1
|
Ho Shon I, Hogg PJ. Imaging of cell death in malignancy: Targeting pathways or phenotypes? Nucl Med Biol 2023; 124-125:108380. [PMID: 37598518 DOI: 10.1016/j.nucmedbio.2023.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Cell death is fundamental in health and disease and resisting cell death is a hallmark of cancer. Treatment of malignancy aims to cause cancer cell death, however current clinical imaging of treatment response does not specifically image cancer cell death but assesses this indirectly either by changes in tumor size (using x-ray computed tomography) or metabolic activity (using 2-[18F]fluoro-2-deoxy-glucose positron emission tomography). The ability to directly image tumor cell death soon after commencement of therapy would enable personalised response adapted approaches to cancer treatment that is presently not possible with current imaging, which is in many circumstances neither sufficiently accurate nor timely. Several cell death pathways have now been identified and characterised that present multiple potential targets for imaging cell death including externalisation of phosphatidylserine and phosphatidylethanolamine, caspase activation and La autoantigen redistribution. However, targeting one specific cell death pathway carries the risk of not detecting cell death by other pathways and it is now understood that cancer treatment induces cell death by different and sometimes multiple pathways. An alternative approach is targeting the cell death phenotype that is "agnostic" of the death pathway. Cell death phenotypes that have been targeted for cell death imaging include loss of plasma membrane integrity and dissipation of the mitochondrial membrane potential. Targeting the cell death phenotype may have the advantage of being a more sensitive and generalisable approach to cancer cell death imaging. This review describes and summarises the approaches and radiopharmaceuticals investigated for imaging cell death by targeting cell death pathways or cell death phenotype.
Collapse
Affiliation(s)
- Ivan Ho Shon
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Sydney, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, UNSW Sydney, Australia.
| | - Philip J Hogg
- The Centenary Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Qin X, Jiang H, Liu Y, Zhang H, Tian M. Radionuclide imaging of apoptosis for clinical application. Eur J Nucl Med Mol Imaging 2022; 49:1345-1359. [PMID: 34873639 PMCID: PMC8921127 DOI: 10.1007/s00259-021-05641-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Apoptosis was a natural, non-inflammatory, energy-dependent form of programmed cell death (PCD) that can be discovered in a variety of physiological and pathological processes. Based on its characteristic biochemical changes, a great number of apoptosis probes for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have been developed. Radionuclide imaging with these tracers were potential for the repetitive and selective detection of apoptotic cell death in vivo, without the need for invasive biopsy. In this review, we overviewed molecular mechanism and specific biochemical changes in apoptotic cells and summarized the existing tracers that have been used in clinical trials as well as their potentialities and limitations. Particularly, we highlighted the clinic applications of apoptosis imaging as diagnostic markers, early-response indicators, and prognostic predictors in multiple disease fields.
Collapse
Affiliation(s)
- Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021; 12:735472. [PMID: 34566657 PMCID: PMC8458574 DOI: 10.3389/fphar.2021.735472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients.
Collapse
Affiliation(s)
- Louise Mui
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
4
|
Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivoimaging devices. Phys Med Biol 2021; 66:10TR01. [PMID: 33770765 DOI: 10.1088/1361-6560/abf275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2019] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Nuclear medical imaging devices, such as those enabling photon emission imaging (gamma camera, single photon emission computed tomography, or positron emission imaging), that are typically used in today's clinics are optimized for assessing large portions of the human body, and are classified as whole-body imaging systems. These systems have known limitations for organ imaging, therefore application-specific devices have been designed, constructed and evaluated. These devices, given their compact nature and superior technical characteristics, such as their higher detection sensitivity and spatial resolution for organ imaging compared to whole-body imaging systems, have shown promise for niche applications. Several of these devices have further been integrated with complementary anatomical imaging devices. The objectives of this review article are to (1) provide an overview of such application-specific nuclear imaging devices that were developed over the past two decades (in the twenty-first century), with emphasis on brain, cardiac, breast, and prostate imaging; and (2) discuss the rationale, advantages and challenges associated with the translation of these devices for routine clinical imaging. Finally, a perspective on the future prospects for application-specific devices is provided, which is that sustained effort is required both to overcome design limitations which impact their utility (where these exist) and to collect the data required to define their clinical value.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, United States of America
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| |
Collapse
|
5
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
6
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
7
|
Ho Shon I, Kumar D, Sathiakumar C, Berghofer P, Van K, Chicco A, Hogg PJ. Biodistribution and imaging of an hsp90 ligand labelled with 111In and 67Ga for imaging of cell death. EJNMMI Res 2020; 10:4. [PMID: 31960173 PMCID: PMC6971215 DOI: 10.1186/s13550-020-0590-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background 4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid (GSAO) when conjugated at the γ-glutamyl residue with fluorophores and radio-isotopes is able to image dead and dying cells in vitro and in vivo by binding to intracellular 90-kDa heat shock proteins (hsp90) when cell membrane integrity is compromised. The ability to image cell death has potential clinical impact especially for early treatment response assessment in oncology. This work aims to assess the biodistribution and tumour uptake of diethylene triamine pentaacetic acid GSAO labelled with 111In ([111In]In-DTPA-GSAO) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid GSAO labelled with 67Ga ([67Ga]Ga-DOTA-GSAO) in a murine subcutaneous tumour xenograft model and estimate dosimetry of [67Ga]Ga-DOTA-GSAO. Results There was good tumour uptake of both [111In]In-DTPA-GSAO and [67Ga]Ga-DOTA-GSAO (2.44 ± 0.26% injected activity per gramme of tissue (%IA/g) and 2.75 ± 0.34 %IA/g, respectively) in Balb c nu/nu mice bearing subcutaneous tumour xenografts of a human metastatic prostate cancer cell line (PC3M-luc-c6). Peak tumour uptake occurred at 2.7 h post injection. [111In]In-DTPA-GSAO and [67Ga]Ga-DOTA-GSAO demonstrated increased uptake in the liver (4.40 ± 0.86 %IA/g and 1.72 ± 0.27 %IA/g, respectively), kidneys (16.54 ± 3.86 %IA/g and 8.16 ± 1.33 %IA/g) and spleen (6.44 ± 1.24 %IA/g and 1.85 ± 0.44 %IA/g); however, uptake in these organs was significantly lower with [67Ga]Ga-DOTA-GSAO (p = 0.006, p = 0.017 and p = 0.003, respectively). Uptake of [67Ga]Ga-DOTA-GSAO into tumour was higher than all organs except the kidneys. There was negligible uptake in the other organs. Excretion of [67Ga]Ga-DOTA-GSAO was more rapid than [111In]In-DTPA-GSAO. Estimated effective dose of [67Ga]Ga-DOTA-GSAO for an adult male human was 1.54 × 10− 2 mSv/MBq. Conclusions [67Ga]Ga-DOTA-GSAO demonstrates higher specific uptake in dead and dying cells within tumours and lower uptake in normal organs than [111In]In-DTPA-GSAO. [67Ga]Ga-DOTA-GSAO may be potentially useful for imaging cell death in vivo. Dosimetry estimates for [67Ga]Ga-DOTA-GSAO are acceptable for future human studies. This work also prepares for development of 68Ga GSAO radiopharmaceuticals.
Collapse
Affiliation(s)
- Ivan Ho Shon
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, 2031, NSW, Australia. .,The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Divesh Kumar
- Department of Nuclear Medicine and PET, Fiona Stanley Hospital, Murdoch, 6150, WA, Australia
| | | | - Paula Berghofer
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, Sydney, NSW, 2234, Australia
| | - Khang Van
- Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW, 2170, Australia
| | - Andrew Chicco
- Department of Medical Physics, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Philip J Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
8
|
Jouberton E, Schmitt S, Chautard E, Maisonial-Besset A, Roy M, Radosevic-Robin N, Chezal JM, Miot-Noirault E, Bouvet Y, Cachin F. [ 18F]ML-10 PET imaging fails to assess early response to neoadjuvant chemotherapy in a preclinical model of triple negative breast cancer. EJNMMI Res 2020; 10:2. [PMID: 31907640 PMCID: PMC6944726 DOI: 10.1186/s13550-019-0587-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pathological complete response to the neoadjuvant therapy (NAT) for triple negative breast cancer (TNBC) is predictive of prolonged patient survival. Methods for early evaluation of NAT efficiency are still needed, in order to rapidly adjust the therapeutic strategy in case of initial non-response. One option for this is molecular imaging of apoptosis induced by chemotherapy. Therefore, we investigated the capacity of [18F]ML-10 PET imaging, an apoptosis radiotracer, to detect tumor cell apoptosis and early predict the therapeutic response of human TNBC. RESULTS Initially, the induction of apoptosis by different therapies was quantified. We confirmed, in vitro, that paclitaxel or epirubicin, the fundamental cytotoxic drugs for breast cancer, induce apoptosis in TNBC cell lines. Exposure of TNBC models MDA-MB-231 and MDA-MB-468 to these drugs induced a significant increase (p < 0.01) of the apoptotic hallmarks: DNA fragmentation, membrane phospholipid scrambling, and PARP activation. Secondarily, apoptotic fraction was compared to the intracellular accumulation of the radiotracer. [18F]ML-10 accumulated in the apoptotic cells after 72 h of treatment by paclitaxel in vitro; this accumulation positively correlated with the apoptotic fraction. In vivo, [18F]ML-10 was rapidly cleared from the nontarget organs and mainly eliminated by the kidneys. Comparison of the in vivo [18F]FDG, [18F]FMISO, and [18F]ML-10 uptakes revealed that the tumor accumulation of [18F]ML-10 was directly related to the tumor hypoxia level. Finally, after the in vivo treatment of TNBC murine xenografts by paclitaxel, apoptosis was well induced, as demonstrated by the cleaved caspase-3 levels; however, no significant increase of [18F]ML-10 accumulation in the tumors was observed, either on day 3 or day 6 after the end of the treatment. CONCLUSIONS These results highlighted that PET imaging using [18F]ML-10 allows the visualization of apoptotic cells in TNBC models. Nevertheless, the increase of the chemotherapy-induced apoptotic response when using paclitaxel could not be assessed using this radiotracer in our mouse model.
Collapse
Affiliation(s)
- Elodie Jouberton
- Service de Médecine Nucléaire, Centre Jean Perrin, Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
- Zionexa, Aubière, France
| | - Sébastien Schmitt
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Département de Pathologie, Centre Jean Perrin, Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Marie Roy
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Nina Radosevic-Robin
- Département de Pathologie, Centre Jean Perrin, Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | | | - Florent Cachin
- Service de Médecine Nucléaire, Centre Jean Perrin, Clermont-Ferrand, France.
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France.
- Centre de Lutte Contre le Cancer, Centre Jean Perrin, 58 rue Montalembert, 63011, Clermont-Ferrand, France.
| |
Collapse
|
9
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
|
10
|
Abstract
Image-guided percutaneous needle biopsies (PNBs) are one of the most common procedures performed in radiology departments today. Rapid developments in precision medicine, which identifies molecular and genomic biomarkers in cancers, have ushered a new paradigm of oncologic workup and treatment. PNB has conventionally been used to establish a benign or malignant nature of a lesion during initial diagnosis or in suspected metastatic or recurrent disease. However, increasing amounts of tissue are being required to meet the demands of molecular pathologic analysis, which are now being sought at multiple time points during the course of the disease to guide targeted therapy. As primary providers of biopsy, radiologists must be proactive in these developments to improve diagnostic yield and tissue acquisition in PNB. Herein, we discuss the important and expanding role of PNB in the age of precision medicine and review the technical considerations of percutaneous lung and intra-abdominal biopsy. Finally, we examine promising state-of-the-art techniques in PNB that may safely increase tissue acquisition for optimal molecular pathologic analysis.
Collapse
Affiliation(s)
- Leonard Dalag
- Department of Radiology, University of Chicago, Chicago, Illinois
| | | | - Steven M Zangan
- Department of Radiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
The beginning of the end for conventional RECIST - novel therapies require novel imaging approaches. Nat Rev Clin Oncol 2019; 16:442-458. [PMID: 30718844 DOI: 10.1038/s41571-019-0169-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Owing to improvements in our understanding of the biological principles of tumour initiation and progression, a wide variety of novel targeted therapies have been developed. Developments in biomedical imaging, however, have not kept pace with these improvements and are still mainly designed to determine lesion size alone, which is reflected in the Response Evaluation Criteria in Solid Tumors (RECIST). Imaging approaches currently used for the evaluation of treatment responses in patients with solid tumours, therefore, often fail to detect successful responses to novel targeted agents and might even falsely suggest disease progression, a scenario known as pseudoprogression. The ability to differentiate between responders and nonresponders early in the course of treatment is essential to allowing the early adjustment of treatment regimens. Various imaging approaches targeting a single dedicated tumour feature, as described in the hallmarks of cancer, have been successful in preclinical investigations, and some have been evaluated in pilot clinical trials. However, these approaches have largely not been implemented in clinical practice. In this Review, we describe current biomedical imaging approaches used to monitor responses to treatment in patients receiving novel targeted therapies, including a summary of the most promising future approaches and how these might improve clinical practice.
Collapse
|
12
|
Nuclear Imaging Study of the Pharmacodynamic Effects of Debio 1143, an Antagonist of Multiple Inhibitor of Apoptosis Proteins (IAPs), in a Triple-Negative Breast Cancer Model. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2018:8494031. [PMID: 30627061 PMCID: PMC6305031 DOI: 10.1155/2018/8494031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/13/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
Background Debio 1143, a potent orally available SMAC mimetic, targets inhibitors of apoptosis proteins (IAPs) members and is currently in clinical trials. In this study, nuclear imaging evaluated the effects of Debio 1143 on tumor cell death and metabolism in a triple-negative breast cancer (TNBC) cell line (MDA-MB-231)-based animal model. Methods Apoptosis induced by Debio 1143 was assessed by FACS (caspase-3, annexin 5 (A5)), binding of 99mTc-HYNIC-Annexin V, and a cell proliferation assay. 99mTc-HYNIC-Annexin V SPECT and [18F]-FDG PET were also performed in mice xenografted with MDA-MB-231 cells. Results Debio 1143 induced early apoptosis both in vitro and in vivo 6 h after treatment. Debio 1143 inhibited tumor growth, which was associated with a decreased tumor [18F]-FDG uptake when measured during treatment. Conclusions This imaging study combining SPECT and PET showed the early proapoptotic effects of Debio 1143 resulting in a robust antitumor activity in a preclinical TNBC model. These imaging biomarkers represent valuable noninvasive tools for translational and clinical research in TNBC.
Collapse
|
13
|
Dubash SR, Merchant S, Heinzmann K, Mauri F, Lavdas I, Inglese M, Kozlowski K, Rama N, Masrour N, Steel JF, Thornton A, Lim AK, Lewanski C, Cleator S, Coombes RC, Kenny L, Aboagye EO. Clinical translation of [ 18F]ICMT-11 for measuring chemotherapy-induced caspase 3/7 activation in breast and lung cancer. Eur J Nucl Med Mol Imaging 2018; 45:2285-2299. [PMID: 30259091 PMCID: PMC6208806 DOI: 10.1007/s00259-018-4098-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2018] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Effective anticancer therapy is thought to involve induction of tumour cell death through apoptosis and/or necrosis. [18F]ICMT-11, an isatin sulfonamide caspase-3/7-specific radiotracer, has been developed for PET imaging and shown to have favourable dosimetry, safety, and biodistribution. We report the translation of [18F]ICMT-11 PET to measure chemotherapy-induced caspase-3/7 activation in breast and lung cancer patients receiving first-line therapy. RESULTS Breast tumour SUVmax of [18F]ICMT-11 was low at baseline and unchanged following therapy. Measurement of M30/M60 cytokeratin-18 cleavage products showed that therapy was predominantly not apoptosis in nature. While increases in caspase-3 staining on breast histology were seen, post-treatment caspase-3 positivity values were only approximately 1%; this low level of caspase-3 could have limited sensitive detection by [18F]ICMT-11-PET. Fourteen out of 15 breast cancer patients responded to first-line chemotherapy (complete or partial response); one patient had stable disease. Four patients showed increases in regions of high tumour [18F]ICMT-11 intensity on voxel-wise analysis of tumour data (classed as PADS); response was not exclusive to patients with this phenotype. In patients with lung cancer, multi-parametric [18F]ICMT-11 PET and MRI (diffusion-weighted- and dynamic contrast enhanced-MRI) showed that PET changes were concordant with cell death in the absence of significant perfusion changes. CONCLUSION This study highlights the potential use of [18F]ICMT-11 PET as a promising candidate for non-invasive imaging of caspase3/7 activation, and the difficulties encountered in assessing early-treatment responses. We summarize that tumour response could occur in the absence of predominant chemotherapy-induced caspase-3/7 activation measured non-invasively across entire tumour lesions in patients with breast and lung cancer.
Collapse
Affiliation(s)
- S R Dubash
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - S Merchant
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - K Heinzmann
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - F Mauri
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - I Lavdas
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - M Inglese
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
- Department of Computer, Control and Management Engineering Antonio Ruberti, University of Rome, La Sapienza, Italy
| | - K Kozlowski
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - N Rama
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - N Masrour
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - J F Steel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - A Thornton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - A K Lim
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - C Lewanski
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - S Cleator
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - R C Coombes
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Laura Kenny
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK.
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK.
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK.
| |
Collapse
|
14
|
Yap TE, Donna P, Almonte MT, Cordeiro MF. Real-Time Imaging of Retinal Ganglion Cell Apoptosis. Cells 2018; 7:E60. [PMID: 29914056 PMCID: PMC6025611 DOI: 10.3390/cells7060060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells) project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.
Collapse
Affiliation(s)
- Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Piero Donna
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Melanie T Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Maria Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK.
| |
Collapse
|
15
|
Vossen DM, Verhagen CVM, Verheij M, Wessels LFA, Vens C, van den Brekel MWM. Comparative genomic analysis of oral versus laryngeal and pharyngeal cancer. Oral Oncol 2018; 81:35-44. [PMID: 29884412 DOI: 10.1016/j.oraloncology.2018.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2017] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Locally advanced oral squamous cell carcinoma (OSCC) shows lower locoregional control and disease specific survival rates than laryngeal and pharyngeal squamous cell carcinoma (L/P-SCC) after definitive chemoradiotherapy treatment. Despite clinical factors, this can point towards a different tumor biology that could impact chemoradiotherapy response rates. This prompted us to compare the mutational profiles of OSCC with L/P-SCC. METHODS We performed target capture DNA sequencing on 111 HPV-negative HNSCC samples (NKI dataset), 55 oral and 56 laryngeal/pharyngeal, and identified somatic point mutations and copy number aberrations. We next expanded our analysis with 276 OSCC and 134 L/P-SCC sample data from The Cancer Genome Atlas (TCGA dataset). We focused our analyses on genes that are frequently mutated in HNSCC. RESULTS The mutational profiles of OSCC and L/P-SCC showed many similarities. However, OSCC was significantly enriched for CASP8 (NKI: 15% vs 0%; TCGA: 17% vs 2%) and HRAS (TCGA: 10% vs 1%) mutations. LAMA2 (TCGA: 5% vs 19%) and NSD1 (TCGA: 7% vs 25%) mutations were enriched in L/P-SCC. Overall, we find that OSCC had fewer somatic point mutations and copy number aberrations than L/P-SCC. Interestingly, L/P-SCC scored higher in mutational and genomic scar signatures associated with homologous recombination DNA repair defects. CONCLUSION Despite showing a similar mutational profile, our comparative genomic analysis revealed distinctive features in OSCC and L/P-SCC. Some of these genes and cellular processes are likely to affect the cellular response to radiation or cisplatin. Genomic characterizations may guide or enable personalized treatment in the future.
Collapse
Affiliation(s)
- David M Vossen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Caroline V M Verhagen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel Verheij
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Institute of Phonetic Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Oral and Maxillofacial Surgery, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
17
|
SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget 2017; 8:20476-20495. [PMID: 28108738 PMCID: PMC5386778 DOI: 10.18632/oncotarget.14730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022] Open
Abstract
Owing to the central role of apoptosis in many human diseases and the wide-spread application of apoptosis-based therapeutics, molecular imaging of apoptosis in clinical practice is of great interest for clinicians, and holds great promises. Based on the well-defined biochemical changes for apoptosis, a rich assortment of probes and approaches have been developed for molecular imaging of apoptosis with various imaging modalities. Among these imaging techniques, nuclear imaging (including single photon emission computed tomography and positron emission tomography) remains the premier clinical method owing to their high specificity and sensitivity. Therefore, the corresponding radiopharmaceuticals have been a major focus, and some of them like 99mTc-Annexin V, 18F-ML-10, 18F-CP18, and 18F-ICMT-11 are currently under clinical investigations in Phase I/II or Phase II/III clinical trials on a wide scope of diseases. In this review, we summarize these radiopharmaceuticals that have been widely used in clinical trials and elaborate them in terms of radiosynthesis, pharmacokinetics and dosimetry, and their applications in different clinical stages. We also explore the unique features required to qualify a desirable radiopharmaceutical for imaging apoptosis in clinical practice. Particularly, a perspective of the impact of these clinical efforts, namely, apoptosis imaging as predictive and prognostic markers, early-response indicators and surrogate endpoints, is also the highlight of this review.
Collapse
|
18
|
Radiosynthesis and preliminary biological evaluation of 99mTc-labeled 2-methyl-2-pentylmalonic acid as an apoptosis imaging agent. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
|
19
|
Elvas F, Vangestel C, Pak K, Vermeulen P, Gray B, Stroobants S, Staelens S, Wyffels L. Early Prediction of Tumor Response to Treatment: Preclinical Validation of 99mTc-Duramycin. J Nucl Med 2016; 57:805-11. [PMID: 26837335 DOI: 10.2967/jnumed.115.168344] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2015] [Accepted: 11/29/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Noninvasive imaging of cell death can provide an early indication of the efficacy of tumor treatment, aiding clinicians in distinguishing responding patients from nonresponding patients early on. (99m)Tc-duramycin is a SPECT tracer for cell death imaging. In this study, our aim was to validate the use of (99m)Tc-duramycin for imaging the early response of tumors to treatment. METHODS An in vitro binding assay was performed on COLO205 cells treated with 5-fluorouracil (3.1, 31, or 310 μM) and oxaliplatin (0.7 or 7 μM) or radiation (2 or 4.5 Gy). (99m)Tc-duramycin cell binding and the levels of cell death were evaluated after treatment. In vivo imaging was performed on 4 groups of CD1-deficient mice bearing COLO205 human colorectal cancer tumors. Each group included 6 tumors. The first group was given irinotecan (100 mg/kg), the second oxaliplatin (5 mg/kg), the third irinotecan (80 mg/kg) plus oxaliplatin (5 mg/kg), and the fourth vehicle (0.9% NaCl and 5% glucose). For radiotherapy studies, COLO205 tumors received 4.5 Gy, 2 fractions of 4.5 Gy in a 24-h interval, pretreatment with an 80 mg/kg dose of irinotecan combined with 2 fractions of 4.5 Gy in a 24-h interval, or no treatment (n = 5-6/group). Therapy response was evaluated by (99m)Tc-duramycin SPECT 24 h after the last dose of therapy. Blocking was used to confirm tracer specificity. Radiotracer uptake in the tumors was validated ex vivo using γ-counting, cleaved caspase-3, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) histology. RESULTS Chemotherapy and radiotherapy increased (99m)Tc-duramycin binding to COLO205 cells in a concentration/dose- and time-dependent manner, which correlated well with cell death levels (P < 0.05) as analyzed by annexin V and caspase 3/7 activity. In vivo, (99m)Tc-duramycin uptake in COLO205 xenografts was increased 2.3- and 2.8-fold (P < 0.001) in mice treated with irinotecan and combination therapy, respectively. Blocking with unlabeled duramycin demonstrated specific binding of the radiotracer. After tumor irradiation with 4.5 Gy, (99m)Tc-duramycin uptake in tumors increased significantly (1.24 ± 0.07 vs. 0.57 ± 0.08 percentage injected dose per gram in the unirradiated tumors; P < 0.001). γ-counting of radioactivity in the tumors positively correlated with cleaved caspase-3 (r = 0.85, P < 0.001) and TUNEL (r = 0.81, P < 0.001) staining. CONCLUSION We demonstrated that (99m)Tc-duramycin can be used to image induction of cell death early after chemotherapy and radiotherapy. It holds potential to be translated into clinical use for early assessment of treatment response.
Collapse
Affiliation(s)
- Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Koon Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania; and
| | - Peter Vermeulen
- Laboratory of Pathology, General Hospital Sint-Augustinus, Antwerp, Belgium
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania; and
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
20
|
Zou L, Chen HH, Li D, Xu G, Feng Y, Chen C, Wang L, Sosnovik DE, Chao W. Imaging Lymphoid Cell Death In Vivo During Polymicrobial Sepsis. Crit Care Med 2015; 43:2303-12. [PMID: 26335111 PMCID: PMC6889962 DOI: 10.1097/ccm.0000000000001254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Cell death in lymphatic organs, such as the spleen, is in part responsible for immunosuppression and contributes to mortality during sepsis. An early and noninvasive detection of lymphoid cell death could thus have significant clinical implications. Here, we tested in vivo imaging of lymphoid cell death using a near-infrared annexin V (AV-750). DESIGN Animal study. SETTING Laboratory investigation. SUBJECTS C57BL/6J wild-type and toll-like receptor 3 knockout mice. INTERVENTIONS Mild and severe polymicrobial sepsis was induced with cecum ligation and puncture. Serum cytokines and acute kidney injury markers were tested by immunoassay and quantitative reverse transcription-polymerase chain reaction, respectively. Sepsis-induced lymphoid cell death was detected by fluorescent AV-750 accumulation in the thorax and abdomen (in vivo), in isolated organs (ex vivo), and in isolated cells (flow cytometry). Caspase-3 cleavage/activity and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were tested for apoptosis. MEASUREMENTS AND MAIN RESULTS Severe sepsis induced marked apoptosis in the thymus, spleen, and liver as demonstrated by cleaved caspase-3 and an increase in caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells. A significant increase in fluorescent AV-750 signal was seen in the thoracic and upper abdominal fields and associated with the severity of sepsis. The in vivo thoracic and abdominal AV-750 fluorescent signal was attributed to the thymus, liver, and spleen as determined by ex vivo imaging and highly correlated with the levels of cell death in thymocytes and splenocytes, respectively, as measured by flow cytometry. Compared with wild-type septic mice, toll-like receptor 3 septic mice had attenuated abdominal AV-750 fluorescent signal, reduced ex vivo fluorescence in the spleen, and decreased splenocyte cell death. CONCLUSIONS In vivo AV-750 fluorescent imaging provides spatially resolved and organ-specific detection of lymphoid cell death during polymicrobial sepsis. The AV-750 fluorescent intensity in the thoracic and abdominal fields is associated with sepsis severity and well correlated with sepsis-induced cell death in the thymus and spleen, respectively.
Collapse
Affiliation(s)
- Lin Zou
- 1Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA. 2Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. 3Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, Cook GJ. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015; 70:1060-82. [PMID: 26187890 DOI: 10.1016/j.crad.2015.06.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2014] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
Abstract
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.
Collapse
Affiliation(s)
- A Mahajan
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India.
| | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - S Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, 400 012, India
| | - R Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
| | - A J Weeks
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - M H Thakur
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India
| | - G J Cook
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Nuclear Medicine, Guy's and St Thomas NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
22
|
Belhocine TZ, Blankenberg FG, Kartachova MS, Stitt LW, Vanderheyden JL, Hoebers FJP, Van de Wiele C. (99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging 2015; 42:2083-97. [PMID: 26275392 DOI: 10.1007/s00259-015-3152-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE (99m)Tc-Annexin A5 has been used as a molecular imaging probe for the visualization, characterization and measurement of apoptosis. In an effort to define the quantitative (99m)Tc-annexin A5 uptake criteria that best predict tumor response to treatment, we performed a systematic review and meta-analysis of the results of all clinical imaging trials found in the literature or publicly available databases. METHODS Included in this review were 17 clinical trials investigating quantitative (99m)Tc-annexin A5 (qAnx5) imaging using different parameters in cancer patients before and after the first course of chemotherapy and/or radiation therapy. Qualitative assessment of the clinical studies for diagnostic accuracy was performed using the QUADAS-2 criteria. Of these studies, five prospective single-center clinical trials (92 patients in total) were included in the meta-analysis after exclusion of one multicenter clinical trial due to heterogeneity. Pooled positive predictive values (PPV) and pooled negative predictive values (NPV) (with 95% CI) were calculated using Meta-Disc software version 1.4. RESULTS Absolute quantification and/or relative quantification of (99m)Tc-annexin A5 uptake were performed at baseline and after the start of treatment. Various quantitative parameters have been used for the calculation of (99m)Tc-annexin A5 tumor uptake and delta (Δ) tumor changes post-treatment compared to baseline including: tumor-to-background ratio (TBR), ΔTBR, tumor-to-noise ratio, relative tumor ratio (TR), ΔTR, standardized tumor uptake ratio (STU), ΔSTU, maximum count per pixel within the tumor volume (Cmax), Cmax%, absolute ΔU and percentage (ΔU%), maximum ΔU counts, semiquantitative visual scoring, percent injected dose (%ID) and %ID/cm(3). Clinical trials investigating qAnx5 imaging have included patients with lung cancer, lymphoma, breast cancer, head and neck cancer and other less common tumor types. In two phase I/II single-center clinical trials, an increase of ≥25% in uptake following treatment was considered a significant threshold for an apoptotic tumor response (partial response, complete response). In three other phase I/II clinical trials, increases of ≥28%, ≥42% and ≥47% in uptake following treatment were found to be the mean cut-off levels in responders. In a phase II/III multicenter clinical trial, an increase of ≥23% in uptake following treatment was found to be the minimum cut-off level for a tumor response. In one clinical trial, no significant difference in (99m)Tc-annexin A5 uptake in terms of %ID was found in healthy tissues after chemotherapy compared to baseline. In two other clinical trials, intraobserver and interobserver measurements of (99m)Tc-annexin A5 tumor uptake were found to be reproducible (mean difference <5%, kappa = 0.90 and 0.82, respectively) and to be highly correlated with treatment outcome (Spearman r = 0.99, p < 0.0001). The meta-analysis demonstrated a pooled positive PPV of 100% (95% CI 92 - 100%) and a pooled NPV of 70% (95% CI 55 - 82%) for prediction of a tumor response after the first course of chemotherapy and/or radiotherapy in terms of ΔU%. In a symmetric sROC analysis, the AUC was 0.919 and the Q* index was 85.21 %. CONCLUSION Quantitative (99m)Tc-annexin A5 imaging has been investigated in clinical trials for the assessment of apoptotic tumor responses. This meta-analysis showed a high pooled PPV and a moderate pooled NPV with ΔU cut-off values ranging between 20% and 30%. Standardization of quantification and harmonization of results are required for high-quality clinical research. A standardized uptake value score (SUV, ΔSUV) using quantitative SPECT/CT imaging may be a promising approach to the simple, reproducible and semiquantitative assessment of apoptotic tumor changes.
Collapse
Affiliation(s)
- Tarik Z Belhocine
- Biomedical Imaging Research Centre (BIRC), Western University, London, Ontario, Canada.
| | - Francis G Blankenberg
- Division of Pediatric Radiology, Department of Radiology, Lucile Salter Packard Children's Hospital, Stanford, Palo Alto, CA, USA
| | - Marina S Kartachova
- Department of Nuclear Medicine, Medical Center Alkmaar, Alkmaar, The Netherlands
| | - Larry W Stitt
- LW Stitt Statistical Services, London, Ontario, Canada
| | | | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | |
Collapse
|
23
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
24
|
Benali K, Louedec L, Azzouna RB, Merceron O, Nassar P, Al Shoukr F, Petiet A, Barbato D, Michel JB, Sarda-Mantel L, Le Guludec D, Rouzet F. Preclinical Validation of99mTc–Annexin A5–128 in Experimental Autoimmune Myocarditis and Infective Endocarditis: Comparison with99mTc–HYNIC–Annexin A5. Mol Imaging 2015; 13. [DOI: 10.2310/7290.2014.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Khadija Benali
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Liliane Louedec
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Rana Ben Azzouna
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Olivier Merceron
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Pierre Nassar
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Faisal Al Shoukr
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Anne Petiet
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Donato Barbato
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Jean-Baptiste Michel
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Laure Sarda-Mantel
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Dominique Le Guludec
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| | - Francois Rouzet
- From Inserm, U1148, and Paris Diderot University, Paris, France; Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; Fédération de Recherche en Imagerie Multimodale, Paris Diderot University, Paris, France; and Advanced Accelerator Applications - via Ribes 5 - 10010 - Colleretto Giacosa, Turin, Italy
| |
Collapse
|
25
|
Figge L, Appler F, Chen HH, Sosnovik DE, Schnorr J, Seitz O, Taupitz M, Hamm B, Schellenberger E. Direct coupling of annexin A5 to VSOP yields small, protein-covered nanoprobes for MR imaging of apoptosis. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:291-9. [PMID: 24706613 DOI: 10.1002/cmmi.1575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/15/2013] [Revised: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 01/20/2023]
Abstract
Annexin A5 (Anx) has been extensively used for imaging apoptosis by single-photon emission computed tomography, positron emission tomography, optical imaging and MRI. Recently we introduced ultrasmall Anx-VSOP (very small iron oxide particles)--the smallest high-relaxivity probe for MRI of apoptosis. Here we present a simplified method for the direct coupling of Anx to VSOP, which resulted in nanoparticles that are nearly completely covered with human Anx. These superparamagnetic nanoparticles are only 14.4 ± 2.3 nm in diameter and have higher T2* relaxivity. Compared with existing probes, the small size and the Anx shielding provide prerequisites for good biocompatibility and bioavailability in target tissues. In vitro characterization showed specific binding of Anx-VSOP to apoptotic cells, which led to a signal loss in T2*-weighted MR measurements, while control probe M1324-VSOP produced no such change. Exploratory MRI was done in vivo in a cardiac model of ischemia-reperfusion damage illustrating the potential of the probe for future studies.
Collapse
Affiliation(s)
- Lena Figge
- Charité - University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bizrah M, Dakin SC, Guo L, Rahman F, Parnell M, Normando E, Nizari S, Davis B, Younis A, Cordeiro MF. A semi-automated technique for labeling and counting of apoptosing retinal cells. BMC Bioinformatics 2014; 15:169. [PMID: 24902592 PMCID: PMC4063694 DOI: 10.1186/1471-2105-15-169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2014] [Accepted: 05/14/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) loss is one of the earliest and most important cellular changes in glaucoma. The DARC (Detection of Apoptosing Retinal Cells) technology enables in vivo real-time non-invasive imaging of single apoptosing retinal cells in animal models of glaucoma and Alzheimer's disease. To date, apoptosing RGCs imaged using DARC have been counted manually. This is time-consuming, labour-intensive, vulnerable to bias, and has considerable inter- and intra-operator variability. RESULTS A semi-automated algorithm was developed which enabled automated identification of apoptosing RGCs labeled with fluorescent Annexin-5 on DARC images. Automated analysis included a pre-processing stage involving local-luminance and local-contrast "gain control", a "blob analysis" step to differentiate between cells, vessels and noise, and a method to exclude non-cell structures using specific combined 'size' and 'aspect' ratio criteria. Apoptosing retinal cells were counted by 3 masked operators, generating 'Gold-standard' mean manual cell counts, and were also counted using the newly developed automated algorithm. Comparison between automated cell counts and the mean manual cell counts on 66 DARC images showed significant correlation between the two methods (Pearson's correlation coefficient 0.978 (p < 0.001), R Squared = 0.956. The Intraclass correlation coefficient was 0.986 (95% CI 0.977-0.991, p < 0.001), and Cronbach's alpha measure of consistency = 0.986, confirming excellent correlation and consistency. No significant difference (p = 0.922, 95% CI: -5.53 to 6.10) was detected between the cell counts of the two methods. CONCLUSIONS The novel automated algorithm enabled accurate quantification of apoptosing RGCs that is highly comparable to manual counting, and appears to minimise operator-bias, whilst being both fast and reproducible. This may prove to be a valuable method of quantifying apoptosing retinal cells, with particular relevance to translation in the clinic, where a Phase I clinical trial of DARC in glaucoma patients is due to start shortly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - M Francesca Cordeiro
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
27
|
Haeckel A, Appler F, Figge L, Kratz H, Lukas M, Michel R, Schnorr J, Zille M, Hamm B, Schellenberger E. XTEN-Annexin A5: XTEN Allows Complete Expression of Long-Circulating Protein-Based Imaging Probes as Recombinant Alternative to PEGylation. J Nucl Med 2014; 55:508-14. [DOI: 10.2967/jnumed.113.128108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
|
28
|
|
29
|
Kadirvel M, Fairclough M, Cawthorne C, Rowling EJ, Babur M, McMahon A, Birkket P, Smigova A, Freeman S, Williams KJ, Brown G. Detection of apoptosis by PET/CT with the diethyl ester of [¹⁸F]ML-10 and fluorescence imaging with a dansyl analogue. Bioorg Med Chem 2014; 22:341-9. [PMID: 24290974 DOI: 10.1016/j.bmc.2013.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
The diethyl ester of [(18)F]ML-10 is a small molecule apoptotic PET probe for cancer studies. Here we report a novel multi-step synthesis of the diethyl ester of ML-10 in excellent yields via fluorination using Xtal-Fluor-E. In addition, a one-pot radiosynthesis of the diethyl ester of [(18)F]ML-10 from nucleophilic [(18)F]fluoride was completed in 23% radiochemical yield (decay corrected). The radiochemical purity of the product was ≥99%. The diethyl ester of [(18)F]ML-10 was used in vivo to detect apoptosis in the testes of mice. In parallel studies, the dansyl-ML-10 diethyl ester was prepared and used to detect apoptotic cells in an in vitro cell based assay.
Collapse
Affiliation(s)
- Manikandan Kadirvel
- Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ, UK; Manchester Pharmacy School, University of Manchester, M13 9PT, UK
| | | | | | - Emily J Rowling
- Manchester Pharmacy School, University of Manchester, M13 9PT, UK
| | - Muhammad Babur
- Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ, UK
| | - Adam McMahon
- Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ, UK
| | - Paul Birkket
- School of Science and Environment, Manchester Metropolitan University, M15 6BH, UK
| | - Alison Smigova
- Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ, UK
| | - Sally Freeman
- Manchester Pharmacy School, University of Manchester, M13 9PT, UK
| | - Kaye J Williams
- Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ, UK; Manchester Pharmacy School, University of Manchester, M13 9PT, UK
| | - Gavin Brown
- Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ, UK.
| |
Collapse
|
30
|
Schaper FLWVJ, Reutelingsperger CP. 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies. Cancers (Basel) 2013; 5:550-68. [PMID: 24216991 PMCID: PMC3730331 DOI: 10.3390/cancers5020550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2013] [Revised: 04/13/2013] [Accepted: 05/10/2013] [Indexed: 12/25/2022] Open
Abstract
Evaluation of efficacy of anti-cancer therapy is currently performed by anatomical imaging (e.g., MRI, CT). Structural changes, if present, become apparent 1-2 months after start of therapy. Cancer patients thus bear the risk to receive an ineffective treatment, whilst clinical trials take a long time to prove therapy response. Both patient and pharmaceutical industry could therefore profit from an early assessment of efficacy of therapy. Diagnostic methods providing information on a functional level, rather than a structural, could present the solution. Recent technological advances in molecular imaging enable in vivo imaging of biological processes. Since most anti-cancer therapies combat tumors by inducing apoptosis, imaging of apoptosis could offer an early assessment of efficacy of therapy. This review focuses on principles of and clinical experience with molecular imaging of apoptosis using Annexin A5, a widely accepted marker for apoptosis detection in vitro and in vivo in animal models. 99mTc-HYNIC-Annexin A5 in combination with SPECT has been probed in clinical studies to assess efficacy of chemo- and radiotherapy within 1-4 days after start of therapy. Annexin A5-based functional imaging of apoptosis shows promise to offer a personalized medicine approach, now primarily used in genome-based medicine, applicable to all cancer patients.
Collapse
Affiliation(s)
- Frédéric L W V J Schaper
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, MUMC, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
31
|
Poulsen RH, Rasmussen JT, Ejlersen JA, Flø C, Falborg L, Heegaard CW, Rehling M. Pharmacokinetics of the phosphatidylserine tracers 99mTc-lactadherin and 99mTc-annexin V in pigs. EJNMMI Res 2013; 3:15. [PMID: 23497537 PMCID: PMC3610303 DOI: 10.1186/2191-219x-3-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2012] [Accepted: 02/18/2013] [Indexed: 11/30/2022] Open
Abstract
Background Phosphatidylserine (PS) is a phospholipid normally located in the inner leaflet of the cell membrane. PS is translocated from the inner to the outer leaflet of the plasma membrane during the early stages of apoptosis and in necrosis. In cell and animal studies, reversible PS externalisation to the outer membrane leaflet has been observed in viable cells. Hence, PS markers have been proposed as markers of both reversibly and irreversibly damaged cells. The purpose of this experimental study in pigs was to investigate the kinetics of the newly introduced PS marker technetium-99m-labelled lactadherin (99mTc-lactadherin) in comparison with the well-known PS tracer 99mTc-annexin V with special reference to the renal handling of the tracers. The effective dose for humans was estimated from the biodistribution in 24 mice. Methods Nine anaesthetised pigs randomly allocated into two treatment groups were administered a single injection of either 99mTc-lactadherin or 99mTc-annexin V. Renal perfusion was assessed by simultaneous injection of 51Cr-EDTA. Throughout the examinations, planar, dynamic scintigraphy of the trunk was performed, urine was collected and arterial and renal vein blood was sampled. The effective dose was estimated using the adult male phantom from the RADAR website. Results 99mTc-lactadherin was cleared four times faster from plasma than 99mTc-annexin V, 57 ± 13 ml/min (mean ± SD) versus 14 ± 2 ml/min. 99mTc-lactadherin had a predominant uptake in the liver, whereas 99mTc-annexin V was primarily taken up by the kidneys. The estimated effective human dose after single injection of 99mTc-lactadherin and 99mTc-annexin V was 5.8 and 11 μSv/MBq, respectively. Conclusions The high hepatic uptake of 99mTc-lactadherin compromises the use of 99mTc-lactadherin for imaging PS externalisation in the liver. Due to scatter from the liver, the use of in vivo visualisation of PS externalisation in the lower thorax and upper abdomen by 99mTc-lactadherin is challenged, but not precluded. In contrast to 99mTc-annexin, 99mTc-lactadherin has a low renal uptake and may be the preferred tracer for imaging PS externalisation in the kidneys. The effective dose after injection of 99mTc-lactadherin and 99mTc-annexin was low. Recommendations regarding the clinical use of 99mTc-lactadherin must await tracer kinetic studies in patients.
Collapse
Affiliation(s)
- Runa H Poulsen
- Department for Clinical Medicine, Aarhus University Hospital, Skejby, Aarhus N 8200, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
The potential of annexin-labelling for the diagnosis and follow-up of glaucoma. Cell Tissue Res 2013; 353:279-85. [DOI: 10.1007/s00441-013-1554-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2012] [Accepted: 01/03/2013] [Indexed: 01/04/2023]
|
33
|
Hu S, Kiesewetter DO, Zhu L, Guo N, Gao H, Liu G, Hida N, Lang L, Niu G, Chen X. Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol Imaging Biol 2012; 14:762-70. [PMID: 22392643 PMCID: PMC3387344 DOI: 10.1007/s11307-012-0551-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
PURPOSE This study aims to apply longitudinal positron emission tomography (PET) imaging with (18)F-Annexin V to visualize and evaluate cell death induced by doxorubicin in a human head and neck squamous cell cancer UM-SCC-22B tumor xenograft model. PROCEDURES In vitro toxicity of doxorubicin to UM-SCC-22B cells was determined by a colorimetric assay. Recombinant human Annexin V protein was expressed and purified. The protein was labeled with fluorescein isothiocyanate for fluorescence staining and (18)F for PET imaging. Established UM-SCC-22B tumors in nude mice were treated with two doses of doxorubicin (10 mg/kg each dose) with 1 day interval. Longitudinal (18)F-Annexin V PET was performed at 6 h, 24 h, 3 days, and 7 days after the treatment started. Following PET imaging, direct tissue biodistribution study was performed to confirm the accuracy of PET quantification. RESULTS Two doses of doxorubicin effectively inhibited the growth of UM-SCC-22B tumors by inducing cell death including apoptosis. The cell death was clearly visualized by (18)F-Annexin V PET. The peak tumor uptake, which was observed at day 3 after treatment started, was significantly higher than that in the untreated tumors (1.56 ± 0.23 vs. 0.89 ± 0.31%ID/g, p < 0.05). Moreover, the tumor uptake could be blocked by co-injection of excess amount of unlabeled Annexin V protein. At day 7 after treatment, the tumor uptake of (18)F-Annexin had returned to baseline level. CONCLUSIONS (18)F-Annexin V PET imaging is sensitive enough to allow visualization of doxorubicin-induced cell death in UM-SCC-22B xenograft model. The longitudinal imaging with (18)F-Annexin will be helpful to monitor early response to chemotherapeutic anti-cancer drugs.
Collapse
Affiliation(s)
- Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Lei Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Haokao Gao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Gang Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, China
| | - Naoki Hida
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
34
|
Waerzeggers Y, Monfared P, Viel T, Faust A, Kopka K, Schäfers M, Tavitian B, Winkeler A, Jacobs A. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: pre-clinical developments. Br J Radiol 2012; 84 Spec No 2:S168-78. [PMID: 22433827 DOI: 10.1259/bjr/66405626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. Especially the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. In our other review we focused on imaging biomarkers of general biochemical and physiological processes related with tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. In this part of the review, we will discuss the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways and their application in targeted therapies.
Collapse
Affiliation(s)
- Y Waerzeggers
- European Institute for Molecular Imaging, Westfaelische Wilhelms-University, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kapty J, Banman S, Goping IS, Mercer JR. Evaluation of phosphatidylserine-binding peptides targeting apoptotic cells. ACTA ACUST UNITED AC 2012; 17:1293-301. [PMID: 22811476 DOI: 10.1177/1087057112453313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
The inhibition or dysregulation of apoptosis plays an intimate role in the initiation and progression of cancer by confounding normal tissue homeostasis. We currently do not have a clinical method to assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis because it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study, four peptides were evaluated for PS-binding characteristics using a plate-based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. This work also describes two screening techniques to enable researchers to identify and optimize compounds that bind to PS. The results of our study indicate that all four peptides bind to PS and are specific to apoptotic cells. Two of the peptides in particular that have an additional cysteine residue are good potential candidates for development into imaging probes because they bind to PS with high affinity and specificity and they can be easily radiolabelled with (18)F.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Straightforward thiol-mediated protein labelling with DTPA: Synthesis of a highly active 111In-annexin A5-DTPA tracer. EJNMMI Res 2012; 2:17. [PMID: 22541756 PMCID: PMC3444359 DOI: 10.1186/2191-219x-2-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2011] [Accepted: 03/01/2012] [Indexed: 11/16/2022] Open
Abstract
Background Annexin A5 (anxA5) has been found useful for molecular imaging of apoptosis and other biological processes. Methods Here, we report an optimised two-step synthesis of annexin A5-diethylene triamine pentaacetic acid (DTPA) (anxA5-DTPA) for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging with a single purification step. The use of a recombinant annexin A5 (cys-anxA5) with a single thiol group allowed regionally specific coupling, without affecting the binding domain of cys-anxA5. Results The metal complexing capacity of anxA5-DTPA was investigated by labelling with 111In3+ and Eu3+. Binding of modified anxA5-DTPA to apoptotic cells was tested in competition experiments with a fluorescent anxA5 derivative (anxA5-FITC) using flow cytometry and compared with that of wildtype anxA5 or non-binding anxA5-DTPA (M1234-anxA5-DTPA). The binding affinity to apoptotic cells of the anxA5-DTPA conjugate does not differ from that of wildtype anxA5. Conclusions This two-step synthesis of annexin A5-DTPA resulted in biologically active anxA5-DTPA, which can be labelled with radionuclides for use in SPECT and PET imaging.
Collapse
|
37
|
Haimovitz-Friedman A, Yang TIJ, Thin TH, Verheij M. Imaging Radiotherapy-Induced Apoptosis. Radiat Res 2012; 177:467-82. [DOI: 10.1667/rr2576.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
|
38
|
Radermacher KA, Magat J, Bouzin C, Laurent S, Dresselaers T, Himmelreich U, Boutry S, Mahieu I, Vander Elst L, Feron O, Muller RN, Jordan BF, Gallez B. Multimodal assessment of early tumor response to chemotherapy: comparison between diffusion-weighted MRI, 1H-MR spectroscopy of choline and USPIO particles targeted at cell death. NMR IN BIOMEDICINE 2012; 25:514-522. [PMID: 21874657 DOI: 10.1002/nbm.1765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/17/2010] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine the value of different magnetic resonance (MR) protocols to assess early tumor response to chemotherapy. We used a murine tumor model (TLT) presenting different degrees of response to three different cytotoxic agents. As shown in survival curves, cyclophosphamide (CP) was the most efficient drug followed by 5-fluorouracil (5-FU), whereas the etoposide treatment had little impact on TLT tumors. Three different MR protocols were used at 9.4 Tesla 24 h post-treatment: diffusion-weighted (DW)-MRI, choline measurement by (1) H MRS, and contrast-enhanced MRI using ultrasmall iron oxide nanoparticles (USPIO) targeted at phosphatidylserine. Accumulation of contrast agent in apoptotic tumors was monitored by T(2) -weighted images and quantified by EPR spectroscopy. Necrosis and apoptosis were assessed by histology. Large variations were observed in the measurement of choline peak areas and could not be directly correlated to tumor response. Although the targeted USPIO particles were able to significantly differentiate between the efficiency of each cytotoxic agent and best correlated with survival endpoint, they present the main disadvantage of non-specific tumor accumulation, which could be problematic when transferring the method to the clinic. DW-MRI presents a better compromise by combining longitudinal studies with a high dynamic range; however, DW-MRI was unable to show any significant effect for 5-FU. This study illustrates the need for multimodal imaging in assessing tumor response to treatment to compensate for individual limitations.
Collapse
Affiliation(s)
- K A Radermacher
- Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vangestel C, Van de Wiele C, Mees G, Mertens K, Staelens S, Reutelingsperger C, Pauwels P, Van Damme N, Peeters M. Single-Photon Emission Computed Tomographic Imaging of the Early Time Course of Therapy-Induced Cell Death Using Technetium 99m Tricarbonyl His-Annexin A5 in a Colorectal Cancer Xenograft Model. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
As apoptosis occurs over an interval of time after administration of apoptosis-inducing therapy in tumors, the changes in technetium 99m (99mTc)-tricarbonyl (CO)3 His-annexin A5 (His-ann A5) accumulation over time were examined. Colo205-bearing mice were divided into six treatment groups: (1) control, (2) 5-fluorouracil (5-FU; 250 mg/kg), (3) irinotecan (100 mg/kg), (4) oxaliplatin (30 mg/kg), (5) bevacizumab (5 mg/kg), and (6) panitumumab (6 mg/kg). 99mTc-(CO)3 His-ann A5 was injected 4, 8, 12, 24, and 48 hours posttreatment, and micro–single-photon emission computed tomography was performed. Immunostaining of caspase-3 (apoptosis), survivin (antiapoptosis), and LC3-II (autophagy marker) was also performed. Different dynamics of 99mTc-(CO)3 His-ann A5 uptake were observed in this colorectal cancer xenograft model, in response to a single dose of three different chemotherapeutics (5-FU, irinotecan, and oxaliplatin). Bevacizumab-treated mice showed no increased uptake of the radiotracer, and a peak of 99mTc-(CO)3 His-ann A5 uptake in panitumumab-treated mice was observed 24 hours posttreatment, as confirmed by caspase-3 immunostaining. For irinotecan-, oxaliplatin-, and bevacizumab-treated tumors, a significant correlation was established between the radiotracer uptake and caspase-3 immunostaining ( r = .8, p < .05; r = .9, p < .001; r = .9, p < .001, respectively). For 5-FU- and panitumumabtreated mice, the correlation coefficients were r = .7 ( p = .18) and r = .7 ( p = .19), respectively. Optimal timing of annexin A5 imaging after the start of different treatments in the Colo205 model was determined.
Collapse
Affiliation(s)
- Christel Vangestel
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Christophe Van de Wiele
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Gilles Mees
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Koen Mertens
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Steven Staelens
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Chris Reutelingsperger
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Patrick Pauwels
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Nancy Van Damme
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| | - Marc Peeters
- From the Departments of Gastroenterology, Nuclear Medicine and Radiology, and Pathology, Ghent University Hospital, Ghent, Belgium; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Signal and Image Processing Group, Faculty of Engineering, Ghent University-IBBT, Ghent, Belgium; and Department of Biochemistry, Cardiovascular Research Institute, University of Maastricht, Maastricht, the
| |
Collapse
|
40
|
Nguyen QD, Challapalli A, Smith G, Fortt R, Aboagye EO. Imaging apoptosis with positron emission tomography: 'bench to bedside' development of the caspase-3/7 specific radiotracer [(18)F]ICMT-11. Eur J Cancer 2012; 48:432-40. [PMID: 22226480 DOI: 10.1016/j.ejca.2011.11.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/20/2022]
Abstract
The capacity to evade apoptosis has been defined as one of the hallmarks of cancer and, thus, effective anti-cancer therapy often induces apoptosis. A biomarker for imaging apoptosis could assist in monitoring the efficacy of a wide range of current and future therapeutics. Despite the potential, there are limited clinical examples of the use of positron emission tomography for imaging of apoptosis. [(18)F]ICMT-11 is a novel reagent designed to non-invasively image caspase-3 activation and, hence, drug-induced apoptosis. Radiochemistry development of [(18)F]ICMT-11 has been undertaken to improve specific radioactivity, reduce content of stable impurities, reduce synthesis time and enable automation for manufacture of multi-patient dose. Due to the promising mechanistic and safety profile of [(18)F]ICMT-11, the radiotracer is transitioning to clinical development and has been selected as a candidate radiotracer by the QuIC-ConCePT consortium for further evaluation in preclinical models and humans. A successful outcome will allow use of the radiotracer as qualified method for evaluating the pharmaceutical industry's next generation therapeutics.
Collapse
Affiliation(s)
- Quang-Dé Nguyen
- Department of Surgery and Cancer, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
41
|
FRANCIS ROSLYN, SEGARD TATIANA, MORANDEAU LAURENCE. Novel molecular imaging in lung and pleural diseases. Respirology 2011; 16:1173-88. [DOI: 10.1111/j.1440-1843.2011.02059.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
42
|
Abstract
OBJECTIVE The purposes of this review are to describe the signaling pathways of and the cellular changes that occur with apoptosis and other forms of cell death, summarize tracers and modalities used for imaging of apoptosis, delineate the relation between apoptosis and inhibition of protein translation, and describe spectroscopic technologies that entail high-frequency ultrasound and infrared and midinfrared light in characterizing the intracellular events of apoptosis. CONCLUSION Apoptosis is a highly orchestrated set of biochemical and morphologic cellular events. These events present many potential targets for the imaging of apoptosis in vivo. Imaging of apoptosis can facilitate early assessment of anticancer treatment before tumor shrinkage, which may increase the effectiveness of delivery of chemotherapy and radiation therapy and speed drug development.
Collapse
|
43
|
Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EKJ. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev 2011; 63:547-54. [PMID: 20933557 DOI: 10.1016/j.addr.2010.09.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2010] [Revised: 09/22/2010] [Accepted: 09/28/2010] [Indexed: 01/10/2023]
Abstract
Molecular imaging techniques are increasingly being used as valuable tools in the drug development process. Radionuclide-based imaging modalities such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have proven to be useful in phases ranging from preclinical development to the initial stages of clinical testing. The high sensitivity of these imaging modalities makes them particularly suited for exploratory investigational new drug (IND) studies as they have the potential to characterize in vivo pharmacokinetics and biodistribution of the compounds using only a fraction of the intended therapeutic dose (microdosing). This information obtained at an early stage of clinical testing results in a better selection among promising drug candidates, thereby increasing the success rate of agents entering clinical trials and the overall efficiency of the process. In this article, we will review the potential applications of SPECT imaging in the drug development process with an emphasis on its applications in exploratory IND studies.
Collapse
Affiliation(s)
- Célia M Gomes
- Institute of Biophysics/Biomathematics - IBILI, Faculty of Medicine, Coimbra University, Portugal.
| | | | | | | |
Collapse
|
44
|
Kapty J, Murray D, Mercer J. Radiotracers for noninvasive molecular imaging of tumor cell death. Cancer Biother Radiopharm 2011; 25:615-28. [PMID: 21204755 DOI: 10.1089/cbr.2010.0793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
The need to monitor cancer therapy-induced cellular and tissue changes using noninvasive imaging techniques continues to stimulate both basic and clinical research. Monitoring changes in cellular proliferative capacity that occur after treatment with radiation and/or chemotherapy has the potential to provide longitudinal information on the cellular dynamics of tumors before, during, and after therapeutic intervention. Cells can lose their reproductive potential through one of several mechanisms, including apoptosis and autophagy (which are forms of programmed cell death), premature senescence, or necrosis. When a tumor responds to therapy, current imaging methods do not provide information about the exact mechanism of cell death executed. We are now beginning to develop the molecular imaging tools that will enable us to noninvasively image cell death mechanisms both in experimental models and in the clinical cancer environment. Studies with these imaging tools will contribute to a better understanding of therapeutic responses and assist in the design and evaluation of more effective treatments. This review examines the state-of-the-art in the use of (radio)tracers for the purpose of imaging mechanisms of tumor cell inactivation (cell death) in animal models and in clinical trials.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
45
|
Vangestel C, Peeters M, Mees G, Oltenfreiter R, Boersma HH, Elsinga PH, Reutelingsperger C, Van Damme N, De Spiegeleer B, Van de Wiele C. In vivo imaging of apoptosis in oncology: an update. Mol Imaging 2011; 10:340-58. [PMID: 21521554 DOI: 10.2310/7290.2010.00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2010] [Accepted: 08/05/2010] [Indexed: 01/09/2023] Open
Abstract
In this review, data on noninvasive imaging of apoptosis in oncology are reviewed. Imaging data available are presented in order of occurrence in time of enzymatic and morphologic events occurring during apoptosis. Available studies suggest that various radiopharmaceutical probes bear great potential for apoptosis imaging by means of positron emission tomography and single-photon emission computed tomography (SPECT). However, for several of these probes, thorough toxicologic studies are required before they can be applied in clinical studies. Both preclinical and clinical studies support the notion that 99mTc-hydrazinonicotinamide-annexin A5 and SPECT allow for noninvasive, repetitive, quantitative apoptosis imaging and for assessing tumor response as early as 24 hours following treatment instigation. Bioluminescence imaging and near-infrared fluorescence imaging have shown great potential in small-animal imaging, but their usefulness for in vivo imaging in humans is limited to structures superficially located in the human body. Although preclinical tumor-based data using high-frequency-ultrasonography (US) are promising, whether or not US will become a routinely clinically useful tool in the assessment of therapy response in oncology remains to be proven. The potential of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for imaging late apoptotic processes is currently unclear. Neither 31P MRS nor 1H MRS signals seems to be a unique identifier for apoptosis. Although MRI-measured apparent diffusion coefficients are altered in response to therapies that induce apoptosis, they are also altered by nonapoptotic cell death, including necrosis and mitotic catastrophe. In the future, rapid progress in the field of apoptosis imaging in oncology is expected.
Collapse
|
46
|
In vitro evaluation of apoptosis with 99mTc-glucoheptonate. Appl Radiat Isot 2011; 69:955-9. [PMID: 21459007 DOI: 10.1016/j.apradiso.2011.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 11/23/2022]
Abstract
Radiopharmaceuticals are useful to evaluate effectiveness of cancer treatments as well as diagnosis of diseases. (99m)Tc-Glucoheptonate has high sensitivity for imaging lung cancer tissues. In this study, the potential use of (99m)Tc-glucoheptonate for monitoring apoptosis related to chemotherapeutic agents is investigated in vitro using A549 lung cancer cell line. A decrease in (99m)Tc-glucoheptonate uptake ratio was observed depending on the level of apoptosis. (99m)Tc-glucoheptonate is found to be useful for the detection of apoptosis following treatment in A549 lung tumor cells.
Collapse
|
47
|
Abstract
Apoptosis is a form of programmed cell death that is implicated in both pathological and physiological processes throughout the body. Its imaging in vivo with intravenous radiolabelled-annexin V has been heralded as an important advance, with around 30 clinical trials demonstrating its application in the early detection and monitoring of disease, and the assessment of efficacy of potential and existing therapies. A recent development has been the use of fluorescently labeled annexin V to visualize single retinal cells undergoing the process of apoptosis in vivo with ophthalmoscopy. This has been given the acronym DARC (Detection of Apoptosing Retinal Cells). DARC so far has only been used experimentally, but clinical trials are starting shortly in glaucoma patients. Results suggest that DARC may provide a direct assessment of retinal ganglion cell health. By enabling early assessment and quantitative analysis of cellular degeneration in glaucoma, it is hoped that DARC can identify patients before the onset of irreversible vision loss. Furthermore, in addition to aiding the tracking of disease, it may provide a rapid and objective assessment of potential and effective therapies, providing a new and meaningful clinical endpoint in glaucomatous disease that is so badly needed.
Collapse
|
48
|
Park D, Don AS, Massamiri T, Karwa A, Warner B, MacDonald J, Hemenway C, Naik A, Kuan KT, Dilda PJ, Wong JWH, Camphausen K, Chinen L, Dyszlewski M, Hogg PJ. Noninvasive imaging of cell death using an Hsp90 ligand. J Am Chem Soc 2011; 133:2832-5. [PMID: 21322555 DOI: 10.1021/ja110226y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Cell death plays a central role in normal physiology and in disease. Common to apoptotic and necrotic cell death is the eventual loss of plasma membrane integrity. We have produced a small organoarsenical compound, 4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid, that rapidly accumulates in the cytosol of dying cells coincident with loss of plasma membrane integrity. The compound is retained in the cytosol predominantly by covalent reaction with the 90 kDa heat shock protein (Hsp90), the most abundant molecular chaperone of the eukaryotic cytoplasm. The organoarsenical was tagged with either optical or radioisotope reporting groups to image cell death in cultured cells and in murine tumors ex vivo and in situ. Tumor cell death in mice was noninvasively imaged by SPECT/CT using an (111)In-tagged compound. This versatile compound should enable the imaging of cell death in most experimental settings.
Collapse
Affiliation(s)
- Danielle Park
- Lowy Cancer Research Centre and POW Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Smith RA, Guleryuz S, Manning HC. Molecular imaging metrics to evaluate response to preclinical therapeutic regimens. FRONT BIOSCI-LANDMRK 2011; 16:393-410. [PMID: 21196177 PMCID: PMC3023459 DOI: 10.2741/3694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Molecular imaging comprises a range of techniques, spanning not only several imaging modalities but also many disease states and organ sites. While advances in new technology platforms have enabled a deeper understanding of the cellular and molecular basis of malignancy, reliable non-invasive imaging metrics remain an important tool for both diagnostics and patient management. Furthermore, the non- invasive nature of molecular imaging can overcome shortcomings associated with traditional biological approaches and provide valuable information relevant to patient care. Integration of information from multiple imaging techniques has the potential to provide a more comprehensive understanding of specific tumor characteristics, tumor status, and treatment response.
Collapse
Affiliation(s)
- R. Adam Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Saffet Guleryuz
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
50
|
Wang L, Yang W, Read P, Larner J, Sheng K. Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy. NANOTECHNOLOGY 2010; 21:475103. [PMID: 21030759 DOI: 10.1088/0957-4484/21/47/475103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/25/2023]
Abstract
Semiconductor nanoparticles conjugated to photosensitizers have been shown to increase tumor cell death with ionizing radiation but the mechanism, particularly the role of photodynamic therapy in the process, was unknown. We used a molecular probe to measure production of (1)O(2) to quantify the component of photodynamic cell-killing in an in vitro system. The intracellular distribution of the nanoparticle conjugate (NC) was determined by the co-localization of nanoparticles and the lysotracker. Induction of apoptosis was measured by the TUNEL assay and western blot analysis of the cleaved caspase-3. As a result, dose-dependent (1)O(2) production was observed with 48 nm NC after irradiating with 6 MV x-rays. A high geometrical coincidence between the fluorescence emission of the nanoparticle and lysotracker was observed using confocal microscopy. Finally, apoptosis, as indicated by the TUNEL stain and cleavage of the caspase-3, was observed in cells treated by both the NC and 6 Gy of radiation but not in cells treated with radiation alone. In conclusion, the cell death induced by the NC in combination with radiation is consistent with a supra-additive effect to radiation-or NC-alone-killing and is mediated by an NC-induced photodynamic therapy mechanism, which is distinctly different from that for radiation-killing alone. By providing a second distinct cell-killing mechanism, this nanoparticle conjugate has great promise as a targeted physical radiosensitizer aimed at overcoming radioresistant tumor clonogens or/and reducing normal tissue toxicity by using a lower ionizing radiation dose.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiation Oncology, University of Virginia, Virginia, USA
| | | | | | | | | |
Collapse
|