated by exogenous PGE2 pre-treatment, but not PGF2α.
Collapse
Affiliation(s)
- Yuan Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China.
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Shuang Feng
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Yinghong Qian
- Inner Mongolia of Agricultural & Animal Husbandry Science, No.22, Zhaojun Road, Yuquan District, 010031 Hohhot, China
| | - Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Shuangyi Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Long Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Changqi Fu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Qianru Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Yang Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018 Hohhot, China.
| |
Collapse
|
5
|
NOD2 triggers PGE2 synthesis leading to IL-8 activation in Staphylococcus aureus-infected human conjunctival epithelial cells. Biochem Biophys Res Commun 2013; 440:551-7. [PMID: 24099766 DOI: 10.1016/j.bbrc.2013.09.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/19/2013] [Indexed: 01/28/2023]
Abstract
We previously showed that Staphylococcus aureus and Pseudomonas aeruginosa stimulate IL-8 expression in human conjunctival epithelial cells through different signal transduction pathways. As in some cell types both the bacteria may induce the release of prostaglandin E2 (PGE2) and PGE2 may affect the expression of IL-8, we aimed at investigating whether in human conjunctival cells infected with S. aureus or P. aeruginosa the activation of IL-8 transcription was mediated by PGE2 and which were the underlying molecular mechanisms. We found that S. aureus, but not P. aeruginosa, triggered IL-8 activation by increasing COX-2 expression and PGE2 levels in a time-dependent manner. Overexpression of nucleotide-binding oligomerization domain-2 (NOD2) resulted to be essential in the enhancement of IL-8 induced by S. aureus. It dramatically activated c-jun NH2-terminal kinase (JNK) pathway which in turn led to COX2 upregulation and ultimately to IL-8 transcription. The full understanding of the S. aureus-induced biochemical processes in human conjunctival epithelium will bring new insight to the knowledge of the molecular mechanisms involved in conjunctiva bacterial infections and develop novel treatment aiming at phlogosis modulation.
Collapse
|
6
|
Britt RD, Velten M, Tipple TE, Nelin LD, Rogers LK. Cyclooxygenase-2 in newborn hyperoxic lung injury. Free Radic Biol Med 2013; 61:502-11. [PMID: 23624331 PMCID: PMC3752000 DOI: 10.1016/j.freeradbiomed.2013.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/27/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022]
Abstract
Supraphysiological O2 concentrations, mechanical ventilation, and inflammation significantly contribute to the development of bronchopulmonary dysplasia (BPD).Exposure of newborn mice to hyperoxia causes inflammation and impaired alveolarization similar to that seen in infants with BPD.Previously, we demonstrated that pulmonary cyclooxygenase-2 (COX-2) protein expression is increased in hyperoxia-exposed newborn mice.The present studies were designed to define the role of COX-2 in newborn hyperoxic lung injury.We tested the hypothesis that attenuation of COX-2 activity would reduce hyperoxia-induced inflammation and improve alveolarization.Newborn C3H/HeN micewere injected daily with vehicle, aspirin (nonselective COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor) for the first 7 days of life.Additional studies utilized wild-type (C57Bl/6, COX-2(+/+)), heterozygous (COX-2(+/-)), and homozygous (COX-2(-/-)) transgenic mice.Micewere exposed to room air (21% O2) or hyperoxia (85% O2) for 14 days.Aspirin-injected and COX-2(-/-) pups had reduced levels of monocyte chemoattractant protein (MCP-1) in bronchoalveolar lavage fluid (BAL).Both aspirin and celecoxib treatment reduced macrophage numbers in the alveolar walls and air spaces.Aspirin and celecoxib treatment attenuated hyperoxia-induced COX activity, including altered levels of prostaglandin (PG)D2 metabolites.Decreased COX activity, however, did not prevent hyperoxia-induced lung developmental deficits.Our data suggest thatincreased COX-2 activity may contribute to proinflammatory responses, including macrophage chemotaxis, during exposure to hyperoxia.Modulation of COX-2 activity may be a useful therapeutic target to limit hyperoxia-induced inflammation in preterm infants at risk of developing BPD.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich-Wilhlems-University, University Medical Center, Bonn, Germany
| | - Trent E Tipple
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43215, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43215, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43215, USA.
| |
Collapse
|
7
|
Konya V, Marsche G, Schuligoi R, Heinemann A. E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol Ther 2013; 138:485-502. [PMID: 23523686 PMCID: PMC3661976 DOI: 10.1016/j.pharmthera.2013.03.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
The large variety of biological functions governed by prostaglandin (PG) E2 is mediated by signaling through four distinct E-type prostanoid (EP) receptors. The availability of mouse strains with genetic ablation of each EP receptor subtype and the development of selective EP agonists and antagonists have tremendously advanced our understanding of PGE2 as a physiologically and clinically relevant mediator. Moreover, studies using disease models revealed numerous conditions in which distinct EP receptors might be exploited therapeutically. In this context, the EP4 receptor is currently emerging as most versatile and promising among PGE2 receptors. Anti-inflammatory, anti-thrombotic and vasoprotective effects have been proposed for the EP4 receptor, along with its recently described unfavorable tumor-promoting and pro-angiogenic roles. A possible explanation for the diverse biological functions of EP4 might be the multiple signaling pathways switched on upon EP4 activation. The present review attempts to summarize the EP4 receptor-triggered signaling modules and the possible therapeutic applications of EP4-selective agonists and antagonists.
Collapse
Key Words
- ampk, amp-activated protein kinase
- camp, cyclic adenylyl monophosphate
- cftr, cystic fibrosis transmembrane conductance regulator
- clc, chloride channel
- cox, cyclooxygenase
- creb, camp-response element-binding protein
- dp, d-type prostanoid receptor
- dss, dextran sodium sulfate
- egfr, epidermal growth factor receptor
- enos, endothelial nitric oxide synthase
- ep, e-type prostanoid receptor
- epac, exchange protein activated by camp
- eprap, ep4 receptor-associated protein
- erk, extracellular signal-regulated kinase
- fem1a, feminization 1 homolog a
- fp, f-type prostanoid receptor
- grk, g protein-coupled receptor kinase
- 5-hete, 5-hydroxyeicosatetraenoic acid
- icer, inducible camp early repressor
- icam-1, intercellular adhesion molecule-1
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ip, i-type prostanoid receptor
- lps, lipopolysaccharide
- map, mitogen-activated protein kinase
- mcp, monocyte chemoattractant protein
- mek, map kinase kinase
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b cells
- nsaid, non-steroidal anti-inflammatory drug
- pg, prostaglandin
- pi3k, phosphatidyl insositol 3-kinase
- pk, protein kinase
- tp, t-type prostanoid receptor
- tx, thromboxane receptor
- prostaglandins
- inflammation
- vascular disease
- cancerogenesis
- renal function
- osteoporosis
Collapse
Affiliation(s)
| | | | | | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
8
|
Church RJ, Jania LA, Koller BH. Prostaglandin E(2) produced by the lung augments the effector phase of allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 188:4093-102. [PMID: 22412193 DOI: 10.4049/jimmunol.1101873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Elevated PGE(2) is a hallmark of most inflammatory lesions. This lipid mediator can induce the cardinal signs of inflammation, and the beneficial actions of nonsteroidal anti-inflammatory drugs are attributed to inhibition of cyclooxygenase (COX)-1 and COX-2, enzymes essential in the biosynthesis of PGE(2) from arachidonic acid. However, both clinical studies and rodent models suggest that, in the asthmatic lung, PGE(2) acts to restrain the immune response and limit physiological change secondary to inflammation. To directly address the role of PGE(2) in the lung, we examined the development of disease in mice lacking microsomal PGE(2) synthase-1 (mPGES1), which converts COX-1/COX-2-derived PGH(2) to PGE(2). We show that mPGES1 determines PGE(2) levels in the naive lung and is required for increases in PGE(2) after OVA-induced allergy. Although loss of either COX-1 or COX-2 increases the disease severity, surprisingly, mPGES1(-/-) mice show reduced inflammation. However, an increase in serum IgE is still observed in the mPGES1(-/-) mice, suggesting that loss of PGE(2) does not impair induction of a Th2 response. Furthermore, mPGES1(-/-) mice expressing a transgenic OVA-specific TCR are also protected, indicating that PGE(2) acts primarily after challenge with inhaled Ag. PGE(2) produced by the lung plays the critical role in this response, as loss of lung mPGES1 is sufficient to protect against disease. Together, this supports a model in which mPGES1-dependent PGE(2) produced by populations of cells native to the lung contributes to the effector phase of some allergic responses.
Collapse
Affiliation(s)
- Rachel J Church
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
9
|
Jones CL, Li T, Cowley EA. The prostaglandin E₂ type 4 receptor participates in the response to acute oxidant stress in airway epithelial cells. J Pharmacol Exp Ther 2012; 341:552-63. [PMID: 22362924 DOI: 10.1124/jpet.111.187138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis of many inflammatory pulmonary diseases, including cystic fibrosis (CF). Delineating how oxidative stress stimulates CF transmembrane conductance regulator (CFTR) in airway epithelial cells is useful, both to increase the understanding of airways host defense and suggest therapeutic approaches to reduce the oxidant stress burden in the CF lung. Using the airway epithelial cell line Calu-3, we investigated the hypothesis that hydrogen peroxide (H₂O₂), which stimulates anion efflux through CFTR, does so via the production of prostaglandin E₂ (PGE₂). Using iodide efflux as a biochemical marker of CFTR activity and short circuit current (I(sc)) recordings, we found that the H₂O₂-stimulated efflux was abolished by cyclooxygenase-1 inhibition and potentially also involves microsomal prostaglandin E synthase-1 activity, implicating a role for PGE₂ production. Furthermore, H₂O₂ application resulted in a rapid release of PGE₂ from Calu-3 cells. We additionally hypothesized that the PGE₂ subtype 4 (EP(4)) receptor was involved in mediating this response. In the presence of (4Z)-7-[(rel-1S,2S,5R)-5-((1,1'-biphenyl-4-yl)methoxy)-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid (AH23848) (which blocks the EP₄ receptor), the H₂O₂-stimulated response was abolished. To investigate this finding in a polarized system, we measured the increase in I(sc) induced by H₂O₂ addition in the presence and absence of AH23848. H₂O₂ induced a robust increase in I(sc), which was significantly attenuated in the presence of AH23848, suggesting some role for the EP₄ receptor. In conclusion, with H₂O₂ as a model oxidant stress, stimulation of CFTR seems to involve PGE₂ production and likely EP₄ receptor activation in Calu-3 airway epithelial cells. This mechanism would be compromised in the CF airways.
Collapse
Affiliation(s)
- Christina L Jones
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
10
|
Khan KMF, Kothari P, Du B, Dannenberg AJ, Falcone DJ. Matrix metalloproteinase-dependent microsomal prostaglandin E synthase-1 expression in macrophages: role of TNF-α and the EP4 prostanoid receptor. THE JOURNAL OF IMMUNOLOGY 2012; 188:1970-80. [PMID: 22227567 DOI: 10.4049/jimmunol.1102383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase (MMP)-9 contributes to the pathogenesis of chronic inflammatory diseases and cancer. Thus, identifying targetable components of signaling pathways that regulate MMP-9 expression may have broad therapeutic implications. Our previous studies revealed a nexus between metalloproteinases and prostanoids whereby MMP-1 and MMP-3, commonly found in inflammatory and neoplastic foci, stimulate macrophage MMP-9 expression via the release of TNF-α and subsequent induction of cyclooxygenase-2 and PGE(2) engagement of EP4 receptor. In the current study, we determined whether MMP-induced cyclooxygenase-2 expression was coupled to the expression of prostaglandin E synthase family members. We found that MMP-1- and MMP-3-dependent release of TNF-α induced rapid and transient expression of early growth response protein 1 in macrophages followed by sustained elevation in microsomal prostaglandin synthase 1 (mPGES-1) expression. Metalloproteinase-induced PGE(2) levels and MMP-9 expression were markedly attenuated in macrophages in which mPGES-1 was silenced, thereby identifying mPGES-1 as a therapeutic target in the regulation of MMP-9 expression. Finally, the induction of mPGES-1 was regulated, in part, through a positive feedback loop dependent on PGE(2) binding to EP4. Thus, in addition to inhibiting macrophage MMP-9 expression, EP4 antagonists emerge as potential therapy to reduce mPGES-1 expression and PGE(2) levels in inflammatory and neoplastic settings.
Collapse
Affiliation(s)
- K M Faisal Khan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|