1
|
Angelou C, Patallo IS, Doherty D, Romano F, Schettino G. A review of diamond dosimeters in advanced radiotherapy techniques. Med Phys 2024. [PMID: 39221583 DOI: 10.1002/mp.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions. Variability in reported values for field sizes < $<$ 2 × $\times$ 2cm 2 ${\rm cm}^2$ is noted, reflecting the competition between volume averaging and density perturbation effects. PTW's introduction of flashDiamond (fD) holds promise for dosimetric measurements in UHDPP conditions and is reliable for commissioning ultra-high dose rate (UHDR) electron beam systems, pending the clinical validation of the device. Other advancements in diamond detectors, such as in 3D configurations and real-time dose per pulse x-ray detectors, are considered valuable in overcoming challenges posed by modern radiotherapy techniques, alongside relative dosimetry and pre-treatment verifications. The studies discussed collectively provide a comprehensive overview of the evolving landscape of diamond dosimetry in the field of radiotherapy, and offer insights into future directions for research and development in the field.
Collapse
Affiliation(s)
- Christina Angelou
- Department of Physics, University of Surrey, Guildford, UK
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory (NPL), Teddington, UK
| | | | - Daniel Doherty
- Department of Physics, University of Surrey, Guildford, UK
| | - Francesco Romano
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, Catania, Italy
| | - Giuseppe Schettino
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory (NPL), Teddington, UK
| |
Collapse
|
2
|
Höfel S, Liebig P, Fix MK, Drescher M, Zwicker F. Adapting a practical EPR dosimetry protocol to measure output factors in small fields with alanine. J Appl Clin Med Phys 2023; 24:e14191. [PMID: 37922380 PMCID: PMC10691647 DOI: 10.1002/acm2.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2023] Open
Abstract
PURPOSE Modern radiotherapy techniques often deliver small radiation fields. In this work, a practical Electron Paramagnetic Resonance (EPR) dosimetry protocol is adapted and applied to measure output factors (OF) in small fields of a 6 MV radiotherapy system. Correction factors and uncertainties are presented and OFs are compared to the values obtained by following TRS-483 using an ionization chamber (IC). METHODS Irradiations were performed at 10 cm depth inside a water phantom positioned at 90 cm source to surface distance with a 6 MV flattening filter free photon beam of a Halcyon radiotherapy system. OFs for different nominal field sizes (1 × 1, 2 × 2, 3 × 3, 4 × 4, normalized to 10 × 10 cm2 ) were determined with a PinPoint 3D (PTW 31022) IC following TRS-483 as well as with alanine pellets with a diameter of 4 mm and a height of 2.4 mm. EPR readout was performed with a benchtop X-band spectrometer. Correction factors due to volume averaging and due to positional uncertainties were derived from 2D film measurements. RESULTS OFs obtained from both dosimeter types agreed within 0.7% after applying corrections for the volume averaging effect. For the used alanine pellets, volume averaging correction factors of 1.030(2) for the 1 × 1 cm2 field and <1.002 for the larger field sizes were determined. The correction factor for positional uncertainties of 1 mm was in the order of 1.018 for the 1 × 1 cm2 field. Combined relative standard uncertainties uc for the OFs resulting from alanine measurements were estimated to be below 1.5% for all field sizes. For IC measurements, uc was estimated to be below 1.0%. CONCLUSIONS A practical EPR dosimetry protocol is adaptable for precisely measuring OFs in small fields down to 1 × 1 cm2 . It is recommended to consider the effect of positional uncertainties for field sizes <2 × 2 cm2 .
Collapse
Affiliation(s)
- Sebastian Höfel
- Department of Chemistry and Konstanz Research School Chemical BiologyUniversity of KonstanzKonstanzGermany
- Klinik und Praxis für Strahlentherapie am Klinikum KonstanzKonstanzGermany
| | - Pauline Liebig
- Klinik und Praxis für Strahlentherapie am Klinikum KonstanzKonstanzGermany
| | - Michael K. Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical BiologyUniversity of KonstanzKonstanzGermany
| | - Felix Zwicker
- Klinik und Praxis für Strahlentherapie am Klinikum KonstanzKonstanzGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Molecular Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
3
|
Kannan M, Saminathan S, Chandraraj V, Raj DG, Ganesh KM. Evaluation of International Atomic Energy Agency Technical Report Series-483 Detector-specific Output Correction Factor for Various Collimator Systems. J Med Phys 2023; 48:281-288. [PMID: 37969152 PMCID: PMC10642599 DOI: 10.4103/jmp.jmp_59_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 11/17/2023] Open
Abstract
Aim In this study, a 6MV flattening filter (FF) and 6MV FF Free (FFF) photon beam small-field output factors (OF) were measured with various collimators using different detectors. The corrected OFs were compared with the treatment planning system (TPS) calculated OFs. Materials and Methods OF measurements were performed with four different types of collimators: Varian Millennium multi-leaf collimator (MLC), Elekta Agility MLC, Apex micro-MLC (mMLC) and a stereotactic cone. Ten detectors (four ionization chambers and six diodes) were used to perform the OF measurements at a depth of 10 cm with a source-to-surface distance of 90 cm. The corrected OF was calculated from the measurements. The corrected OFs were compared with existing TPS-generated OFs. Results The use of detector-specific output correction factor (OCF) in the PTW diode P detector reduced the OF uncertainty by <4.1% for 1 cm × 1 cm Sclin. The corrected OF was compared with TPS calculated OF; the maximum variation with the IBA CC01 chamber was 3.75%, 3.72%, 1.16%, and 0.90% for 5 mm stereotactic cone, 0.49 cm × 0.49 cm Apex mMLC, 1 cm × 1 cm Agility MLC, and 1 cm × 1 cm Millennium MLC, respectively. Conclusion The technical report series-483 protocol recommends that detector-specific OCF should be used to calculate the corrected OF from the measured OF. The implementation of OCF in the TPS commissioning will reduce the small-field OF variation by <3% for any type of detector.
Collapse
Affiliation(s)
- Mageshraja Kannan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Sathiyan Saminathan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Varatharaj Chandraraj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - D. Gowtham Raj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - K. M. Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Kannan M, Saminathan S, Chandraraj V, Gowtham Raj D, Ganesh KM. Determination of small-field output factors for beam-matched linear accelerators using various detectors and comparison of detector-specific output correction factors using IAEA Technical Report Series 483 protocol. Rep Pract Oncol Radiother 2023; 28:241-254. [PMID: 37456703 PMCID: PMC10348327 DOI: 10.5603/rpor.a2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Beam matching is widely used to ensure that linear accelerators used in radiotherapy have equal dosimetry characteristics. Small-field output factors (OF) were measured using different detectors infour beam-matched linear accelerators and the measured OFs were compared with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Materials and methods Three Elekta Versa HDTM and one Elekta InfinityTMlinear accelerators with photon energies of 6 MV flattening filter (FF), 10 MVFF, 6 MV flattening filter free (FFF) and 10 MVFFF were used in this study. All the Linac'swere beam-matched, Dosimetry beam data were ± 1% compare with Reference Linac. Ten different type of detectors (four ionizationchambers and six diode detectors) were used for small-field OF measurements. The OFs were measured for field sizes of 1 × 1 to 10 × 10 cm2, and normalized to 10 × 10 cm2 field size. The uncorrected and corrected OFs were calculated from these measurements. The corrected OF was compare with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Results The small-field corrected and Uncorrected OF variations among the linear accelerators was within 1% for all energies and detectors. An increase in field size led to a reduction in the difference between OFs among the detectors, which was the case for all energies. The RSD values decreased with increasing field size. The TRS 483 provided Detector-specificoutput-correction factor (OCF) reduced uncertainty in small-field measurements. Conclusion It is necessary to implement the OF-correction of small fields in a TPS. Special care must be taken to incorporate the corrected small-field OF in a TPS.
Collapse
Affiliation(s)
- Mageshraja Kannan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Sathiyan Saminathan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Varatharaj Chandraraj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - D Gowtham Raj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - K M Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Kawata K, Ono T, Hirashima H, Tsuruta Y, Fujimoto T, Nakamura M, Nakata M. Effect of angular dependence for small-field dosimetry using seven different detectors. Med Phys 2023; 50:1274-1289. [PMID: 36583601 DOI: 10.1002/mp.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Small-field dosimetry is challenging for radiotherapy dosimetry because of the loss of lateral charged equilibrium, partial occlusion of the primary photon source by the collimating devices, perturbation effects caused by the detector materials and their design, and the detector size relative to the radiation field size, which leads to a volume averaging effect. Therefore, a suitable tool for small-field dosimetry requires high spatial resolution, tissue equivalence, angular independence, and energy and dose rate independence to achieve sufficient accuracy. Recently, with the increasing use of combinations of coplanar and non-coplanar beams for small-field dosimetry, there is a need to clarify angular dependence for dosimetry where the detector is oriented at various angles to the incident beam. However, the effect of angular dependence on small-field dosimetry with coplanar and non-coplanar beams has not been fully clarified. PURPOSE This study clarified the effect of angular dependence on small-field dosimetry with coplanar and non-coplanar beams using various detectors. METHODS Seven different detectors were used: CC01, RAZOR, RAZOR Nano, Pinpoint 3D, stereotactic field diode (SFD), microSilicon, and microDiamond. All measurements were taken using a TrueBeam STx with 6 MV and 10 MV flattening filter-free (FFF) energies using a water-equivalent spherical phantom with a source-to-axis distance of 100 cm. The detector was inserted in a perpendicular orientation, and the gantry was rotated at 15° increments from the incidence beam angle. A multi-leaf collimator (MLC) with four field sizes of 0.5 × 0.5, 1 × 1, 2 × 2, and 3 × 3 cm2 , and four couch angles from 0°, 30°, 60°, and 90° (coplanar and non-coplanar) were adopted. The angular dependence response (AR) was defined as the ratio of the detector response at a given irradiation gantry angle normalized to the detector response at 0°. The maximum AR differences were calculated between the maximum and minimum AR values for each detector, field size, energy, and couch angle. RESULTS The maximum AR difference for the coplanar beam was within 3.3% for all conditions, excluding the maximum AR differences in 0.5 × 0.5 cm2 field for CC01 and RAZOR. The maximum AR difference for non-coplanar beams was within 2.5% for fields larger than 1 × 1 cm2 , excluding the maximum AR differences for RAZOR Nano, SFD, and microSilicon. The Pinpoint 3D demonstrated stable AR tendencies compared to other detectors. The maximum difference was within 2.0%, except for the 0.5 × 0.5 cm2 field and couch angle at 90°. The tendencies of AR values for each detector were similar when using different energies. CONCLUSION This study clarified the inherent angular dependence of seven detectors that were suitable for small-field dosimetry. The Pinpoint 3D chamber had the smallest angular dependence of all detectors for the coplanar and non-coplanar beams. The findings of this study can contribute to the calculation of the AR correction factor, and it may be possible to adapt detectors with a large angular dependence on coplanar and non-coplanar beams. However, note that the gantry sag and detector-specific uncertainties increase as the field size decreases.
Collapse
Affiliation(s)
- Kohei Kawata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Tsuruta
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Nakata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
6
|
Momeni Harzanji Z, Larizadeh MH, Namiranian N, Nickfarjam A. Evaluation and Comparison of Dosimetric Characteristics of Semiflex ®3D and Microdiamond in Relative Dosimetry under 6 and 15 MV Photon Beams in Small Fields. J Biomed Phys Eng 2022; 12:477-488. [PMID: 36313410 PMCID: PMC9589081 DOI: 10.31661/jbpe.v0i0.2008-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/14/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND In modern radiotherapy techniques, the frequently small and non-uniformed fields can increase treatment efficiency due to their highly conformal dose distribution. Particular features including lack of Lateral Charge Particle Equilibrium (LCPE) lead to detectors with high resolution since any error in obtained dosimetric data could cause patient mistreatments. OBJECTIVE This study aims to evaluate and compare two small detectors (Semiflex®3D and microdiamond) dosimetric characteristics in small field relative dosimetry. MATERIAL AND METHODS In this experimental study, the dosimetric properties of Semiflex®3D and microdiamond were assessed under 6 and 15 MV photon beams. The linearity and stability of the detector's response and dose rate were measured. Square-field sizes ranging from 0.6×0.6 - 5×5 cm2 were used for obtaining percentage depth dose curves (PDDs) and in-plane profiles. The angular and temperature dependence of both detectors' responses were also studied. RESULTS The detector response shows good stability, no deviation from linearity, and low dose rate dependence (≤1.6%). PDDs and in-plan profiles of both detectors are in good agreement and no significant difference was observed except for the high dose gradient regions (P-value≤0.017). Both detectors demonstrated low angular dependence (<0.3%) with temperature dependence lower than 1% for both detectors. CONCLUSION The results indicate both investigated detectors were well performed in small field relative dosimetry and for measuring penumbra, it is better to use microdiamond detector.
Collapse
Affiliation(s)
- Zahra Momeni Harzanji
- MSc, Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Larizadeh
- MD, Department of Radiation Oncology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Namiranian
- MD, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Nickfarjam
- PhD, Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Duchaine J, Markel D, Bouchard H. Efficient dose-rate correction of silicon diode relative dose measurements. Med Phys 2022; 49:4056-4070. [PMID: 35315526 DOI: 10.1002/mp.15628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 12/21/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Silicon diodes are often the detector of choice for relative dose measurements, particularly in the context of radiotherapy involving small photon beams. However, a major drawback lies in their dose-rate dependency. Although ionization chambers are often too large for small field output factor measurements, they are valuable instruments to provide reliable percent-depth dose curves in reference beams. The aim of this work is to propose a practical and accurate method for the characterization of silicon diode dose-rate dependence correction factors using ionization chamber measurements as a reference. METHODS The robustness of ionization chambers for percent-depth dose measurements is used to quantify the dose-rate dependency of a diode detector. A mathematical formalism, which exploits the error induced in percent-depth ionization curves for diodes by their dose-rate dependency, is developed to derive a dose-rate correction factor applicable to diode relative measurements. The method is based on the definition of the recombination correction factor given in the addendum to TG 51 and is applied to experimental measurements performed on a CyberKnife M6 radiotherapy unit using a PTW 60012 diode detector. A measurement-based validation is provided by comparing corrected percent-depth ionization curves to measurements performed with a PTW 60019 diamond detector which does not exhibit dose-rate dependence. RESULTS Results of dose-rate correction factors for percent-depth ionization curves, off-axis ratios, tissue-phantom ratios and small field output factors are coherent with the expected behavior of silicon diode detectors. For all considered setups and field sizes, the maximum correction and the maximum impact of the uncertainties induced by the correction are obtained for off-axis ratios for the 60 mm collimator, with a correction of 2.5% and an uncertainty of 0.34%. For output factors, corrections range from 0.33% to 0.82% for all field sizes considered, and increase with the reduction of the field size. Comparison of percent-depth ionization curves corrected for dose-rate and for in-depth beam quality variations illustrate excellent agreement with measurements performed using the diamond detector. CONCLUSIONS The proposed method allows the efficient and precise correction of the dose-rate dependence of silicon diode detectors in the context of clinical relative dosimetry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jasmine Duchaine
- Département de physique, Université de Montréal, Campus MIL, 1375 Av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Daniel Markel
- Département de radio-oncologie, Centre hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, QC, H2X 3E4, Canada
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Campus MIL, 1375 Av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, QC, H2X 3E4, Canada
| |
Collapse
|
8
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Dwivedi S, Kansal S, Dangwal VK, Bharati A, Shukla J. Dosimetry of a 6 MV flattening filter-free small photon beam using various detectors. Biomed Phys Eng Express 2021; 7. [PMID: 33930875 DOI: 10.1088/2057-1976/abfd80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 11/12/2022]
Abstract
The present study aimed to dosimetrically evaluate the small-fields of a 6 MV flattening filter-free (FFF) photon beam using different detectors.The 6 MV FFF photon beam was used for measurement of output factor, depth dose, and beam profile of small-fields of sizes 0.6 cm × 0.6 cm to 6.0 cm × 6.0 cm. The five detectors used were SNC125c, PinPoint, EDGE, EBT3, and TLD-100. All measurements were performed as per the International Atomic Energy Agency TRS 483 protocol. Output factors measured using different detectors as direct reading ratios showed significant variation for the smallest fields, whereas after correcting them according to TRS 483, all sets of output factors were nearly compatible with each other when measurement uncertainty was also considered. The beam profile measured using SNC125c showed the largest penumbra for all field sizes, whereas the smallest was recorded with EDGE. Compared with that of EBT3, the surface dose was found to be much higher for all the other detectors. PinPoint, EBT3, TLD-100, and EDGE were found to be the detector of choice for small-field output factor measurements; however, PinPoint needs special attention when used for the smallest field size (0.6 cm × 0.6 cm). EDGE and EBT3 are optimal for measuring beam profiles. EBT3, PinPoint, and EDGE can be selected for depth dose measurements, and EBT3 is suitable for surface dose estimation.
Collapse
Affiliation(s)
- Shekhar Dwivedi
- Department of Medical Physics, Tata Memorial Centre, Homi Bhabha Cancer Hospital and Research Centre, Mullanpur, Mohali, Punjab, 140901, India.,Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Sandeep Kansal
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vinod Kumar Dangwal
- Department of Radiotherapy, Government Medical College, Patiala, Punjab, 147001, India
| | - Avinav Bharati
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| | - Jooli Shukla
- Department of Physics, Dr Bhimrao Ambedkar University, Agra, Uttar Pradesh, 282004, India
| |
Collapse
|
10
|
Hachemi T, Chaoui ZEA, Khoudri S. PENELOPE simulations and experiment for 6 MV clinac iX accelerator for standard and small static fields. Appl Radiat Isot 2021; 174:109749. [PMID: 33940355 DOI: 10.1016/j.apradiso.2021.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
The goal of this work was to produce accurate data for use as a 'gold standard' and a valid tool for measurements in reference dosimetry for standard/small static field sizes from 0.5 × 0.5 to 10 × 10 cm2. It is based on the accuracy of the phase space files (PSFs) as a key quantity. Because the IAEA general public database provides few PSFs for the Varian iX, we simulated the head through Monte Carlo (MC) simulations and calculated validated PSFs for 12 square field sizes including seven for small static fields. The resulting dosimetric calculations allowed us to reach a good level of agreement in comparison to our relative and absolute dose measurements performed on a Varian iX in water phantom. Measured and MC calculated output factors were investigated for different detectors. Based on the TRS 483 formalism and MC (PENELOPE/penEasy), we calculated output correction factors for the unshielded Diode-E (T60017) and the PinPoint-3D (T31016) micro-chamber according to manufacturers' blueprints. Our MC results were in agreement with the recommended data; they compete with recent measurements and MC simulations and in particular the TRS 483 MC data obtained from similar simulations. Moreover, our MC results provide supplemental data in comparison to TRS 483 data in particular for the PinPoint-3D (T31016). We suggest our MC output correction factors as new datasets for future TRS compilations. The work was substantial, used different robust MC strategies depending on the scoring regions, and led in most cases to uncertainties of less than 1%.
Collapse
Affiliation(s)
- Taha Hachemi
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria.
| | - Zine-El-Abidine Chaoui
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria
| | - Saad Khoudri
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria; Centre de Lutte Contre le Cancer de Sétif, Algeria
| |
Collapse
|
11
|
S A P, A A, D S S. A Monte Carlo Study of Photon Beam Characteristics on Various Linear Accelerator Filters. J Biomed Phys Eng 2020; 10:613-622. [PMID: 33134221 PMCID: PMC7557471 DOI: 10.31661/jbpe.v0i0.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
Abstract
Background: Intensity Modulated Radiation Therapy (IMRT) technique is an advanced method of radiotherapy leading into the development of Flattening Filter-Free (FFF) medical linear accelerators (Linacs). Monte Carlo simulation has been a standard method for calculation of particle transport due to precise geometry and material specifications. Objective: This study is to obtain the design optimization of Flattening Filter Free (FFF) for 6 MV Linac machine Material and Methods: In this simulating study, EGSnrc user code was used to simulate particles emitted from head of linac 6MV Varian to achieve the most suitable
filter in FFF linac design. Monte Carlo simulation results of the PDD and profile, on the 10 × 10 cm2 field, were compared with the measurements. Differences in small profile beams from Monte Carlo simulation were also evaluated between FF and FFF linac. Results: The spectrum on Monte Carlo simulation in isocenter was compared with Treatment Planning System (TPS) for each filter variation.
The slight differences of average spectrum are simulated using 2 mm copper filter and FakeBeam with -1.52 ± 3.82% and -3.13 ± 3.61%.
Whereas, for PDD and profiles, each variation has an average difference of 7.10 ± 0.70% and -5.99 ± 1.39%. Conclusion: FakeBeam filter is a proper filter for the use of linac design 6MV Varian. It is necessary to decrease the kinetic energy of electrons to perform MC simulations on FFF linac.
Collapse
Affiliation(s)
- Pawiro S A
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Azzi A
- MSc, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Soejoko D S
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| |
Collapse
|
12
|
Gul A, Fukuda S, Mizuno H, Taku N, Kakakhel MB, Mirza SM. Feasibility study of using Stereotactic Field Diode for field output factors measurement and evaluating three new detectors for small field relative dosimetry of 6 and 10 MV photon beams. J Appl Clin Med Phys 2020; 21:23-36. [PMID: 33078544 PMCID: PMC7700919 DOI: 10.1002/acm2.13007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Abstract
This study assesses the feasibility of using stereotactic field diode (SFD) as an alternate to gaf chromic films for field output factor (FF) measurement and further evaluating three new detectors for small field dosimetry. Varian 21EX linear accelerator was used to generate 6 and 10 MV beams of nominal square fields ranging from 0.5 × 0.5 cm2 to 10 × 10 cm2. One passive (EBT3 films) and five active detectors including IBA RAZOR diode(RD), SFD, RAZOR nanochamber (RNC), pinpoint chamber (PTW31023), and semiflex chamber (PTW31010) were employed. FFs were measured using films and SFD while beam profiles and percentage depth dose (PDD) distribution were acquired with active detectors. Polarity (kpol) and recombination (ks) effects of ion chambers were determined and corrected for output ratio measurement. Correction factors (CF) of RD, RNC, and PTW31023 in axial and radial orientation were also measured. Stereotactic field diode measured FFs have shown good agreement with films (with difference of <1%). RD and RNC measured beam profiles were within 3% deviation from the SFD values. Variation in kpol with field size for RNC and PTW31023 was up to 4% and 0.4% (for fields ≥ 1 × 1 cm2), respectively, while variation in ks of PTW31023 was <0.2 %. The maximum values of CF have been calculated to be 5.2%, 2.0%, 13.6%, and 25.5% for RD, RNC, PTW31023‐axial, and PTW31023‐radial respectively. This study concludes that SFD with appropriate CFs as given in TRS 483 may be used for measuring FFs as an alternate to EBT3 films. Whereas RD and RNC may be used for beam profile and PDD measurement in small fields. Considering the limit of usability of 2%, RNC may be used without CF for FF measurement in the smallfields investigated in this study.
Collapse
Affiliation(s)
- Attia Gul
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shigekazu Fukuda
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hideyuki Mizuno
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nakaji Taku
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - M Basim Kakakhel
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sikander M Mirza
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
13
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Lechner W, Primeßnig A, Nenoff L, Wesolowska P, Izewska J, Georg D. The influence of errors in small field dosimetry on the dosimetric accuracy of treatment plans. Acta Oncol 2020; 59:511-517. [PMID: 31694438 DOI: 10.1080/0284186x.2019.1685127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Dosimetric effects of inaccuracies of output factors (OFs) implemented in treatment planning systems (TPSs) were investigated.Materials and methods: Modified beam models (MBM) for which the OFs of small fields (down to 1 × 1 cm2) were increased by up to 12% compared to the original beam models (OBM) were created for two TPSs. These beam models were used to recalculate treatment plans of different complexity. Treatment plans using stereotactic 3D-conformal (s3D-CRT) for brain metastasis as well as VMAT plans for head and neck and prostate cancer patients were generated. Dose distributions calculated with the MBM and the OBM were compared to measured dose distributions acquired using film dosimetry and a 2D-detector-array. For the s3D-CRT plans the calculated and measured dose at the isocenter was evaluated. For VMAT, gamma pass rates (GPRs) were calculated using global gamma index with 3%/3 mm, 2%/3 mm, 1%/3 mm and 2%/2 mm with a 20% threshold. Contribution of small fields to the total fluence was expressed as the ratio (F) of fluence trough leaf openings smaller than 2 cm to the total fluence.Results: Using film dosimetry for the s3D-CRT plans, the average of the ratio of calculated dose to measured dose at the isocenter was 1.01 and 1.06 for the OBM and MBM model, respectively. A significantly lower GPR of the MBM compared to the OBM was only found for the localized prostate cases (F = 12.4%) measured with the 2D-detector-array and an acceptance criterion of 1%/3 mm.Conclusion: The effects of uncertainties in small field OFs implemented in TPSs are most pronounced for s3D-CRT cases and can be clearly identified using patient specific quality assurance. For VMAT these effects mainly remain undetected using standard patient specific quality assurance. Using tighter acceptance criteria combined with an analysis of the fluence generated by small fields can help identifying inaccuracies of OFs implemented in TPSs.
Collapse
Affiliation(s)
- Wolfgang Lechner
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Alexander Primeßnig
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Lena Nenoff
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Paulina Wesolowska
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Joanna Izewska
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Rose MS, Tirpak L, Van Casteren K, Zack J, Simon T, Schoenfeld A, Simon W. Multi‐institution validation of a new high spatial resolution diode array for SRS and SBRT plan pretreatment quality assurance. Med Phys 2020; 47:3153-3164. [DOI: 10.1002/mp.14153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark S. Rose
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | - Lena Tirpak
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | | | - Jeff Zack
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | - Tom Simon
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | | | - William Simon
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| |
Collapse
|
16
|
Improving the accuracy of converting dose to medium to dose to water algorithms in small megavoltage photon fields in dose to medium based treatment planning systems. Phys Med 2020; 71:62-70. [DOI: 10.1016/j.ejmp.2020.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 11/18/2022] Open
|
17
|
Casar B, Gershkevitsh E, Mendez I, Jurković S, Saiful Huq M. Output correction factors for small static fields in megavoltage photon beams for seven ionization chambers in two orientations - perpendicular and parallel. Med Phys 2020; 47:242-259. [PMID: 31677278 PMCID: PMC7003763 DOI: 10.1002/mp.13894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The goal of the present work was to provide a large set of detector-specific output correction factors for seven small volume ionization chambers on two linear accelerators in four megavoltage photon beams utilizing perpendicular and parallel orientation of ionization chambers in the beam for nominal field sizes ranging from 0.5 cm2 × 0.5 cm2 to 10 cm2 × 10 cm2 . The present study is the second part of an extensive research conducted by our group. METHODS Output correction factors k Q clin , Q ref f clin , f ref were experimentally determined on two linacs, Elekta Versa HD and Varian TrueBeam for 6 and 10 MV beams with and without flattening filter for nine square fields ranging from 0.5 cm2 × 0.5 cm2 to 10 cm2 × 10 cm2 , for seven mini and micro ionization chambers, IBA CC04, IBA Razor, PTW 31016 3D PinPoint, PTW 31021 3D Semiflex, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16. An Exradin W1 plastic scintillator and EBT3 radiochromic films were used as the reference detectors. RESULTS For all ionization chambers, values of output correction factors k Q clin , Q ref f clin , f ref were lower for parallel orientation compared to those obtained in the perpendicular orientation. Five ionization chambers from our study set, IBA Razor, PTW 31016 3D PinPoint, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16, fulfill the requirement recommended in the TRS-483 Code of Practice, that is, 0.95 < k Q clin , Q ref f clin , f ref < 1.05 , down to the field size 0.8 cm2 × 0.8 cm2 , when they are positioned in parallel orientation; two of the ionization chambers, IBA Razor and PTW 31023 PinPoint, satisfy this condition down to the field size of 0.5 cm2 × 0.5 cm2 . CONCLUSIONS The present paper provides experimental results of detector-specific output correction factors for seven small volume ionization chambers. Output correction factors were determined in 6 and 10 MV photon beams with and without flattening filter down to the square field size of 0.5 cm2 × 0.5 cm2 for two orientations of ionization chambers - perpendicular and parallel. Our main finding is that output correction factors are smaller if they are determined in a parallel orientation compared to those obtained in a perpendicular orientation for all ionization chambers regardless of the photon beam energy, filtration, or linear accelerator being used. Based on our findings, we recommend using ionization chambers in parallel orientation, to minimize corrections in the experimental determination of field output factors. Latter holds even for field sizes below 1.0 cm2 × 1.0 cm2 , whenever necessary corrections remain within 5%, which was the case for several ionization chambers from our set. TRS-483 recommended perpendicular orientation of ionization chambers for the determination of field output factors. The present study presents results for both perpendicular and parallel orientation of ionization chambers. When validated by other researchers, the present results for parallel orientation can be considered as a complementary dataset to those given in TRS-483.
Collapse
Affiliation(s)
- Božidar Casar
- Department for Dosimetry and Quality of Radiological ProceduresInstitute of Oncology LjubljanaLjubljanaSlovenia
| | | | - Ignasi Mendez
- Department for Dosimetry and Quality of Radiological ProceduresInstitute of Oncology LjubljanaLjubljanaSlovenia
| | - Slaven Jurković
- Medical Physics DepartmentUniversity Hospital RijekaRijekaCroatia
- Department of Physics and BiophysicsFaculty of MedicineUniversity of RijekaRijekaCroatia
| | - M. Saiful Huq
- Department of Radiation OncologyUniversity of Pittsburgh School of Medicine and UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
18
|
Hartmann GH, Zink K. A Monte Carlo study on the PTW 60019 microDiamond detector. Med Phys 2019; 46:5159-5172. [DOI: 10.1002/mp.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS) University of Applied Sciences Giessen 35390Giessen Germany
- Department for Radiotherapy and Radiooncology University Medical Center Giessen‐Marburg 35043Marburg Germany
- Frankfurt Institute for Advanced Studies (FIAS), Goethe‐University 60438Frankfurt Germany
| |
Collapse
|
19
|
Russo S, Masi L, Francescon P, Dicarolo P, De Martin E, Frassanito C, Redaelli I, Vigorito S, Stasi M, Mancosu P. Multi-site evaluation of the Razor stereotactic diode for CyberKnife small field relative dosimetry. Phys Med 2019; 65:40-45. [DOI: 10.1016/j.ejmp.2019.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022] Open
|
20
|
Girardi A, Fiandra C, Giglioli FR, Gallio E, Ali OH, Ragona R. Small field correction factors determination for several active detectors using a Monte Carlo method in the Elekta Axesse linac equipped with circular cones. ACTA ACUST UNITED AC 2019; 64:11NT01. [DOI: 10.1088/1361-6560/ab1f26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Monasor Denia P, Castellet García MDC, Manjón García C, Quirós Higueras JD, de Marco Blancas N, Bonaque Alandí J, Juan Senabre XJ, Santos Serra A, López-Tarjuelo J. Comparison of detector performance in small 6 MV and 6 MV FFF beams using a Versa HD accelerator. PLoS One 2019; 14:e0213253. [PMID: 30856183 PMCID: PMC6411166 DOI: 10.1371/journal.pone.0213253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/18/2019] [Indexed: 11/18/2022] Open
Abstract
1. BACKGROUND & PURPOSE Investigate the applicability of a series of detectors in small field dosimetry and the possible differences between their responses to FF and FFF beams. This work extends upon the series of detectors used by other authors to also include metal-oxide-semiconductor field-effect transistors (MOSFETs) detectors and radiochromic film. We also included a later correction of output factors (OFs) recommended by the recently published IAEA´s code of practice TRS 483 on dosimetry of small static fields used in external beam radiotherapy. 2. MATERIALS & METHODS The OFs, profiles, and PDDs of 6 MV and 6 MV FFF beams were measured with 11 different detectors using field sizes between 0.6 × 0.6 cm2 and 10 × 10 cm2. 3. RESULTS The OFs of the FFF beams were lower than those of the FF beams for field sizes larger than 3 × 3 cm2 but higher for field sizes smaller than 3 × 3 cm2. After applying the IAEA´s TRS 483 corrections, the final OFs were compatible with our initial results when considering uncertainties involved. Small-volume detectors are preferable for measuring the penumbra of these small fields where this attribute is higher in the crossline direction than in the inline direction. The R100 of equivalent-quality FFF beams was higher compared to the corresponding flattened beams. 4. CONCLUSIONS We observed no difference for the dose responses between 6 MV and 6 MV FFF beams for any of the detectors. OF results, profiles and PDDs were clearly consistent with the previously published literature regarding the Versa HD linac. Correcting our first OFs, taken as ratio of detector charges, with the IAEA´s TRS 483 corrections to obtain the final OFs, did not make the former significantly different.
Collapse
Affiliation(s)
- Paula Monasor Denia
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| | | | - Carla Manjón García
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| | - Juan David Quirós Higueras
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| | - Noelia de Marco Blancas
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| | - Jorge Bonaque Alandí
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| | - Xavier Jordi Juan Senabre
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| | - Agustín Santos Serra
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| | - Juan López-Tarjuelo
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España
| |
Collapse
|
22
|
Casar B, Gershkevitsh E, Mendez I, Jurković S, Huq MS. A novel method for the determination of field output factors and output correction factors for small static fields for six diodes and a microdiamond detector in megavoltage photon beams. Med Phys 2018; 46:944-963. [PMID: 30521073 PMCID: PMC7379629 DOI: 10.1002/mp.13318] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/04/2022] Open
Abstract
Purpose The goal of this work is to provide a large and consistent set of data for detector‐specific output correction factors, kQclin,Qreffclin,fref, for small static fields for seven solid‐state detectors and to determine field output factors, ΩQclin,Qreffclin,fref, using EBT3 radiochromic films and W1 plastic scintillator as reference detectors on two different linear accelerators and four megavoltage photon beams. Consistent measurement conditions and recommendations given in the International Code of Practice TRS‐483 for small‐field dosimetry were followed throughout the study. Methods ΩQclin,Qreffclin,fref were determined on two linacs, Elekta Versa HD and Varian TrueBeam, for 6 and 10 MV beams with and without flattening filter and for nine fields ranging from 0.5 × 0.5 cm2 to 10 × 10 cm2. Signal readings obtained with EBT3 radiochromic films and W1 plastic scintillator were fitted by an analytical function. Volume averaging correction factors, determined from two‐dimensional (2D) dose matrices obtained with EBT3 films and fitted to bivariate Gaussian function, were used to correct measured signals. kQclin,Qreffclin,fref were determined empirically for six diodes, IBA SFD, IBA Razor, PTW 60008 P, PTW 60012 E, PTW 60018 SRS, and SN EDGE, and a PTW 60019 microDiamond detector. Results Field output factors and detector‐specific kQclin,Qreffclin,fref are presented in the form of analytical functions as well as in the form of discrete values. It is found that in general, for a given linac, small‐field output factors need to be determined for every combination of beam energy and filtration (WFF or FFF) and field size as the differences between them can be statistically significant (P < 0.05). For different beam energies, the present data for kQclin,Qreffclin,fref are found to differ significantly (P < 0.05) from the corresponding data published in TRS‐483 mostly for the smallest fields (<1.5 cm). For the PTW microDiamond detector, statistically significant differences (P < 0.05) between kQclin,Qreffclin,fref values were found for all investigated beams on an Elekta Versa HD linac for field sizes 0.5 × 0.5 cm2 and 0.8 × 0.8 cm2. Significant differences in kQclin,Qreffclin,fref between beams of a given energy but with and without flattening filters are found for measurements made in small fields (<1.5 cm) at a given linac. Differences in kQclin,Qreffclin,fref are also found when measurements are made at different linacs using the same beam energy filtration combination; for the PTW microDiamond detector, these differences were found to be around 6% and were considered as significant. Conclusions Selection of two reference detectors, EBT3 films and W1 plastic scintillator, and use of an analytical function, is a novel approach for the determination of ΩQclin,Qreffclin,fref for small static fields in megavoltage photon beams. Large set of kQclin,Qreffclin,fref data for seven solid‐state detectors and four beam energies determined on two linacs by a single group of researchers can be considered a valuable supplement to the literature and the TRS‐483 dataset.
Collapse
Affiliation(s)
- Božidar Casar
- Department for Dosimetry and Quality of Radiological Procedures, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Eduard Gershkevitsh
- Medical Physics Service, North Estonia Medical Centre, J. Sütiste tee 19, 13419, Tallinn, Estonia
| | - Ignasi Mendez
- Department for Dosimetry and Quality of Radiological Procedures, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Slaven Jurković
- Medical Physics Department, University Hospital Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Comments on the
TRS
‐483 protocol on small field dosimetry. Med Phys 2018; 45:5666-5668. [DOI: 10.1002/mp.13236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/07/2022] Open
|
24
|
Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghzifene A. Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS‐483, the IAEA–AAPM international Code of Practice for reference and relative dose determination. Med Phys 2018; 45:e1123-e1145. [DOI: 10.1002/mp.13208] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hugo Palmans
- Medical Radiation Science National Physical Laboratory Teddington TW11 0LWUK
- Department of Medical Physics EBG MedAustron GmbH A‐2700Wiener Neustadt Austria
| | - Pedro Andreo
- Department of Medical Physics and Nuclear Medicine Karolinska University Hospital SE‐17176Stockholm Sweden
| | - M. Saiful Huq
- Department of Radiation Oncology University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center Pittsburgh PA15232USA
| | - Jan Seuntjens
- Medical Physics Unit McGill University Montréal QCH3A 0G4Canada
| | - Karen E. Christaki
- Dosimetry and Medical Radiation Physics Section International Atomic Energy Agency A‐1400Vienna Austria
| | - Ahmed Meghzifene
- Dosimetry and Medical Radiation Physics Section International Atomic Energy Agency A‐1400Vienna Austria
| |
Collapse
|
25
|
Garnier N, Amblard R, Villeneuve R, Haykal R, Ortholan C, Colin P, Gérard A, Belhomme S, Mady F, Benabdesselam M, Serrano B. Detectors assessment for stereotactic radiosurgery with cones. J Appl Clin Med Phys 2018; 19:88-98. [PMID: 30216702 PMCID: PMC6236831 DOI: 10.1002/acm2.12449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 12/03/2022] Open
Abstract
The purpose of this work is to assess eight detectors performance for output factor (OF), percent depth dose (PDD), and beam profiles in a 6‐MV Clinac stereotactic radiosurgery mode for cone irradiation using Monte Carlo simulation as reference. Cones with diameters comprised between 30 and 4 mm have been studied. The evaluated detectors were ionization chambers: pinpoint and pinpoint 3D, diodes: SRS, P and E, Edge, MicroDiamond and EBT3 radiochromic films. The results showed that pinpoints underestimate OF up to −2.3% for cone diameters ≥10 mm and down to −12% for smaller cones. Both nonshielded (SRS and E) and shielded diodes (P and Edge) overestimate the OF respectively up to 3.3% and 5.2% for cone diameters ≥10 mm and in both cases more than 7% for smaller cones. MicroDiamond slightly overestimates the OF, 3.7% for all the cones and EBT3 film is the closest to Monte Carlo with maximum difference of ±1% whatever the cone size is. For the profiles and the PDD, particularly for the small cones, the size of the detector predominates. All diodes and EBT3 agree with the simulation within ±0.2 mm for beam profiles determination. For PDD curve all the active detectors response agree with simulation up to 1% for all the cones. EBT3 is the more accurate detector for beam profiles and OF determinations of stereotactic cones but it is restrictive to use. Due to respectively inappropriate size of the sensitive volume and composition, pinpoints and diodes do not seem appropriate without OF corrective factors below 10 mm diameter cone. MicroDiamond appears to be the best detector for OF determination regardless all cones. For off‐axis measurements, the size of the detector predominates and for PDD all detectors give promising results.
Collapse
Affiliation(s)
- Nicolas Garnier
- Medical Physics Department, Princess Grace Hospital Center, Monaco, Monaco.,Institut de Physique de Nice, Côte d'Azur University, Parc Valrose, Nice, France
| | - Régis Amblard
- Medical Physics Department, Princess Grace Hospital Center, Monaco, Monaco
| | - Rémy Villeneuve
- Medical Physics Department, Princess Grace Hospital Center, Monaco, Monaco
| | - Rodolphe Haykal
- Medical Physics Department, Princess Grace Hospital Center, Monaco, Monaco
| | - Cécile Ortholan
- Radiotherapy Department, Princess Grace Hospital Center, Monaco, Monaco
| | - Philippe Colin
- Radiotherapy Department, Princess Grace Hospital Center, Monaco, Monaco
| | - Anaïs Gérard
- Medical Physics Department, Centre Antoine Lacassagne, Nice, France
| | - Sarah Belhomme
- Medical Physics Department, Institut Bergonié, Bordeaux, France
| | - Franck Mady
- Institut de Physique de Nice, Côte d'Azur University, Parc Valrose, Nice, France
| | - Mourad Benabdesselam
- Institut de Physique de Nice, Côte d'Azur University, Parc Valrose, Nice, France
| | - Benjamin Serrano
- Medical Physics Department, Princess Grace Hospital Center, Monaco, Monaco
| |
Collapse
|
26
|
Alhakeem E, Zavgorodni S. Output and ($k_{{{Q}_{{\rm clin},}}{{Q}_{{\rm msr}}}}^{{{\,f}_{{\rm clin},}}{{f}_{{\rm msr}}}}$ ) correction factors measured and calculated in very small circular fields for microDiamond and EFD-3G detectors. ACTA ACUST UNITED AC 2018; 63:155002. [DOI: 10.1088/1361-6560/aacfb2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Shukaili KA, Corde S, Petasecca M, Pereveratylo V, Lerch M, Jackson M, Rosenfeld A. "Characterization of ELEKTA SRS cone collimator using high spatial resolution monolithic silicon detector array". J Appl Clin Med Phys 2018; 19:114-124. [PMID: 29790261 PMCID: PMC6036391 DOI: 10.1002/acm2.12345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To investigate the accuracy of the dosimetry of radiation fields produced by small ELEKTA cone collimators used for stereotactic radiosurgery treatments (SRS) using commercially available detectors EBT3 GafchromicTM film, IBA Stereotactic diode (SFD), and the recently developed detector DUO, which is a monolithic silicon orthogonal linear diode array detector. METHODS These three detectors were used for the measurement of beam profiles, output factors, and percentage depth dose for SRS cone collimators with cone sizes ranging from 5 to 50 mm diameter. The measurements were performed at 10 cm depth and 90 cm SSD. RESULTS The SRS cone beam profiles measured with DUO, EBT3 film, and IBA SFD agreed well, results being in agreement within ±0.5 mm in the FWHM, and ±0.7 mm in the penumbra region. The output factor measured by DUO with 0.5 mm air gap above agrees within ±1% with EBT3. The OF measured by IBA SFD (corrected for the over-response) agreed with both EBT3 and DUO within ±2%. All three detectors agree within ±2% for PDD measurements for all SRS cones. CONCLUSIONS The characteristics of the ELEKTA SRS cone collimator have been evaluated by using a monolithic silicon high spatial resolution detector DUO, EBT3, and IBA SFD diode. The DUO detector is suitable for fast real-time quality assurance dosimetry in small radiation fields typical for SRS/SRT. This has been demonstrated by its good agreement of measured doses with EBT 3 films.
Collapse
Affiliation(s)
- Khalsa Al Shukaili
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- National Oncology CentreRoyal HospitalMuscatOman
| | - Stéphanie Corde
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
- Nelune Comprehensive Cancer CentrePrince of Wales HospitalRandwickNSWAustralia
| | - Marco Petasecca
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | | | - Michael Lerch
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Michael Jackson
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Nelune Comprehensive Cancer CentrePrince of Wales HospitalRandwickNSWAustralia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| |
Collapse
|
28
|
Fukata K, Sugimoto S, Kurokawa C, Saito A, Inoue T, Sasai K. Output factor determination based on Monte Carlo simulation for small cone field in 10-MV photon beam. Radiol Phys Technol 2018; 11:192-201. [PMID: 29619670 DOI: 10.1007/s12194-018-0455-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/27/2018] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
Abstract
The difficulty of measuring output factor (OPF) in a small field has been frequently discussed in recent publications. This study is aimed to determine the OPF in a small field using 10-MV photon beam and stereotactic conical collimator (cone). The OPF was measured by two diode detectors (SFD, EDGE detector) and one micro-ion chamber (PinPoint 3D chamber) in a water phantom. A Monte Carlo simulation using simplified detector model was performed to obtain the correction factor for the detector measurements. About 12% OPF difference was observed in the measurement at the smallest field (7.5 mm diameter) for EDGE detector and PinPoint 3D chamber. By applying the Monte Carlo-based correction factor to the measurement, the maximum discrepancy among the three detectors was reduced to within 3%. The results indicate that determination of OPF in a small field should be carefully performed. Especially, detector choice and appropriate correction factor application are very important in this regard.
Collapse
Affiliation(s)
- Kyohei Fukata
- Cancer Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku, Tokyo, Japan.
| | - Satoru Sugimoto
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Chie Kurokawa
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Akito Saito
- Department of Radiation Oncology, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Tatsuya Inoue
- Department of Radiology, Juntendo University Urayasu Hospital, Tomioka 2-1-1, Urayasu-shi, Chiba, Japan
| | - Keisuke Sasai
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
29
|
Andreo P. The physics of small megavoltage photon beam dosimetry. Radiother Oncol 2018; 126:205-213. [DOI: 10.1016/j.radonc.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
30
|
Pimpinella M, Caporali C, Guerra AS, Silvi L, De Coste V, Petrucci A, Delaunay F, Dufreneix S, Gouriou J, Ostrowsky A, Rapp B, Bordy JM, Daures J, Le Roy M, Sommier L, Vermesse D. Feasibility of using a dose-area product ratio as beam quality specifier for photon beams with small field sizes. Phys Med 2018; 45:106-116. [DOI: 10.1016/j.ejmp.2017.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 01/17/2023] Open
|
31
|
Biasi G, Petasecca M, Guatelli S, Hardcastle N, Carolan M, Perevertaylo V, Kron T, Rosenfeld AB. A novel high-resolution 2D silicon array detector for small field dosimetry with FFF photon beams. Phys Med 2017; 45:117-126. [PMID: 29472075 DOI: 10.1016/j.ejmp.2017.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Flattening filter free (FFF) beams are increasingly being considered for stereotactic radiotherapy (SRT). For the first time, the performance of a monolithic silicon array detector under 6 and 10 MV FFF beams was evaluated. The dosimeter, named "Octa" and designed by the Centre for Medical Radiation Physics (CMRP), was tested also under flattened beams for comparison. METHODS Output factors (OFs), percentage depth-dose (PDD), dose profiles (DPs) and dose per pulse (DPP) dependence were investigated. Results were benchmarked against commercially available detectors for small field dosimetry. RESULTS The dosimeter was shown to be a 'correction-free' silicon array detector for OFs and PDD measurements for all the beam qualities investigated. Measured OFs were accurate within 3% and PDD values within 2% compared against the benchmarks. Cross-plane, in-plane and diagonal DPs were measured simultaneously with high spatial resolution (0.3 mm) and real time read-out. A DPP dependence (24% at 0.021 mGy/pulse relative to 0.278 mGy/pulse) was found and could be easily corrected for in the case of machine specific quality assurance applications. CONCLUSIONS Results were consistent with those for monolithic silicon array detectors designed by the CMRP and previously characterized under flattened beams only, supporting the robustness of this technology for relative dosimetry for a wide range of beam qualities and dose per pulses. In contrast to its predecessors, the design of the Octa offers an exhaustive high-resolution 2D dose map characterization, making it a unique real-time radiation detector for small field dosimetry for field sizes up to 3 cm side.
Collapse
Affiliation(s)
- G Biasi
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - M Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - S Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - N Hardcastle
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - M Carolan
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, Australia
| | | | - T Kron
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Cancer Institute, University of Melbourne, Australia
| | - A B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
32
|
Jafari S, Distefano G, Lee J, Gouldstone C, Mayles H, Jupp T, Nisbet A, Clark C. Feasibility study of silica bead thermoluminescence detectors (TLDs) in an external radiotherapy dosimetry audit programme. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2017.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Kuess P, Böhlen TT, Lechner W, Elia A, Georg D, Palmans H. Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry. ACTA ACUST UNITED AC 2017; 62:9189-9206. [DOI: 10.1088/1361-6560/aa955e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Kupfer T, Lehmann J, Butler DJ, Ramanathan G, Bailey TE, Franich RD. Commissioning of a PTW 34070 large-area plane-parallel ionization chamber for small field megavoltage photon dosimetry. J Appl Clin Med Phys 2017; 18:206-217. [PMID: 28980432 PMCID: PMC5689907 DOI: 10.1002/acm2.12185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE This study investigates a large-area plane-parallel ionization chamber (LAC) for measurements of dose-area product in water (DAPw ) in megavoltage (MV) photon fields. METHODS Uniformity of electrode separation of the LAC (PTW34070 Bragg Peak Chamber, sensitive volume diameter: 8.16 cm) was measured using high-resolution microCT. Signal dependence on angle α of beam incidence for square 6 MV fields of side length s = 20 cm and 1 cm was measured in air. Polarity and recombination effects were characterized in 6, 10, and 18 MV photons fields. To assess the lateral setup tolerance, scanned LAC profiles of a 1 × 1 cm2 field were acquired. A 6 MV calibration coefficient, ND,w,LAC , was determined in a field collimated by a 5 cm diameter stereotactic cone with known DAPw . Additional calibrations in 10 × 10 cm2 fields at 6, 10, and 18 MV were performed. RESULTS Electrode separation is uniform and agrees with specifications. Volume-averaging leads to a signal increase proportional to ~1/cos(α) in small fields. Correction factors for polarity and recombination range between 0.9986 to 0.9996 and 1.0007 to 1.0024, respectively. Off-axis displacement by up to 0.5 cm did not change the measured signal in a 1 × 1 cm2 field. ND,w,LAC was 163.7 mGy cm-2 nC-1 and differs by +3.0% from the coefficient derived in the 10 × 10 cm2 6 MV field. Response in 10 and 18 MV fields increased by 1.0% and 2.7% compared to 6 MV. CONCLUSIONS The LAC requires only small correction factors for DAPw measurements and shows little energy dependence. Lateral setup errors of 0.5 cm are tolerated in 1 × 1 cm2 fields, but beam incidence must be kept as close to normal as possible. Calibration in 10 × 10 fields is not recommended because of the LAC's over-response. The accuracy of relative point-dose measurements in the field's periphery is an important limiting factor for the accuracy of DAPw measurements.
Collapse
Affiliation(s)
- Tom Kupfer
- School of ScienceRMIT UniversityMelbourneVic.Australia
- Radiation Oncology CentreAustin HealthHeidelbergVic.Australia
| | - Joerg Lehmann
- School of ScienceRMIT UniversityMelbourneVic.Australia
- Faculty of ScienceThe University of SydneySydneyNSWAustralia
- Department of Radiation OncologyCalvary Mater NewcastleWaratahNSWAustralia
| | - Duncan J. Butler
- Australian Radiation Protection and Nuclear Safety AgencyYallambieVic.Australia
| | - Ganesan Ramanathan
- Australian Radiation Protection and Nuclear Safety AgencyYallambieVic.Australia
| | - Tracy E. Bailey
- Australian Radiation Protection and Nuclear Safety AgencyYallambieVic.Australia
| | | |
Collapse
|
35
|
Lechner W, Kuess P, Georg D, Palmans H. Equivalent (uniform) square field sizes of flattening filter free photon beams. ACTA ACUST UNITED AC 2017; 62:7694-7713. [DOI: 10.1088/1361-6560/aa83f5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Rossomme S, Marinelli M, Verona-Rinati G, Romano F, Cirrone PAG, Kacperek A, Vynckier S, Palmans H. Response of synthetic diamond detectors in proton, carbon, and oxygen ion beams. Med Phys 2017; 44:5445-5449. [PMID: 28710866 DOI: 10.1002/mp.12473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE In this work, the LET-dependence of the response of synthetic diamond detectors is investigated in different particle beams. METHOD Measurements were performed in three nonmodulated particle beams (proton, carbon, and oxygen). The response of five synthetic diamond detectors was compared to the response of a Markus or an Advanced Markus ionization chamber. The synthetic diamond detectors were used with their axis parallel to the beam axis and without any bias voltage. A high bias voltage was applied to the ionization chambers, to minimize ion recombination, for which no correction is applied (+300 V and +400 V were applied to the Markus and Advanced Markus ionization chambers respectively). RESULTS The ratio between the normalized response of the synthetic diamond detectors and the normalized response of the ionization chamber shows an under-response of the synthetic diamond detectors in carbon and oxygen ion beams. No under-response of the synthetic diamond detectors is observed in protons. For each beam, combining results obtained for the five synthetic diamond detectors and considering the uncertainties, a linear fit of the ratio between the normalized response of the synthetic diamond detectors and the normalized response of the ionization chamber is determined. The response of the synthetic diamond detectors can be described as a function of LET as (-6.22E-4 ± 3.17E-3) • LET + (0.99 ± 0.01) in proton beam, (-2.51E-4 ± 1.18E-4) • LET + (1.01 ± 0.01) in carbon ion beam and (-2.77E-4 ± 0.56E-4) • LET + (1.03 ± 0.01) in oxygen ion beam. Combining results obtained in carbon and oxygen ion beams, a LET dependence of about 0.026% (±0.013%) per keV/μm is estimated. CONCLUSIONS Due to the high LET value, a LET dependence of the response of the synthetic diamond detector was observed in the case of carbon and oxygen beams. The effect was found to be negligible in proton beams, due to the low LET value. The under-response of the synthetic diamond detector may result from the recombination of electron/hole in the thin synthetic diamond layer, due to the high LET-values. More investigations are required to confirm this assumption.
Collapse
Affiliation(s)
- Séverine Rossomme
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Marco Marinelli
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Roma, 00173, Italy
| | - Gianluca Verona-Rinati
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Roma, 00173, Italy
| | - Francesco Romano
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, 95125, Sicily, Italy
| | | | - Andrzej Kacperek
- National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral, CH63 4JY, UK
| | - Stefaan Vynckier
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium.,Department of Radiotherapy and Oncology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Hugo Palmans
- National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington, TW11 0LW, UK.,EBG MedAustron GmbH, Wiener Neustadt, 2700, Austria
| |
Collapse
|
37
|
Qin Y, Gardner SJ, Kim J, Huang Y, Wen N, Doemer A, Chetty IJ. Technical Note: Evaluation of plastic scintillator detector for small field stereotactic patient-specific quality assurance. Med Phys 2017; 44:5509-5516. [PMID: 28714067 DOI: 10.1002/mp.12471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance (QA) measurements using flattening-filter-free beam. METHODS A total of 10 spherical targets [volume range: (0.03 cc-2 cc)] were planned with two techniques: (a) dynamic conformal arc (DCA-10 plans) and (b) volumetric modulated arc therapy (VMAT-10 plans). All plans were generated using Varian Eclipse treatment planning system, and AcurosXB v.13 algorithm in 1.0 mm grid size. Additionally, 14 previously treated cranial and spine SRS plans were evaluated [6 DCA, 8 VMAT, volume range: (0.04 cc-119.02 cc)]. Plan modulation was quantified via two metrics: MU per prescription dose (MU/Rx) and Average Leaf Pair Opening (ALPO). QA was performed on the Varian Edge linear accelerator equipped with HDMLC. Three detectors were used: (a) PinPoint ion chamber (PTW; active volume 0.015 cc), (b) Exradin W1 PSD (Standard Imaging; active volume 0.002 cc), and (c) Gafchromic EBT3 film (Ashland). PinPoint chamber and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging); films were placed horizontally capturing the coronal plane. RESULTS PSD, film, and PinPoint chamber measured average differences of 1.00 ± 1.54%, 1.30 ± 1.69%, and -0.66 ± 2.36%, respectively, compared to AcurosXB dose calculation. As the target volume decreased, PinPoint chamber measured lower doses (maximum -5.07% at 0.07 cc target), while PSD and film measured higher doses (2.87% and 2.54% at 0.03 cc target) than AcurosXB. Film agreed with the benchmark detector PSD by an average difference of 0.31 ± 1.20%, but suffered from larger uncertainty; PinPoint chamber underestimated dose by more than 4% for targets smaller than 0.2 cc. Taking PSD as the measurement standard, DCA plans achieved good QA results across all volumes studied, with an average of -0.07 ± 0.89%; for VMAT plans, PSD measured consistently higher dose (1.95 ± 1.36%) than AcurosXB. Correlation study revealed that plan modulation quantified by both MU/Rx and ALPO correlated significantly with QA results. CONCLUSION Among all three detectors, PSD demonstrated superior performances in plans with small fields and heavy modulation. High consistency and low uncertainty made PSD a suitable detector for clinical routine SRS QA. PinPoint chamber should be avoided for targets smaller than 0.2 cc; film dosimetry can be utilized with careful evaluation of its uncertainty bracket. Compared to PSD measurements, AcurosXB calculation demonstrated high accuracy for nonmodulated small fields. The positive correlation between plan modulation and QA discrepancy calls for our attention for clinical SRS plans with high modulation.
Collapse
Affiliation(s)
- Yujiao Qin
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Stephen J Gardner
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Joshua Kim
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Yimei Huang
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Ning Wen
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Anthony Doemer
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| |
Collapse
|
38
|
Sharma DS, Chaudhary RK, Sharma SD, Pilakkal S, Rasal SK, Sawant MB, Phurailatpam RD. Experimental determination of stereotactic cone size and detector specific output correction factor. Br J Radiol 2017. [DOI: 10.1259/bjr.20160918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Dayananda Shamurailatpam Sharma
- Department of Radiation Oncology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Andheri West, Mumbai, Maharashtra, India
| | | | | | - Shaju Pilakkal
- Department of Radiation Oncology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Andheri West, Mumbai, Maharashtra, India
| | - Sachin K Rasal
- Department of Radiation Oncology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Andheri West, Mumbai, Maharashtra, India
| | - Mayur B Sawant
- Department of Radiation Oncology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Andheri West, Mumbai, Maharashtra, India
| | - Reena D Phurailatpam
- Department of Radiation Oncology, Advance Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| |
Collapse
|
39
|
Moignier C, Tromson D, de Marzi L, Marsolat F, García Hernández JC, Agelou M, Pomorski M, Woo R, Bourbotte JM, Moignau F, Lazaro D, Mazal A. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams. Phys Med Biol 2017; 62:5417-5439. [PMID: 28604370 DOI: 10.1088/1361-6560/aa70cf] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate dependence.
Collapse
Affiliation(s)
- Cyril Moignier
- CEA, LIST, System Modelling and Simulation Laboratory, Gif-sur-Yvette, France. Institut Curie, Centre de Protonthérapie d'Orsay, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Reggiori G, Stravato A, Pimpinella M, Lobefalo F, De Coste V, Fogliata A, Mancosu P, De Rose F, Palumbo V, Scorsetti M, Tomatis S. Use of PTW-microDiamond for relative dosimetry of unflattened photon beams. Phys Med 2017; 38:45-53. [PMID: 28610696 DOI: 10.1016/j.ejmp.2017.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6MV beam was also considered for comparison. METHODS Short term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2-2.2mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40×40cm2 to 0.6×0.6cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector. RESULTS MicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40×40cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3×3cm2) microDiamond and the unshielded silicon diode were in good agreement. CONCLUSIONS MicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1cm correction factors accounting for fluence perturbation and volume averaging could be required.
Collapse
Affiliation(s)
- Giacomo Reggiori
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy.
| | - Antonella Stravato
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Maria Pimpinella
- Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI C R Casaccia, Roma, Italy
| | - Francesca Lobefalo
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Vanessa De Coste
- Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI C R Casaccia, Roma, Italy
| | - Antonella Fogliata
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Pietro Mancosu
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Fiorenza De Rose
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Valentina Palumbo
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milano, Italy
| | - Stefano Tomatis
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| |
Collapse
|
41
|
Puxeu-Vaqué J, Duch MA, Nailon WH, Cruz Lizuain M, Ginjaume M. Field correction factors for a PTW-31016 Pinpoint ionization chamber for both flattened and unflattened beams. Study of the main sources of uncertainties. Med Phys 2017; 44:1930-1938. [DOI: 10.1002/mp.12189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Josep Puxeu-Vaqué
- Servei de Física Mèdica i Protecció radiològica; Institut Català d'Oncologia (ICO); L'Hospitalet de Llobregat; Barcelona Spain
- Department of Oncology Physics; Edinburgh Cancer Centre; Western General Hospital; Edinburgh Scotland
| | - Maria A. Duch
- Institut de Tècniques Energètiques (INTE); Universitat Politècnica de Catalunya; Barcelona Spain
| | - William H. Nailon
- Department of Oncology Physics; Edinburgh Cancer Centre; Western General Hospital; Edinburgh Scotland
| | - M. Cruz Lizuain
- Servei de Física Mèdica i Protecció radiològica; Institut Català d'Oncologia (ICO); L'Hospitalet de Llobregat; Barcelona Spain
| | - Mercè Ginjaume
- Institut de Tècniques Energètiques (INTE); Universitat Politècnica de Catalunya; Barcelona Spain
| |
Collapse
|
42
|
Marinelli M, Prestopino G, Verona C, Verona-Rinati G. Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume. Med Phys 2017; 43:5205. [PMID: 27587052 DOI: 10.1118/1.4961402] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Small field output correction factors have been studied by several research groups for the PTW 60019 microDiamond (MD) dosimeter, by comparing the response of such a device with both reference dosimeters and Monte Carlo simulations. A general good agreement is observed for field sizes down to about 1 cm. However, evident inconsistencies can be noticed when comparing some experimental results and Monte Carlo simulations obtained for smaller irradiation fields. This issue was tentatively attributed by some authors to unintentional large variations of the MD active surface area. The aim of the present study is a nondestructive experimental determination of the MD active surface area and active volume. METHODS Ten MD dosimeters, one MD prototype, and three synthetic diamond samples were investigated in the present work. 2D maps of the MD response were recorded under scanned soft x-ray microbeam irradiation, leading to an experimental determination of the device active surface area. Profiles of the device responses were measured as well. In order to evaluate the MD active volume, the thickness of the diamond sensing layer was independently evaluated by capacitance measurements and alpha particle detection experiments. The MD sensitivity, measured at the PTW calibration laboratory, was also used to calculate the device active volume thickness. RESULTS An average active surface area diameter of (2.19 ± 0.02) mm was evaluated by 2D maps and response profiles of all the MDs. Average active volume thicknesses of (1.01 ± 0.13) μm and (0.97 ± 0.14) μm were derived by capacitance and sensitivity measurements, respectively. The obtained results are well in agreement with the nominal values reported in the manufacturer dosimeter specifications. A homogeneous response was observed over the whole device active area. Besides the one from the device active volume, no contributions from other components of the housing nor from encapsulation materials were observed in the 2D response maps. CONCLUSIONS The obtained results demonstrate the high reproducibility of the MD fabrication process. The observed discrepancies among the output correction factors reported by several authors for MD response in very small fields are very unlikely to be ascribed to unintentional variations of the device active surface area and volume. It is the opinion of the authors that the role of the volume averaging as well as of other perturbation effects should be separately investigated instead, both experimentally and by Monte Carlo simulations, in order to better clarify the behaviour of the MD response in very small fields.
Collapse
Affiliation(s)
- Marco Marinelli
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| | - G Prestopino
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| | - C Verona
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| | - G Verona-Rinati
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| |
Collapse
|
43
|
Kawahara D, Ozawa S, Nakashima T, Aita M, Tsuda S, Ochi Y, Okumura T, Masuda H, Ohno Y, Murakami Y, Nagata Y. Evaluation of beam modeling for small fields using a flattening filter-free beam. Radiol Phys Technol 2017; 10:33-40. [DOI: 10.1007/s12194-016-0365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
|
44
|
Azcona JD, Barbés B, Morán V, Burguete J. Commissioning of small field size radiosurgery cones in a 6-MV flattening filter-free beam. Med Dosim 2017; 42:282-288. [DOI: 10.1016/j.meddos.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/25/2017] [Accepted: 06/16/2017] [Indexed: 11/26/2022]
|
45
|
Qin Y, Zhong H, Wen N, Snyder K, Huang Y, Chetty IJ. Deriving detector-specific correction factors for rectangular small fields using a scintillator detector. J Appl Clin Med Phys 2016; 17:379-391. [PMID: 27929510 PMCID: PMC5690516 DOI: 10.1120/jacmp.v17i6.6433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/30/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022] Open
Abstract
The goal of this study was to investigate small field output factors (OFs) for flattening filter‐free (FFF) beams on a dedicated stereotactic linear accelerator‐based system. From this data, the collimator exchange effect was quantified, and detector‐specific correction factors were generated. Output factors for 16 jaw‐collimated small fields (from 0.5 to 2 cm) were measured using five different detectors including an ion chamber (CC01), a stereotactic field diode (SFD), a diode detector (Edge), Gafchromic film (EBT3), and a plastic scintillator detector (PSD, W1). Chamber, diodes, and PSD measurements were performed in a Wellhofer water tank, while films were irradiated in solid water at 100 cm source‐to‐surface distance and 10 cm depth. The collimator exchange effect was quantified for rectangular fields. Monte Carlo (MC) simulations of the measured configurations were also performed using the EGSnrc/DOSXYZnrc code. Output factors measured by the PSD and verified against film and MC calculations were chosen as the benchmark measurements. Compared with plastic scintillator detector (PSD), the small volume ion chamber (CC01) underestimated output factors by an average of ‐1.0%±4.9%(max.=‐11.7% for 0.5×0.5cm2 square field). The stereotactic diode (SFD) overestimated output factors by 2.5%±0.4%(max.=3.3% for 0.5×1cm2 rectangular field). The other diode detector (Edge) also overestimated the OFs by an average of 4.2%±0.9%(max.=6.0% for 1×1cm2 square field). Gafchromic film (EBT3) measurements and MC calculations agreed with the scintillator detector measurements within 0.6%±1.8% and 1.2%±1.5%, respectively. Across all the X and Y jaw combinations, the average collimator exchange effect was computed: 1.4%±1.1% (CC01), 5.8%±5.4% (SFD), 5.1%±4.8% (Edge diode), 3.5%±5.0% (Monte Carlo), 3.8%±4.7% (film), and 5.5%±5.1% (PSD). Small field detectors should be used with caution with a clear understanding of their behaviors, especially for FFF beams and small, elongated fields. The scintillator detector exhibited good agreement against Gafchromic film measurements and MC simulations over the range of field sizes studied. The collimator exchange effect was found to be important at these small field sizes. Detector‐specific correction factors were computed using the scintillator measurements as the benchmark. PACS number(s): 87.56.Fc
Collapse
|
46
|
Fogliata A, Lobefalo F, Reggiori G, Stravato A, Tomatis S, Scorsetti M, Cozzi L. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms. Med Phys 2016; 43:5685. [DOI: 10.1118/1.4963219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Cagni E, Russo S, Reggiori G, Bresciani S, Fedele D, Iori M, Marino C, Nardiello B, Ruggieri R, Strigari L, Mancosu P. Technical Note: Multicenter study of TrueBeam FFF beams with a new stereotactic diode: Can a common small field signal ratio curve be defined? Med Phys 2016; 43:5570. [DOI: 10.1118/1.4961744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
48
|
Rossomme S, Denis JM, Souris K, Delor A, Bartier F, Dumont D, Vynckier S, Palmans H. LET dependence of the response of a PTW-60019 microDiamond detector in a 62MeV proton beam. Phys Med 2016; 32:1135-8. [PMID: 27567088 DOI: 10.1016/j.ejmp.2016.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/17/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022] Open
Abstract
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.
Collapse
Affiliation(s)
- S Rossomme
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium.
| | - J M Denis
- Cliniques Universitaires Saint-Luc, Radiotherapy and Oncology Department, B-1200 Brussels, Belgium
| | - K Souris
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - A Delor
- Cliniques Universitaires Saint-Luc, Radiotherapy and Oncology Department, B-1200 Brussels, Belgium
| | - F Bartier
- Cliniques Universitaires Saint-Luc, Radiotherapy and Oncology Department, B-1200 Brussels, Belgium
| | - D Dumont
- Cliniques Universitaires Saint-Luc, Radiotherapy and Oncology Department, B-1200 Brussels, Belgium
| | - S Vynckier
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Radiotherapy and Oncology Department, B-1200 Brussels, Belgium
| | - H Palmans
- EBG MedAustron GmbH, A-2700 Wiener Neustadt, Austria; National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington TW11 0LW, United Kingdom
| |
Collapse
|
49
|
Small field correction factors for the IBA Razor. Phys Med 2016; 32:1025-9. [DOI: 10.1016/j.ejmp.2016.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
|
50
|
Rossomme S, Hopfgartner J, Vynckier S, Palmans H. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam. Phys Med Biol 2016; 61:4551-63. [PMID: 27224547 DOI: 10.1088/0031-9155/61/12/4551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination.
Collapse
Affiliation(s)
- S Rossomme
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|