1
|
Maingueneau C, Lafargue AE, Guillouet S, Fillesoye F, Cao Pham TT, Jordan B, Perrio C. 18 F-Fluorination of Nitroimidazolyl-Containing Sultone: A Direct Access to a Highly Hydrophilic Radiotracer for High-Performance Positron Emission Tomography Imaging of Hypoxia. JACS AU 2024; 4:3248-3257. [PMID: 39211595 PMCID: PMC11350728 DOI: 10.1021/jacsau.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Hypoxia, characterized by nonphysiological levels of oxygen tension, is a key phenomenon common to the majority of malignant tumors with poor prognosis. Many efforts have been made to develop hypoxia imaging for diagnosis, staging, and monitoring of diseases, as well as for evaluating therapies. PET Imaging using 18F-fluoronitroimidazoles (i.e., [18F]FMISO as a lead radiotracer) has demonstrated potential for clinical investigations, but the poor contrast and prolonged acquisition times (>2.5 h) strongly limit its accuracy and routine developments. Here, we report an original [18F]fluoronitroimidazole bearing a sulfo group ([18F]FLUSONIM) that displays highly hydrophilic properties and rapid clearance, providing high-performance hypoxia specific PET imaging. We describe the synthesis and radiosynthesis of [18F]FLUSONIM, its in vivo preclinical evaluation by PET imaging in healthy rats and a rhabdomyosarcoma rat model, as well as its radiometabolization and histological studies. [18F]FLUSONIM was prepared in a single step by high yielding radiofluorination of a sultone precursor, highlighting the advantages of this new radiolabeling approach not yet explored for radiopharmaceutical development. PET imaging experiments were conducted by systematically comparing [18F]FLUSONIM to [18F]FMISO as a reference. The overall results unequivocally demonstrate that the developed radiopharmaceutical meets the criteria of an ideal candidate for hypoxia PET imaging-rapid and efficient radiosynthesis, total stability, exclusive urinary elimination, high specificity for hypoxic regions, unprecedented tumor/background ratios, short acquisition delays (<60 min), and promising potential for further preclinical and clinical applications.
Collapse
Affiliation(s)
- Clémence Maingueneau
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Anne-Elodie Lafargue
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Stéphane Guillouet
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Fabien Fillesoye
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Thanh T. Cao Pham
- UCLouvain,
Biomedical Magnetic Resonance Unit (REMA), Avenue Mounier 73.08, Woluwe-Saint-Lambert 1200, Belgium
| | - Bénédicte
F. Jordan
- UCLouvain,
Biomedical Magnetic Resonance Unit (REMA), Avenue Mounier 73.08, Woluwe-Saint-Lambert 1200, Belgium
| | - Cécile Perrio
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| |
Collapse
|
2
|
Drzał A, Delalande A, Dziurman G, Fournié M, Pichon C, Elas M. Increasing oxygen tension in tumor tissue using ultrasound sensitive O 2 microbubbles. Free Radic Biol Med 2022; 193:567-578. [PMID: 36356713 DOI: 10.1016/j.freeradbiomed.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Low tissue oxygenation significantly impairs the effectiveness of cancer therapy and promotes a more aggressive phenotype. Many strategies to improve tissue oxygenation have been proposed throughout the years, but only a few showed significant effects in clinical settings. We investigated stability and ultrasound pulse (UP) triggered oxygen release from phospholipid coated oxygen microbubbles (OMB) in vitro and in murine tumors in vivo using EPR oximetry. In solution, the investigated microbubbles are stable and responsive to ultrasound pulse. The addition of the OMB solution alone resulted in an increase in pO2 of approximately 70 mmHg which was further increased for an additional 80 mmHg after the application of UP. The in vivo kinetic study revealed a substantial, up to 120 mmHg, increase in tumor pO2 after UP application and then pO2 was decreasing for 20 min for intravenous injection and 15 min for intratumoral injection. A significant increase was also observed in groups that received microbubbles filled with nitrogen and ultrasound pulse and OMB without UP, but the effect was much lower. Oxygen microbubbles lead to a decrease in HIF-1a and VEGF-A both at the level of mRNA and protein. Toxicity analysis showed that intravenous injection of OMB does not cause oxidative damage to the heart, liver, or kidneys. However, elevated levels of oxidative damage to lipids and proteins were observed short-term in tumor tissue. In conclusion, we have demonstrated the feasibility of oxygen microbubbles in delivering oxygen effectively and safely to the tumor in living animals. Such treatment might enhance the effectiveness of other anticancer therapies.
Collapse
Affiliation(s)
- Agnieszka Drzał
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland
| | - Anthony Delalande
- University of Orleans, 45067, Orleans, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Gabriela Dziurman
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland
| | - Mylene Fournié
- University of Orleans, 45067, Orleans, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Chantal Pichon
- University of Orleans, 45067, Orleans, France; Institut Universitaire de France, 75231, Paris, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Martyna Elas
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland.
| |
Collapse
|
3
|
Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol 2022; 85:185-195. [PMID: 34628029 PMCID: PMC8986888 DOI: 10.1016/j.semcancer.2021.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is arguably the first recognized cancer microenvironment hallmark and affects virtually all cellular populations present in tumors. During the past decades the complex adaptive cellular responses to oxygen deprivation have been largely elucidated, raising hope for new anti cancer agents. Despite undeniable preclinical progress, therapeutic targeting of tumor hypoxia is yet to transition from bench to bedside. This review focuses on new pharmacological agents that exploit tumor hypoxia or interfere with hypoxia signaling and discusses strategies to maximize their therapeutic impact.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Melissa L Fishel
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Cluj, Romania
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xue Wu
- Ohio State University, Columbus, OH, USA
| | - Paul J Smith
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
5
|
Wu T, Chen K, Jiang M, Li A, Peng X, Chen S, Yang Z, Zhou X, Zheng X, Jiang ZX. Hydrofluorocarbon nanoparticles for 19F MRI-fluorescence dual imaging and chemo-photodynamic therapy. Org Biomol Chem 2022; 20:1299-1305. [PMID: 35072680 DOI: 10.1039/d1ob02392f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The synergistic chemotherapy and photodynamic therapy (PDT) may significantly improve the cancer therapeutic efficacy, in which fluorinated nanoemulsions are highly advantageous for their ability to deliver oxygen to hypoxic tumors and provide fluorine-19 magnetic resonance imaging (19F MRI). The low solubility of chemotherapy drugs and photosensitizers in current perfluorocarbon (PFC)-based 19F MRI agents usually leads to complicated formulations or chemical modifications and low nanoemulsion stability and performance. Herein, we employ readily available partially fluorinated ethyl 2-(3,5-bis(trifluoromethyl)phenyl)acetate as the 19F MRI agent and the solvent to dissolve the cancer stem cell inhibitor salinomycin and the photosensitizer ICG for the convenient preparation of 19F MRI-fluorescence dual imaging and synergistic chemotherapy, photothermal and photodynamic therapy nanoemulsions. The chemotherapy drug salinomycin has a high solubility in the partially fluorinated reagent, facilitating its high loading and efficient delivery. Paramagnetic iron(III) (Fe3+) is incorporated into the nanoemulsion through the dissolved chelator to significantly improve the 19F MRI sensitivity. Furthermore, the dissolved fluorinated 2-pyridone enables the efficient capture and sustained release of singlet oxygen in the dark for high PDT efficacy. The multifunctional nanoemulsions show sensitive 19F MRI and fluorescence dual imaging capability and high synergistic chemotherapy, photothermal and photodynamic therapy efficacy in cancer cells, which may be valuable oxygen delivery, sustained ROS generating and release, dual imaging and multimodal therapy agents for hypoxic tumors. This study provided a convenient co-solubilization strategy for the rapid construction of multifunctional theranostics for hypoxic tumors.
Collapse
Affiliation(s)
- Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| |
Collapse
|
6
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
7
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
8
|
Swartz HM, Flood AB, Schaner PE, Halpern H, Williams BB, Pogue BW, Gallez B, Vaupel P. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Physiol Rep 2020; 8:e14541. [PMID: 32786045 PMCID: PMC7422807 DOI: 10.14814/phy2.14541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
It is well understood that the level of molecular oxygen (O2 ) in tissue is a very important factor impacting both physiology and pathological processes as well as responsiveness to some treatments. Data on O2 in tissue could be effectively utilized to enhance precision medicine. However, the nature of the data that can be obtained using existing clinically applicable techniques is often misunderstood, and this can confound the effective use of the information. Attempts to make clinical measurements of O2 in tissues will inevitably provide data that are aggregated over time and space and therefore will not fully represent the inherent heterogeneity of O2 in tissues. Additionally, the nature of existing techniques to measure O2 may result in uneven sampling of the volume of interest and therefore may not provide accurate information on the "average" O2 in the measured volume. By recognizing the potential limitations of the O2 measurements, one can focus on the important and useful information that can be obtained from these techniques. The most valuable clinical characterizations of oxygen are likely to be derived from a series of measurements that provide data about factors that can change levels of O2 , which then can be exploited both diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2 .
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Ann Barry Flood
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
| | - Philip E Schaner
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Howard Halpern
- Department Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Benjamin B Williams
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Bernard Gallez
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Peter Vaupel
- Department Radiation Oncology, University Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Center Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Cao‐Pham T, Tran‐Ly‐Binh A, Heyerick A, Fillée C, Joudiou N, Gallez B, Jordan BF. Combined endogenous MR biomarkers to assess changes in tumor oxygenation induced by an allosteric effector of hemoglobin. NMR IN BIOMEDICINE 2020; 33:e4181. [PMID: 31762121 PMCID: PMC7003919 DOI: 10.1002/nbm.4181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is a crucial factor in cancer therapy, determining prognosis and the effectiveness of treatment. Although efforts are being made to develop methods for assessing tumor hypoxia, no markers of hypoxia are currently used in routine clinical practice. Recently, we showed that the combined endogenous MR biomarkers, R1 and R2 *, which are sensitive to [dissolved O2 ] and [dHb], respectively, were able to detect changes in tumor oxygenation induced by a hyperoxic breathing challenge. In this study, we further validated the ability of the combined MR biomarkers to assess the change in tumor oxygenation induced by an allosteric effector of hemoglobin, myo-inositol trispyrophosphate (ITPP), on rat tumor models. ITPP induced an increase in tumor pO2 , as observed using L-band electron paramagnetic resonance oximetry, as well as an increase in both R1 and R2 * MR parameters. The increase in R1 indicated an increase in [O2 ], whereas the increase in R2 * resulted from an increase in O2 release from blood, inducing an increase in [dHb]. The impact of ITPP was then evaluated on factors that can influence tumor oxygenation, including tumor perfusion, saturation rate of hemoglobin, blood pH and oxygen consumption rate (OCR). ITPP decreased blood [HbO2 ] and significantly increased blood acidity, which is also a factor that right-shifts the oxygen dissociation curve. No change in tumor perfusion was observed after ITPP treatment. Interestingly, ITPP decreased OCR in both tumor cell lines. In conclusion, ITPP increased tumor pO2 via a combined mechanism involving a decrease in OCR and an allosteric effect on hemoglobin that was further enhanced by a decrease in blood pH. MR biomarkers could assess the change in tumor oxygenation induced by ITPP. At the intra-tumoral level, a majority of tumor voxels were responsive to ITPP treatment in both of the models studied.
Collapse
Affiliation(s)
- Thanh‐Trang Cao‐Pham
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - An Tran‐Ly‐Binh
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | | | - Catherine Fillée
- Institut de Recherche Expérimentale et Clinique (IREC), UCLouvainUniversite catholique de LouvainBrusselsBelgium
| | - Nicolas Joudiou
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
10
|
Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Vashisht Gopal Y, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D. Mechanism-Specific Pharmacodynamics of a Novel Complex-I Inhibitor Quantified by Imaging Reversal of Consumptive Hypoxia with [ 18F]FAZA PET In Vivo. Cells 2019; 8:cells8121487. [PMID: 31766580 PMCID: PMC6952969 DOI: 10.3390/cells8121487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tumors lack a well-regulated vascular supply of O2 and often fail to balance O2 supply and demand. Net O2 tension within many tumors may not only depend on O2 delivery but also depend strongly on O2 demand. Thus, tumor O2 consumption rates may influence tumor hypoxia up to true anoxia. Recent reports have shown that many human tumors in vivo depend primarily on oxidative phosphorylation (OxPhos), not glycolysis, for energy generation, providing a driver for consumptive hypoxia and an exploitable vulnerability. In this regard, IACS-010759 is a novel high affinity inhibitor of OxPhos targeting mitochondrial complex-I that has recently completed a Phase-I clinical trial in leukemia. However, in solid tumors, the effective translation of OxPhos inhibitors requires methods to monitor pharmacodynamics in vivo. Herein, 18F-fluoroazomycin arabinoside ([18F]FAZA), a 2-nitroimidazole-based hypoxia PET imaging agent, was combined with a rigorous test-retest imaging method for non-invasive quantification of the reversal of consumptive hypoxia in vivo as a mechanism-specific pharmacodynamic (PD) biomarker of target engagement for IACS-010759. Neither cell death nor loss of perfusion could account for the IACS-010759-induced decrease in [18F]FAZA retention. Notably, in an OxPhos-reliant melanoma tumor, a titration curve using [18F]FAZA PET retention in vivo yielded an IC50 for IACS-010759 (1.4 mg/kg) equivalent to analysis ex vivo. Pilot [18F]FAZA PET scans of a patient with grade IV glioblastoma yielded highly reproducible, high-contrast images of hypoxia in vivo as validated by CA-IX and GLUT-1 IHC ex vivo. Thus, [18F]FAZA PET imaging provided direct evidence for the presence of consumptive hypoxia in vivo, the capacity for targeted reversal of consumptive hypoxia through the inhibition of OxPhos, and a highly-coupled mechanism-specific PD biomarker ready for translation.
Collapse
Affiliation(s)
- Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Madhavi L. Bandi
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Melinda G. Smith
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Yuting Sun
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Yi Rao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Florian Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Franklin Wong
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - John De Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX,77030, USA;
| | - Jeffrey Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.)
| | - Y.N. Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.)
| | - M. Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Joseph R. Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Mark Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
- Correspondence: ; Tel.: +1-713-745-0850; Fax: +1-713-745-7540
| |
Collapse
|
11
|
Merging Preclinical EPR Tomography with other Imaging Techniques. Cell Biochem Biophys 2019; 77:187-196. [PMID: 31440878 PMCID: PMC6742609 DOI: 10.1007/s12013-019-00880-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
This paper presents a survey of electron paramagnetic resonance (EPR) image registration. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints and/or different techniques. EPR-imaging (EPRI) techniques belong to the functional-imaging modalities and therefore suffer from a lack of anatomical reference which is mandatory in preclinical imaging. For this reason, it is necessary to merging EPR images with other modalities which allow for obtaining anatomy images. Methodological analysis and review of the literature were done, providing a summary for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in EPR preclinical image registration and also communicate to them the contribution of this research in the field of image processing.
Collapse
|
12
|
Han Y, Zhou X, Qian Y, Hu H, Zhou Z, Liu X, Tang J, Shen Y. Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. Biomaterials 2019; 213:119195. [DOI: 10.1016/j.biomaterials.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 12/22/2022]
|
13
|
Gérard M, Corroyer-Dulmont A, Lesueur P, Collet S, Chérel M, Bourgeois M, Stefan D, Limkin EJ, Perrio C, Guillamo JS, Dubray B, Bernaudin M, Thariat J, Valable S. Hypoxia Imaging and Adaptive Radiotherapy: A State-of-the-Art Approach in the Management of Glioma. Front Med (Lausanne) 2019; 6:117. [PMID: 31249831 PMCID: PMC6582242 DOI: 10.3389/fmed.2019.00117] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023] Open
Abstract
Severe hypoxia [oxygen partial pressure (pO2) below 5–10 mmHg] is more frequent in glioblastoma multiforme (GBM) compared to lower-grade gliomas. Seminal studies in the 1950s demonstrated that hypoxia was associated with increased resistance to low–linear energy transfer (LET) ionizing radiation. In experimental conditions, the total radiation dose has to be multiplied by a factor of 3 to achieve the same cell lethality in anoxic situations. The presence of hypoxia in human tumors is assumed to contribute to treatment failures after radiotherapy (RT) in cancer patients. Therefore, a logical way to overcome hypoxia-induced radioresistance would be to deliver substantially higher doses of RT in hypoxic volumes delineated on pre-treatment imaging as biological target volumes (BTVs). Such an approach faces various fundamental, technical, and clinical challenges. The present review addresses several technical points related to the delineation of hypoxic zones, which include: spatial accuracy, quantitative vs. relative threshold, variations of hypoxia levels during RT, and availability of hypoxia tracers. The feasibility of hypoxia imaging as an assessment tool for early tumor response to RT and for predicting long-term outcomes is discussed. Hypoxia imaging for RT dose painting is likewise examined. As for the radiation oncologist's point of view, hypoxia maps should be converted into dose-distribution objectives for RT planning. Taking into account the physics and the radiobiology of various irradiation beams, preliminary in silico studies are required to investigate the feasibility of dose escalation in terms of normal tissue tolerance before clinical trials are undertaken.
Collapse
Affiliation(s)
- Michael Gérard
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | | | - Paul Lesueur
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Solène Collet
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Radiophysics, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Michel Chérel
- Team 13-Nuclear Oncology, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Mickael Bourgeois
- Team 13-Nuclear Oncology, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Dinu Stefan
- Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Elaine Johanna Limkin
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Cécile Perrio
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP Cyceron, Caen, France
| | - Jean-Sébastien Guillamo
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Neurology, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Bernard Dubray
- Département de Radiothérapie et de Physique Médicale, Laboratoire QuantIF-LITIS [EA 4108], Centre de Lutte Contre le Cancer Henri Becquerel, Université de Normandie, Rouen, France
| | - Myriam Bernaudin
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Samuel Valable
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
| |
Collapse
|
14
|
Chen NT, Barth ED, Lee TH, Chen CT, Epel B, Halpern HJ, Lo LW. Highly sensitive electron paramagnetic resonance nanoradicals for quantitative intracellular tumor oxymetric images. Int J Nanomedicine 2019; 14:2963-2971. [PMID: 31118615 PMCID: PMC6503311 DOI: 10.2147/ijn.s194779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/11/2019] [Indexed: 01/25/2023] Open
Abstract
Purpose: Tumor oxygenation is a critical parameter influencing the efficacy of cancer therapy. Low levels of oxygen in solid tumor have been recognized as an indicator of malignant progression and metastasis, as well as poor response to chemo- and radiation therapy. Being able to measure oxygenation for an individual's tumor would provide doctors with a valuable way of identifying optimal treatments for patients. Methods: Electron paramagnetic resonance imaging (EPRI) in combination with an oxygen-measuring paramagnetic probe was performed to measure tumor oxygenation in vivo. Triarylmethyl (trityl) radical exhibits high specificity, sensitivity, and resolution for quantitative measurement of O2 concentration. However, its in vivo applications in previous studies have been limited by the required high dosage, its short half-life, and poor intracellular permeability. To address these limitations, we developed high-capacity nanoformulated radicals that employed fluorescein isothiocyanate-labeled mesoporous silica nanoparticles (FMSNs) as trityl radical carriers. The high surface area nanostructure and easy surface modification of physiochemical properties of FMSNs enable efficient targeted delivery of highly concentrated, nonself-quenched trityl radicals, protected from environmental degradation and dilution. Results: We successfully designed and synthesized a tumor-targeted nanoplatform as a carrier for trityl. In addition, the nanoformulated trityl does not affect oxygen-sensing capacity by a self-relaxation or broadening effect. The FMSN-trityl exhibited high sensitivity/response to oxygen in the partial oxygen pressure range from 0 to 155 mmHg. Furthermore, MSN-trityl displayed outstanding intracellular oxygen mapping in both in vitro and in vivo animal studies. Conclusion: The highly sensitive nanoformulated trityl spin probe can profile intracellular oxygen distributions of tumor in a real-time and quantitative manner using in vivo EPRI.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Eugene D Barth
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.,Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, USA
| | - Tsung-Hsi Lee
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.,Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, USA
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.,Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, USA
| | - Leu-Wei Lo
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| |
Collapse
|
15
|
Nakata N, Kiriu M, Okumura Y, Zhao S, Nishijima KI, Shiga T, Tamaki N, Kuge Y, Matsumoto H. Comparative evaluation of [ 18F]DiFA and its analogs as novel hypoxia positron emission tomography and [ 18F]FMISO as the standard. Nucl Med Biol 2019; 70:39-45. [PMID: 30836255 DOI: 10.1016/j.nucmedbio.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hypoxia, a common feature of most solid tumors, is an important predictor of tumor progression and resistance to radiotherapy. We developed a novel hypoxia imaging probe with optimal biological characteristics for use in clinical settings. METHODS We designed and synthesized several new hypoxia probes with additional hydrophilic characteristics compared to [18F]fluoromisonidazole ([18F]FMISO). These were 1-(2,2-Dihydroxy-methyl-3-[18F]-Fluoropropyl) azomycin ([18F]DiFA, formerly [18F]HIC101) and its analogs ([18F]F1 and [18F]F2). Biodistribution studies with EMT6 mammary carcinoma cell-bearing mice were performed 1 and 2 h after injection of each probe. Small-animal positron emission tomography (PET) imaging studies were conducted using [18F]DiFA and [18F]FMISO in the same mice. Tumoral hypoxia was confirmed via pimonidazole staining. Ex vivo digital autoradiographs were obtained for confirming the co-localization of [18F]DiFA and pimonidazole in the tumor tissues. RESULTS The EMT6 tumors used had pimonidazole-positive regions. In biodistribution studies, the tumor-to-blood ratio and tumor-to-muscle ratio of [18F]DiFA was significantly higher than the respective [18F]FMISO ratios 1 h after injection. Hence, we selected [18F]DiFA as the best hypoxia probe among those tested. Small-animal PET imaging studies showed time-dependent increases in the tumor-to-normal tissue ratio of [18F]DiFA uptake. Rapid clearance from the rest of the body was observed primarily via the renal system. Ex vivo autoradiography showed a positive correlation between [18F]DiFA uptake and the regions of pimonidazole distribution, indicating that [18F]DiFA selectively accumulated in the tumor tissue's hypoxic region. CONCLUSIONS A better contrast image and a shorter waiting time may be obtained with [18F]DiFA than with [18F]FMISO. ADVANCES IN KNOWLEDGE By optimizing LogP based on the [18F]FMISO structure, we demonstrated that [18F]DiFA could detect tumor hypoxia regions at an early time point. IMPLICATIONS FOR PATIENT CARE: [18F]DiFA imaging facilitates the evaluation of various cancer hypoxic states due to the lower uptake of normal tissues and could contribute to novel treatment development.
Collapse
Affiliation(s)
- Norihito Nakata
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan
| | - Masato Kiriu
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan
| | - Yuki Okumura
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan
| | - Songji Zhao
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Ken-Ichi Nishijima
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, 060-0815 Sapporo, Japan
| | - Tohru Shiga
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Nagara Tamaki
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Yuji Kuge
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, 060-0815 Sapporo, Japan
| | - Hiroki Matsumoto
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan.
| |
Collapse
|
16
|
Han K, Shek T, Vines D, Driscoll B, Fyles A, Jaffray D, Keller H, Metser U, Pintilie M, Xie J, Yeung I, Milosevic M. Measurement of Tumor Hypoxia in Patients With Locally Advanced Cervical Cancer Using Positron Emission Tomography with 18F-Fluoroazomyin Arabinoside. Int J Radiat Oncol Biol Phys 2018; 102:1202-1209. [PMID: 29680257 DOI: 10.1016/j.ijrobp.2018.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/11/2018] [Accepted: 02/20/2018] [Indexed: 01/25/2023]
Abstract
PURPOSE To assess cervical tumor hypoxia using the hypoxia tracer 18F-fluoroazomycin arabinoside (18F-FAZA) and compare different reference tissues and thresholds for quantifying tumor hypoxia. METHODS AND MATERIALS Twenty-seven patients with cervical cancer were studied prospectively by positron emission tomography (PET) imaging with 18F-FAZA before starting standard chemoradiation. The hypoxic volume was defined as all voxels within a tumor (T) with standardized uptake values (SUVs) greater than 3 standard deviations from the mean gluteus maximus muscle SUV value (M) or SUVs greater than 1 to 1.4 times the mean SUV value of the left ventricle, a blood (B) surrogate. The hypoxic fraction was defined as the ratio of the number of hypoxic voxels to the total number of tumor voxels. RESULTS A 18F-FAZA-PET hypoxic volume could be identified in the majority of cervical tumors (89% when using T/M or T/B > 1.2 as threshold) on the 2-hour static scan. The hypoxic fraction ranged from 0% to 99% (median 31%) when defined using the T/M threshold and from 0% to 78% (median 32%) with the T/B > 1.2 threshold. Hypoxic volumes derived from the different thresholds were highly correlated (Spearman's correlation coefficient ρ between T/M and T/B > 1-1.4 were 0.82-0.91), as were hypoxic fractions (0.75-0.85). Compartmental analysis of the dynamic scans showed k3, the FAZA accumulation constant, to be strongly correlated with hypoxic fraction defined using the T/M (Spearman's ρ=0.72) and T/B > 1.2 thresholds (0.76). CONCLUSIONS Hypoxia was detected in the majority of cervical tumors on 18F-FAZA-PET imaging. The extent of hypoxia varied markedly between tumors but not significantly with different reference tissues/thresholds.
Collapse
Affiliation(s)
- Kathy Han
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| | - Tina Shek
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Douglass Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Brandon Driscoll
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony Fyles
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Harald Keller
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Melania Pintilie
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Jason Xie
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
How to Modulate Tumor Hypoxia for Preclinical In Vivo Imaging Research. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4608186. [PMID: 30420794 PMCID: PMC6211155 DOI: 10.1155/2018/4608186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
Abstract
Tumor hypoxia is related with tumor aggressiveness, chemo- and radiotherapy resistance, and thus a poor clinical outcome. Therefore, over the past decades, every effort has been made to develop strategies to battle the negative prognostic influence of tumor hypoxia. For appropriate patient selection and follow-up, noninvasive imaging biomarkers such as positron emission tomography (PET) radiolabeled ligands are unprecedentedly needed. Importantly, before being able to implement these new therapies and potential biomarkers into the clinical setting, preclinical in vivo validation in adequate animal models is indispensable. In this review, we provide an overview of the different attempts that have been made to create differential hypoxic in vivo cancer models with a particular focus on their applicability in PET imaging studies.
Collapse
|
18
|
Pell VR, Baark F, Mota F, Clark JE, Southworth R. PET Imaging of Cardiac Hypoxia: Hitting Hypoxia Where It Hurts. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018. [PMID: 29515752 PMCID: PMC5830463 DOI: 10.1007/s12410-018-9447-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In this review, we outline the potential for hypoxia imaging as a diagnostic and prognostic tool in cardiology. We describe the lead hypoxia PET radiotracers currently in development and propose a rationale for how they should most appropriately be screened and validated. Recent Findings While the majority of hypoxia imaging agents has been developed for oncology, the requirements for hypoxia imaging in cardiology are different. Recent work suggests that the bis(thiosemicarbazone) family of compounds may be capable of detecting the subtle degrees of hypoxia associated with cardiovascular syndromes, and that they have the potential to be “tuned” to provide different tracers for different applications. Summary New tracers currently in development show significant promise for imaging evolving cardiovascular disease. Fundamental to their exploitation is their careful, considered validation and characterization so that the information they provide delivers the greatest prognostic insight achievable.
Collapse
Affiliation(s)
- Victoria R Pell
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Friedrich Baark
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Filipa Mota
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - James E Clark
- 2School of Cardiovascular Medicine and Sciences, BHF Centre, King's College London, London, UK
| | - Richard Southworth
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
19
|
Raccagni I, Valtorta S, Moresco RM, Belloli S. Tumour hypoxia: lessons learnt from preclinical imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0248-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Troost EGC, Koi L, Yaromina A, Krause M. Therapeutic options to overcome tumor hypoxia in radiation oncology. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0247-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Neveu MA, Joudiou N, De Preter G, Dehoux JP, Jordan BF, Gallez B. 17 O MRS assesses the effect of mild hypothermia on oxygen consumption rate in tumors. NMR IN BIOMEDICINE 2017; 30:e3726. [PMID: 28430379 DOI: 10.1002/nbm.3726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Although oxygen consumption is a key factor in metabolic phenotyping, its assessment in tumors remains critical, as current technologies generally display poor specificity. The objectives of this study were to explore the feasibility of direct 17 O nuclear magnetic resonance (NMR) spectroscopy to assess oxygen metabolism in tumors and its modulations. To investigate the impact of hypometabolism induction in the murine fibrosarcoma FSAII tumor model, we monitored the oxygen consumption of normothermic (37°C) and hypothermic (32°C) tumor-bearing mice. Hypothermic animals showed an increase in tumor pO2 (measured by electron paramagnetic resonance oximetry) contrary to normothermic animals. This was related to a decrease in oxygen consumption rate (assessed using 17 O magnetic resonance spectroscopy (MRS) after the inhalation of 17 O2 -enriched gas). This study highlights the ability of direct 17 O MRS to measure oxygen metabolism in tumors and modulations of tumor oxygen consumption rate.
Collapse
Affiliation(s)
- Marie-Aline Neveu
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Nicolas Joudiou
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Géraldine De Preter
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Jean-Paul Dehoux
- Experimental Surgery Unit, Medical School, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| |
Collapse
|
22
|
Gallez B, Neveu MA, Danhier P, Jordan BF. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:700-711. [DOI: 10.1016/j.bbabio.2017.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/17/2022]
|
23
|
Valable S, Corroyer-Dulmont A, Chakhoyan A, Durand L, Toutain J, Divoux D, Barré L, MacKenzie ET, Petit E, Bernaudin M, Touzani O, Barbier EL. Imaging of brain oxygenation with magnetic resonance imaging: A validation with positron emission tomography in the healthy and tumoural brain. J Cereb Blood Flow Metab 2017; 37:2584-2597. [PMID: 27702880 PMCID: PMC5531354 DOI: 10.1177/0271678x16671965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (StO2-MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of StO2-MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, StO2-MRI and [18F]-FMISO PET were performed sequentially. Under hypoxemia conditions, StO2-MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [18F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, StO2-MRI was able to detect hypoxia in the hypoxic models, mimicking [18F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, StO2-MRI could be a robust and specific imaging biomarker to assess hypoxia.
Collapse
Affiliation(s)
- Samuel Valable
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | | | - Ararat Chakhoyan
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Lucile Durand
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Jérôme Toutain
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Didier Divoux
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Louisa Barré
- 2 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, Caen, France
| | - Eric T MacKenzie
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Edwige Petit
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Myriam Bernaudin
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Omar Touzani
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Emmanuel L Barbier
- 3 Inserm, U1216, Grenoble, France.,4 Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|
24
|
Challapalli A, Carroll L, Aboagye EO. Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging 2017; 5:225-253. [PMID: 28596947 PMCID: PMC5437135 DOI: 10.1007/s40336-017-0231-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Hypoxia is a condition of insufficient oxygen to support metabolism which occurs when the vascular supply is interrupted, or when a tumour outgrows its vascular supply. It is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. This review provides an overview of hypoxia imaging with Positron emission tomography (PET), with an emphasis on the biological relevance, mechanism of action, highlighting advantages, and limitations of the currently available hypoxia radiotracers. METHODS A comprehensive PubMed literature search was performed, identifying articles relating to biological significance and measurement of hypoxia, MRI methods, and PET imaging of hypoxia in preclinical and clinical settings, up to December 2016. RESULTS A variety of approaches have been explored over the years for detecting and monitoring changes in tumour hypoxia, including regional measurements with oxygen electrodes placed under CT guidance, MRI methods that measure either oxygenation or lactate production consequent to hypoxia, different nuclear medicine approaches that utilise imaging agents the accumulation of which is inversely related to oxygen tension, and optical methods. The advantages and disadvantages of these approaches are reviewed, along with individual strategies for validating different imaging methods. PET is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. CONCLUSION Even though hypoxia could have significant prognostic and predictive value in the clinic, the best method for hypoxia assessment has in our opinion not been realised.
Collapse
Affiliation(s)
- Amarnath Challapalli
- Department of Clinical Oncology, Bristol Cancer Institute, Horfield Road, Bristol, United Kingdom
| | - Laurence Carroll
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| |
Collapse
|
25
|
Hou H, Khan N, Gohain S, Eskey CJ, Moodie KL, Maurer KJ, Swartz HM, Kuppusamy P. Dynamic EPR Oximetry of Changes in Intracerebral Oxygen Tension During Induced Thromboembolism. Cell Biochem Biophys 2017; 75:285-294. [PMID: 28434138 DOI: 10.1007/s12013-017-0798-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Cerebral tissue oxygenation (oxygen tension, pO2) is a critical parameter that is closely linked to brain metabolism, function, and pathophysiology. In this work, we have used electron paramagnetic resonance oximetry with a deep-tissue multi-site oxygen-sensing probe, called implantable resonator, to monitor temporal changes in cerebral pO2 simultaneously at four sites in a rabbit model of ischemic stroke induced by embolic clot. The pO2 values in healthy brain were not significantly different among the four sites measured over a period of 4 weeks. During exposure to 15% O2 (hypoxia), a sudden and significant decrease in pO2 was observed in all four sites. On the other hand, brief exposure to breathing carbogen gas (95% O2 + 5% CO2) showed a significant increase in the cerebral pO2 from baseline value. During ischemic stroke, induced by embolic clot in the left brain, a significant decline in the pO2 of the left cortex (ischemic core) was observed without any change in the contralateral sites. While the pO2 in the non-infarct regions returned to baseline at 24-h post-stroke, pO2 in the infarct core was consistently lower compared to the baseline and other regions of the brain. The results demonstrated that electron paramagnetic resonance oximetry with the implantable resonator can repeatedly and simultaneously report temporal changes in cerebral pO2 at multiple sites. This oximetry approach can be used to develop interventions to rescue hypoxic/ischemic tissue by modulating cerebral pO2 during hypoxic and stroke injury.
Collapse
Affiliation(s)
- Huagang Hou
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Nadeem Khan
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Sangeeta Gohain
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Clifford J Eskey
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Karen L Moodie
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Kirk J Maurer
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Harold M Swartz
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Periannan Kuppusamy
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA.
| |
Collapse
|
26
|
Colliez F, Gallez B, Jordan BF. Assessing Tumor Oxygenation for Predicting Outcome in Radiation Oncology: A Review of Studies Correlating Tumor Hypoxic Status and Outcome in the Preclinical and Clinical Settings. Front Oncol 2017; 7:10. [PMID: 28180110 PMCID: PMC5263142 DOI: 10.3389/fonc.2017.00010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor hypoxia is recognized as a limiting factor for the efficacy of radiotherapy, because it enhances tumor radioresistance. It is strongly suggested that assessing tumor oxygenation could help to predict the outcome of cancer patients undergoing radiation therapy. Strategies have also been developed to alleviate tumor hypoxia in order to radiosensitize tumors. In addition, oxygen mapping is critically needed for intensity modulated radiation therapy (IMRT), in which the most hypoxic regions require higher radiation doses and the most oxygenated regions require lower radiation doses. However, the assessment of tumor oxygenation is not yet included in day-to-day clinical practice. This is due to the lack of a method for the quantitative and non-invasive mapping of tumor oxygenation. To fully integrate tumor hypoxia parameters into effective improvements of the individually tailored radiation therapy protocols in cancer patients, methods allowing non-invasively repeated, safe, and robust mapping of changes in tissue oxygenation are required. In this review, non-invasive methods dedicated to assessing tumor oxygenation with the ultimate goal of predicting outcome in radiation oncology are presented, including positron emission tomography used with nitroimidazole tracers, magnetic resonance methods using endogenous contrasts (R1 and R2*-based methods), and electron paramagnetic resonance oximetry; the goal is to highlight results of studies establishing correlations between tumor hypoxic status and patients’ outcome in the preclinical and clinical settings.
Collapse
Affiliation(s)
- Florence Colliez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
27
|
Cao-Pham TT, Tran LBA, Colliez F, Joudiou N, El Bachiri S, Grégoire V, Levêque P, Gallez B, Jordan BF. Monitoring Tumor Response to Carbogen Breathing by Oxygen-Sensitive Magnetic Resonance Parameters to Predict the Outcome of Radiation Therapy: A Preclinical Study. Int J Radiat Oncol Biol Phys 2016; 96:149-60. [PMID: 27511852 DOI: 10.1016/j.ijrobp.2016.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R1, water R1, lipids R1, and R2*. R1 is sensitive to dissolved molecular oxygen, whereas R2* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R1, water R1, lipids R1, and R2* with pO2 assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT). METHODS AND MATERIALS R1, R2*, and EPR were performed on rhabdomyosarcoma and 9L-glioma tumor models, under air and carbogen breathing conditions (95% O2, 5% CO2). Because the models demonstrated different radiosensitivity properties toward carbogen, a growth delay (GD) assay was performed on the rhabdomyosarcoma model and a tumor control dose 50% (TCD50) was performed on the 9L-glioma model. RESULTS Magnetic resonance imaging oxygen-sensitive parameters detected the positive changes in oxygenation induced by carbogen within tumors. No consistent correlation was seen throughout the study between MR parameters and pO2. Global and lipids R1 were found to be correlated to pO2 in the rhabdomyosarcoma model, whereas R2* was found to be inversely correlated to pO2 in the 9L-glioma model (P=.05 and .03). Carbogen increased the TCD50 of 9L-glioma but did not increase the GD of rhabdomyosarcoma. Only R2* was predictive (P<.05) for the curability of 9L-glioma at 40 Gy, a dose that showed a difference in response to RT between carbogen and air-breathing groups. (18)F-FAZA positron emission tomography imaging has been shown to be a predictive marker under the same conditions. CONCLUSION This work illustrates the sensitivity of oxygen-sensitive R1 and R2* parameters to changes in tumor oxygenation. However, R1 parameters showed limitations in terms of predicting the outcome of RT in the tumor models studied, whereas R2* was found to be correlated with the outcome in the responsive model.
Collapse
Affiliation(s)
- Thanh-Trang Cao-Pham
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Ly-Binh-An Tran
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Florence Colliez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Nicolas Joudiou
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Sabrina El Bachiri
- Université Catholique de Louvain, IMMAQ Technological Platform, Methodology and Statistical Support, Louvain-la-Neuve, Belgium
| | - Vincent Grégoire
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Center for Molecular Imaging, Radiotherapy and Oncology, Brussels, Belgium
| | - Philippe Levêque
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Bénédicte F Jordan
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium.
| |
Collapse
|
28
|
Zhou F, Zanganeh S, Mohammad I, Dietz C, Abuteen A, Smith MB, Zhu Q. Targeting tumor hypoxia: a third generation 2-nitroimidazole-indocyanine dye-conjugate with improved fluorescent yield. Org Biomol Chem 2015; 13:11220-7. [PMID: 26403518 PMCID: PMC4651866 DOI: 10.1039/c5ob01460c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor hypoxia is associated with the rapid proliferation and growth of malignant tumors, and the ability to detect tumor hypoxia is important for predicting tumor response to anti-cancer treatments. We have developed a class of dye-conjugates that are related to indocyanine green (ICG, ) to target tumor hypoxia, based on in vivo infrared fluorescence imaging using nitroimidazole moieties linked to indocyanine fluorescent dyes. We previously reported that linking 2-nitroimidazole to an indocyanine dicarboxylic acid dye derivative () using an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG, ), led to a dye-conjugate that gave promising results for targeting cancer hypoxia in vivo. Structural modification of the dye conjugate replaced the ethanolamine unit with a piperazineacetyl unit and led a second generation dye conjugate, piperzine-2-nitroimidazole-ICG (). This second generation dye-conjugate showed improved targeting of tumor hypoxia when compared with . Based on the hypothesis that molecules with more planar and rigid structures have a higher fluorescence yield, as they could release less absorbed energy through molecular vibration or collision, we have developed a new 2-nitroimidazole ICG conjugate, , with two carbon atoms less in the polyene linker. Dye-conjugate was prepared from our new dye (), and coupled to 2-nitroimidazole using a piperazine linker to produce this third-generation dye-conjugate. Spectral measurements showed that the absorption/emission wavelengths of 657/670 were shifted ∼100 nm from the second-generation hypoxia dye of 755/780 nm. Its fluorescence quantum yield was measured to be 0.467, which is about 5 times higher than that of (0.083). In vivo experiments were conducted with balb/c mice and showed more than twice the average in vivo fluorescence intensity in the tumor beyond two hours post retro-orbital injection as compared with . These initial results suggest that may significantly improve in vivo tumor hypoxia targeting.
Collapse
Affiliation(s)
- Feifei Zhou
- Department of Biomedical Engineering and Electrical Engineering, University of Connecticut, Storrs, CT, USA.
| | - Saeid Zanganeh
- Department of Biomedical Engineering and Electrical Engineering, University of Connecticut, Storrs, CT, USA.
| | - Innus Mohammad
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Christopher Dietz
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Akram Abuteen
- Department of Biomedical Engineering and Electrical Engineering, University of Connecticut, Storrs, CT, USA.
| | - Michael B Smith
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Quing Zhu
- Department of Biomedical Engineering and Electrical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
29
|
Iqbal R, Kramer GM, Verwer EE, Huisman MC, de Langen AJ, Bahce I, van Velden FH, Windhorst AD, Lammertsma AA, Hoekstra OS, Boellaard R. Multiparametric Analysis of the Relationship Between Tumor Hypoxia and Perfusion with 18F-Fluoroazomycin Arabinoside and 15O-H2O PET. J Nucl Med 2015; 57:530-5. [DOI: 10.2967/jnumed.115.166579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/18/2015] [Indexed: 01/23/2023] Open
|
30
|
Li F, Jørgensen JT, Forman J, Hansen AE, Kjaer A. 64Cu-ATSM Reflects pO2 Levels in Human Head and Neck Cancer Xenografts but Not in Colorectal Cancer Xenografts: Comparison with 64CuCl2. J Nucl Med 2015; 57:437-43. [DOI: 10.2967/jnumed.115.155663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022] Open
|
31
|
Ali R, Apte S, Vilalta M, Subbarayan M, Miao Z, Chin FT, Graves EE. 18F-EF5 PET Is Predictive of Response to Fractionated Radiotherapy in Preclinical Tumor Models. PLoS One 2015; 10:e0139425. [PMID: 26431331 PMCID: PMC4592127 DOI: 10.1371/journal.pone.0139425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/14/2015] [Indexed: 12/27/2022] Open
Abstract
We evaluated the relationship between pre-treatment positron emission tomography (PET) using the hypoxic tracer 18F-[2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide] (18F-EF5) and the response of preclinical tumor models to a range of fractionated radiotherapies. Subcutaneous HT29, A549 and RKO tumors grown in nude mice were imaged using 18F-EF5 positron emission tomography (PET) in order to characterize the extent and heterogeneity of hypoxia in these systems. Based on these results, 80 A549 tumors were subsequently grown and imaged using 18F-EF5 PET, and then treated with one, two, or four fraction radiation treatments to a total dose of 10–40 Gy. Response was monitored by serial caliper measurements of tumor volume. Longitudinal post-treatment 18F-EF5 PET imaging was performed on a subset of tumors. Terminal histologic analysis was performed to validate 18F-EF5 PET measures of hypoxia. EF5-positive tumors responded more poorly to low dose single fraction irradiation relative to EF5-negative tumors, however both groups responded similarly to larger single fraction doses. Irradiated tumors exhibited reduced 18F-EF5 uptake one month after treatment compared to control tumors. These findings indicate that pre- treatment 18F-EF5 PET can predict the response of tumors to single fraction radiation treatment. However, increasing the number of fractions delivered abrogates the difference in response between tumors with high and low EF5 uptake pre-treatment, in agreement with traditional radiobiology.
Collapse
Affiliation(s)
- Rehan Ali
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
| | - Sandeep Apte
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
| | - Marta Vilalta
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
| | - Murugesan Subbarayan
- Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Zheng Miao
- Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Frederick T. Chin
- Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Edward E. Graves
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
32
|
Corroyer-Dulmont A, Chakhoyan A, Collet S, Durand L, MacKenzie ET, Petit E, Bernaudin M, Touzani O, Valable S. Imaging Modalities to Assess Oxygen Status in Glioblastoma. Front Med (Lausanne) 2015; 2:57. [PMID: 26347870 PMCID: PMC4541402 DOI: 10.3389/fmed.2015.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
Hypoxia, the result of an inadequacy between a disorganized and functionally impaired vasculature and the metabolic demand of tumor cells, is a feature of glioblastoma. Hypoxia promotes the aggressiveness of these tumors and, equally, negatively correlates with a decrease in outcome. Tools to characterize oxygen status are essential for the therapeutic management of patients with glioblastoma (i) to refine prognosis, (ii) to adapt the treatment regimen, and (iii) to assess the therapeutic efficacy. While methods that are focal and invasive in nature are of limited use, non-invasive imaging technologies have been developed. Each of these technologies is characterized by its singular advantages and limitations in terms of oxygenation status in glioblastoma. The aim of this short review is, first, to focus on the interest to characterize hypoxia for a better therapeutic management of patients and, second, to discuss recent and pertinent approaches for the assessment of oxygenation/hypoxia and their direct implication for patient care.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Ararat Chakhoyan
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Solène Collet
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Lucile Durand
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Eric T MacKenzie
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Edwige Petit
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Myriam Bernaudin
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Omar Touzani
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| | - Samuel Valable
- CNRS, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; CEA, Direction des Sciences du Vivant (DSV)/Institut d'Imagerie Biomédicale (I2BM), UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Université de Caen Normandie, UMR 6301-Imagerie et stratégies thérapeutiques des pathologies cérébrales et tumorales (ISTCT), CERVOxy group, GIP Cyceron , Caen , France ; Esplanade de la Paix, Normandie Université , Caen , France
| |
Collapse
|
33
|
Zhao D, Pacheco-Torres J, Hallac RR, White D, Peschke P, Cerdán S, Mason RP. Dynamic oxygen challenge evaluated by NMR T1 and T2*--insights into tumor oxygenation. NMR IN BIOMEDICINE 2015; 28:937-947. [PMID: 26058575 PMCID: PMC4506740 DOI: 10.1002/nbm.3325] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 05/03/2023]
Abstract
There is intense interest in developing non-invasive prognostic biomarkers of tumor response to therapy, particularly with regard to hypoxia. It has been suggested that oxygen sensitive MRI, notably blood oxygen level-dependent (BOLD) and tissue oxygen level-dependent (TOLD) contrast, may provide relevant measurements. This study examined the feasibility of interleaved T2*- and T1-weighted oxygen sensitive MRI, as well as R2* and R1 maps, of rat tumors to assess the relative sensitivity to changes in oxygenation. Investigations used cohorts of Dunning prostate R3327-AT1 and R3327-HI tumors, which are reported to exhibit distinct size-dependent levels of hypoxia and response to hyperoxic gas breathing. Proton MRI R1 and R2* maps were obtained for tumors of anesthetized rats (isoflurane/air) at 4.7 T. Then, interleaved gradient echo T2*- and T1-weighted images were acquired during air breathing and a 10 min challenge with carbogen (95% O2 -5% CO2). Signals were stable during air breathing, and each type of tumor showed a distinct signal response to carbogen. T2* (BOLD) response preceded T1 (TOLD) responses, as expected. Smaller HI tumors (reported to be well oxygenated) showed the largest BOLD and TOLD responses. Larger AT1 tumors (reported to be hypoxic and resist modulation by gas breathing) showed the smallest response. There was a strong correlation between BOLD and TOLD signal responses, but ΔR2* and ΔR1 were only correlated for the HI tumors. The magnitude of BOLD and TOLD signal responses to carbogen breathing reflected expected hypoxic fractions and oxygen dynamics, suggesting potential value of this test as a prognostic biomarker of tumor hypoxia.
Collapse
Affiliation(s)
- Dawen Zhao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jesús Pacheco-Torres
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Arturo Duperier 4, Madrid 28029, Spain
| | - Rami R. Hallac
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Derek White
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Peter Peschke
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Cerdán
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Arturo Duperier 4, Madrid 28029, Spain
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- To whom correspondence should be addressed: Ralph P. Mason, PhD Department of Radiology UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390-9058 USA Phone: +1 (214) 648-8926 Fax: +1 (214) 648-2991
| |
Collapse
|
34
|
Khan N, Hou H, Swartz HM, Kuppusamy P. Direct and Repeated Measurement of Heart and Brain Oxygenation Using In Vivo EPR Oximetry. Methods Enzymol 2015; 564:529-52. [PMID: 26477264 DOI: 10.1016/bs.mie.2015.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Low level of oxygen (hypoxia) is a critical factor that defines the pathological consequence of several pathophysiologies, particularly ischemia, that usually occur following the blockage of a blood vessel in vital organs, such as brain and heart, or abnormalities in the microvasculature, such as peripheral vascular disease. Therefore, methods that can directly and repeatedly quantify oxygen levels in the brain and heart will significantly improve our understanding of ischemic pathologies. Importantly, such oximetry capability will facilitate the development of strategies to counteract low levels of oxygen and thereby improve outcome following stroke or myocardial infarction. In vivo electron paramagnetic resonance (EPR) oximetry has the capability to monitor tissue oxygen levels in real time. The method has largely been tested and used in experimental animals, although some clinical measurements have been performed. In this chapter, a brief overview of the methodology to repeatedly quantify oxygen levels in the brain and heart of experimental animal models, ranging from mice to swine, is presented. EPR oximetry requires a one-time placement of an oxygen-sensitive probe in the tissue of interest, while the rest of the procedure for reliable, accurate, and repeated measurements of pO2 (partial pressure of oxygen) is noninvasive and can be repeated as often as desired. A multisite oximetry approach can be used to monitor pO2 at many sites simultaneously. Building on significant advances in the application of EPR oximetry in experimental animal models, spectrometers have been developed for use in human subjects. Initial feasibility of pO2 measurement in solid tumors of patients has been successfully demonstrated.
Collapse
Affiliation(s)
- Nadeem Khan
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Huagang Hou
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Harold M Swartz
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Periannan Kuppusamy
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.
| |
Collapse
|
35
|
Servagi-Vernat S, Differding S, Sterpin E, Hanin FX, Labar D, Bol A, Lee JA, Grégoire V. Hypoxia-guided adaptive radiation dose escalation in head and neck carcinoma: a planning study. Acta Oncol 2015; 54:1008-16. [PMID: 25562382 DOI: 10.3109/0284186x.2014.990109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate from a planning point of view the dose distribution of adaptive radiation dose escalation in head and neck squamous cell carcinoma (HNSCC) using (18)F-Fluoroazomycin arabinoside (FAZA) positron emission tomography/computed tomography (PET-CT). MATERIAL/METHODS Twelve patients with locally advanced HNSCC underwent three FAZA PET-CT before treatment, after 7 fractions and after 17 fractions of a carboplatin-5FU chemo-radiotherapy regimen (70 Gy in 2 Gy per fraction over 7 weeks). The dose constraints were that every hypoxic voxel delineated before and during treatment (newborn hypoxic voxels) should receive a total dose of 86 Gy. A median dose of 2.47 Gy per fraction was prescribed on the hypoxic PTV defined on the pre-treatment FAZA PET-CT; a median dose of 2.57 Gy per fraction was prescribed on the newborn voxels identified on the first per-treatment FAZA PET-CT; a median dose of 2.89 Gy per fraction was prescribed on the newborn voxels identified on the second per-treatment FAZA PET-CT. RESULTS Ten of 12 patients had hypoxic volumes. Six of 10 patients completed all the FAZA PET-CT during radiotherapy. For the hypoxic PTVs, the average D50% matched the prescribed dose within 2% and the homogeneity indices reached 0.10 and 0.12 for the nodal PTV 86 Gy and the primary PTV 86 Gy, respectively. Compared to a homogeneous 70 Gy mean dose to the PTVs, the dose escalation up to 86 Gy to the hypoxic volumes did not typically modify the dose metrics on the surrounding normal tissues. CONCLUSION From a planning point of view, FAZA-PET-guided dose adaptive escalation is feasible without substantial dose increase to normal tissues above tolerance limits. Clinical prospective studies, however, need to be performed to validate hypoxia-guided adaptive radiation dose escalation in head and neck carcinoma.
Collapse
Affiliation(s)
- Stéphanie Servagi-Vernat
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Sarah Differding
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Edmond Sterpin
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Francois-Xavier Hanin
- Department of Nuclear Medicine, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Daniel Labar
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Anne Bol
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - John A. Lee
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Vincent Grégoire
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| |
Collapse
|
36
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
37
|
Neveu MA, Bol V, Bol A, Bouzin C, Grégoire V, Feron O, Jordan BF, Gallez B. The increase in tumor oxygenation under carbogen breathing induces a decrease in the uptake of [(18)F]-fluoro-deoxy-glucose. Radiother Oncol 2015; 116:400-3. [PMID: 25981053 DOI: 10.1016/j.radonc.2015.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 11/27/2022]
Abstract
We investigated the impact of oxygenation status (measured by EPR oximetry) on the uptake of (18)F-FDG (measured by PET) in two different tumor models during a carbogen breathing challenge. We observed a significant drop in (18)F-FDG uptake under carbogen breathing that suggests a rapid metabolic adaptation to the oxygen environment.
Collapse
Affiliation(s)
- Marie-Aline Neveu
- Biomedical Magnetic Resonance Research Group, Université catholique de Louvain (UCL), Belgium
| | - Vanesa Bol
- Radiation Oncology Department & Center for Molecular Imaging, Université catholique de Louvain (UCL), Belgium
| | - Anne Bol
- Radiation Oncology Department & Center for Molecular Imaging, Université catholique de Louvain (UCL), Belgium
| | - Caroline Bouzin
- Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Belgium
| | - Vincent Grégoire
- Radiation Oncology Department & Center for Molecular Imaging, Université catholique de Louvain (UCL), Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Belgium
| | - Benedicte F Jordan
- Biomedical Magnetic Resonance Research Group, Université catholique de Louvain (UCL), Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Université catholique de Louvain (UCL), Belgium.
| |
Collapse
|
38
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
39
|
Predictive value of 18F-FAZA PET imaging for guiding the association of radiotherapy with nimorazole: A preclinical study. Radiother Oncol 2015; 114:189-94. [DOI: 10.1016/j.radonc.2014.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 12/16/2022]
|
40
|
Bol V, Bol A, Bouzin C, Labar D, Lee JA, Janssens G, Porporato PE, Sonveaux P, Feron O, Grégoire V. Reprogramming of tumor metabolism by targeting mitochondria improves tumor response to irradiation. Acta Oncol 2015; 54:266-74. [PMID: 25007226 DOI: 10.3109/0284186x.2014.932006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The Warburg phenotype identified decades ago describes tumor cells with increased glycolysis and decreased mitochondrial respiration even in the presence of oxygen. This particular metabolism also termed 'aerobic glycolysis' reflects an adaptation of tumor cells to proliferation in a heterogeneous tumor microenvironment. Although metabolic alterations in cancer cells are common features, their impact on the response to radiotherapy is not yet fully elucidated. This study investigated the impact of cellular oxygen consumption inhibition on the tumor response to radiotherapy. MATERIAL AND METHODS Warburg-phenotype tumor cells with impaired mitochondrial respiration (MD) were produced and compared in respect to their metabolism to the genetically matched parental cells (WT). After characterization of their metabolism we compared the response of MD cells to irradiation in vivo and in vitro to the genetically matched parental cells (WT). RESULTS We first confirmed that MD cells were exclusively glycolytic while WT cells exhibited mitochondrial respiration. We then used these cells for assessing the response of WT and MD tumors to a single dose of radiation and showed that the in vivo tumor growth delay of the MD group was increased, indicating an increased radiosensitivity compared to WT while the in vitro ability of both cell lines to repair radiation-induced DNA damage was similar. CONCLUSION Taken together, these results indicate that in addition to intrinsic radiosensitivity parameters the tumor response to radiation will also depend on their metabolic rate of oxygen consumption.
Collapse
Affiliation(s)
- Vanesa Bol
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL) , Brussels , Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Verwer EE, Boellaard R, Veldt AAMVD. Positron emission tomography to assess hypoxia and perfusion in lung cancer. World J Clin Oncol 2014; 5:824-844. [PMID: 25493221 PMCID: PMC4259945 DOI: 10.5306/wjco.v5.i5.824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed.
Collapse
|
42
|
Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.
Collapse
Affiliation(s)
- Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
43
|
Tran LBA, Bol A, Labar D, Karroum O, Bol V, Jordan B, Grégoire V, Gallez B. Potential role of hypoxia imaging using 18F-FAZA PET to guide hypoxia-driven interventions (carbogen breathing or dose escalation) in radiation therapy. Radiother Oncol 2014; 113:204-9. [DOI: 10.1016/j.radonc.2014.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/11/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022]
|
44
|
Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 2014; 21:1516-54. [PMID: 24512032 PMCID: PMC4159937 DOI: 10.1089/ars.2013.5378] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor hypoxia is a well-established biological phenomenon that affects the curability of solid tumors, regardless of treatment modality. Especially for head and neck cancer patients, tumor hypoxia is linked to poor patient outcomes. Given the biological problems associated with tumor hypoxia, the goal for clinicians has been to identify moderately to severely hypoxic tumors for differential treatment strategies. The "gold standard" for detecting and characterizing of tumor hypoxia are the invasive polarographic electrodes. Several less invasive hypoxia assessment techniques have also shown promise for hypoxia assessment. The widespread incorporation of hypoxia information in clinical tumor assessment is severely impeded by several factors, including regulatory hurdles and unclear correlation with potential treatment decisions. There is now an acute need for approved diagnostic technologies for determining the hypoxia status of cancer lesions, as it would enable clinical development of personalized, hypoxia-based therapies, which will ultimately improve outcomes. A number of different techniques for assessing tumor hypoxia have evolved to replace polarographic pO2 measurements for assessing tumor hypoxia. Several of these modalities, either individually or in combination with other imaging techniques, provide functional and physiological information of tumor hypoxia that can significantly improve the course of treatment. The assessment of tumor hypoxia will be valuable to radiation oncologists, surgeons, and biotechnology and pharmaceutical companies who are engaged in developing hypoxia-based therapies or treatment strategies.
Collapse
Affiliation(s)
- Joseph C Walsh
- 1 Siemens Molecular Imaging, Inc. , Culver City, California
| | | | | | | | | | | |
Collapse
|
45
|
Standardized uptake value in high uptake area on positron emission tomography with 18F-FRP170 as a hypoxic cell tracer correlates with intratumoral oxygen pressure in glioblastoma. Mol Imaging Biol 2014; 16:127-35. [PMID: 23873661 DOI: 10.1007/s11307-013-0670-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of this study was to clarify the reliability of positron emission tomography (PET) using a new hypoxic cell tracer, 1-(2-[(18)F]fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole ((18)F-FRP170). PROCEDURES Twelve patients with glioblastoma underwent (18)F-FRP170 PET before tumor resection. Mean standardized uptake value (SUV) and normalized SUV were calculated at regions within a tumor showing high (high-uptake area) and relatively low (low-uptake area) accumulations of (18)F-FRP170. In these areas, intratumoral oxygen pressure (tpO2) was measured using microelectrodes during tumor resection. RESULTS Mean tpO2 was significantly lower in the high-uptake area than in the low-uptake area. A significant negative correlation was evident between normalized SUV and tpO2 in the high-uptake area. CONCLUSION The present findings suggest that high accumulation on (18)F-FRP170 PET represents viable hypoxic tissues in glioblastoma.
Collapse
|
46
|
[Metabolic tailoring in radiotherapy for head and neck cancer]. Cancer Radiother 2014; 18:565-71. [PMID: 25179254 DOI: 10.1016/j.canrad.2014.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
Radiotherapy based on functional imaging consists to deliver a heterogeneity dose based on biological proprieties. This approach is termed biologically conformal radiotherapy or dose painting with biological target volume inside the gross tumor volume. Diffusion-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI can also be used to define a specific biological target volume. Three main tracers are used: ((18)F)-fluorodeoxyglucose to target the hypermetabolism, ((18)F)-fluoromizonidazole and ((18)F)- fluoroazomycin arabinoside to target areas of hypoxia. In this review, we give a practical approach to achieving a treatment-guided radiotherapy molecular and the main issues raised by this imaging technique. Despite the provision of all the technological tools to the radiotherapist, this new therapeutic approach is still evaluated in clinical studies to demonstrate a real clinical benefit compared to radiotherapy based on anatomic imaging.
Collapse
|
47
|
Quantitative hypoxia imaging for treatment planning of radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014. [PMID: 24729226 DOI: 10.1007/978-1-4939-0620-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Tumour oxygenation is an important determinant of radiotherapy outcome as it could modulate cellular radiation sensitivity. Advanced PET imaging able to characterise this microenvironmental aspect in vivo might be used to devise counteracting therapies as it could provide information on the severity and the spatial distribution of the hypoxic regions. This study reviews the advantages and limitations of PET for imaging and quantifying tumour hypoxia and proposes a novel approach to obtain absolute levels of hypoxia from PET images through the use of EPR oximetry. This would offer a significant advantage over proposals based on empirical conversions of the intensities in the PET images to relative radiosensitivities. Thus, tumour hypoxia must be taken into account at the stage of treatment planning for photons and particle therapy by accounting for its extent and severity through the use of PET imaging combined with absolute EPR measurements.
Collapse
|
48
|
Servagi-Vernat S, Differding S, Hanin FX, Labar D, Bol A, Lee JA, Grégoire V. A prospective clinical study of ¹⁸F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 2014; 41:1544-52. [PMID: 24570097 DOI: 10.1007/s00259-014-2730-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Hypoxia in head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis and outcome. (18) F-Fluoroazomycin arabinoside (FAZA) is a positron emission tomography (PET) tracer developed to enable identification of hypoxic regions within tumor. The aim of this study was to evaluate the use of (18) F-FAZA-PET for assessment of hypoxia before and during radiation therapy. METHODS Twelve patients with locally advanced HNSCC underwent (18) F-FAZA-PET scans before and at fraction 7 and 17 of concomitant chemo-radiotherapy. A hypoxic voxel was defined as a voxel expressing a standardized uptake value (SUV) equal or above the SUVmean of the posterior contralateral neck muscles plus three standard deviations. The fractional hypoxic volume fraction (FHV) and the spatial move of hypoxic volumes during treatment were analyzed. RESULTS A hypoxic volume could be identified in ten patients before treatment. FAZA-PET FHV varied from 0 to 54.3% and from 0 to 41.4% in the primary tumor and in the involved node, respectively. Six out of these ten patients completed all the FAZA-PET-computed tomography (CT) during the radiotherapy. In all patients, FHV and SUVmax values decreased. All patient presented a spatial move of hypoxic volume, but only three patients had newborn hypoxic voxels after 17 fractions. CONCLUSION This study indicated that (18) F-FAZA-PET could be used to identify and quantify tumor hypoxia before and during concomitant radio-chemotherapy in patients with locally advanced HNSCC. In addition to the information on prognostic value, the use of (18) F-FAZA-PET allowed the delineation of hypoxic volumes for dose escalation protocols. However, due to fluctuation of hypoxia during treatment, repeated scan will have to be performed (i.e. adaptive radiotherapy).
Collapse
Affiliation(s)
- Stéphanie Servagi-Vernat
- Department of Radiation Oncology and Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université catholique de Louvain, St-Luc University Hospital, Brussels, Belgium,
| | | | | | | | | | | | | |
Collapse
|
49
|
Merchant S, Witney TH, Aboagye EO. Imaging as a pharmacodynamic and response biomarker in cancer. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0049-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Improved synthesis of the hypoxia probe 5-deutero-5-fluoro-5-deoxy-azomycin arabinoside (FAZA) as a model process for tritium radiolabeling. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|