1
|
Jain S, Peterson JS, Semenenko V, Redler G, Grass GD. Implementation of Cone Beam Computed Tomography-Guided Online Adaptive Radiotherapy for Challenging Trimodal Therapy in Bladder Preservation: A Report of Two Cases. Cureus 2024; 16:e66993. [PMID: 39280408 PMCID: PMC11402278 DOI: 10.7759/cureus.66993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Muscle invasive bladder cancer (MIBC) is an aggressive disease with a high risk of metastasis. Bladder preservation with trimodality therapy (TMT) is an option for well-selected patients or poor cystectomy candidates. Cone beam computed tomography (CBCT)-guided online adaptive radiotherapy (oART) shows promise in improving the dose to treatment targets while better sparing organs at risk (OARs). The following series presents two cases in which the capabilities of a CBCT-guided oART platform were leveraged to meet clinical challenges. The first case describes a patient with synchronous MIBC and high-risk prostate cancer with challenging target-OAR interfaces. The second recounts the case of a patient with a history of low dose rate (LDR) brachytherapy to the prostate who was later diagnosed with MIBC and successfully treated with CBCT-guided oART with reduced high-dose volume bladder targeting. To date, both patients report minimal side effects and are without disease recurrence. These cases illustrate how CBCT-guided online adaptive systems may efficiently aid radiation oncologists in treating patients with more complex clinical scenarios who desire bladder-sparing therapy.
Collapse
Affiliation(s)
- Samyak Jain
- College of Medicine, University of South Florida, Tampa, USA
| | - John S Peterson
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Vladimir Semenenko
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| |
Collapse
|
2
|
Roumeliotis M, Thind K, Morrison H, Burke B, Martell K, van Dyke L, Barbera L, Quirk S. The impact of advancing the standard of care in radiotherapy on operational treatment resources. J Appl Clin Med Phys 2024; 25:e14363. [PMID: 38634814 PMCID: PMC11244663 DOI: 10.1002/acm2.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
PURPOSE To demonstrate the impact of implementing hypofractionated prescription regimens and advanced treatment techniques on institutional operational hours and radiotherapy personnel resources in a multi-institutional setting. The study may be used to describe the impact of advancing the standard of care with modern radiotherapy techniques on patient and staff resources. METHODS This study uses radiation therapy data extracted from the radiotherapy information system from two tertiary care, university-affiliated cancer centers from 2012 to 2021. Across all patients in the analysis, the average fraction number for curative and palliative patients was reported each year in the decade. Also, the institutional operational treatment hours are reported for both centers. A sub-analysis for curative intent breast and lung radiotherapy patients was performed to contextualize the impact of changes to imaging, motion management, and treatment technique. RESULTS From 2012 to 2021, Center 1 had 42 214 patient plans and Center 2 had 43 252 patient plans included in the analysis. Averaged over both centers across the decade, the average fraction number per patient decreased from 6.9 to 5.2 (25%) and 21.8 to 17.2 (21%) for palliative and curative patients, respectively. The operational treatment hours for both institutions increased from 8 h 15 min to 9 h 45 min (18%), despite a patient population increase of 45%. CONCLUSION The clinical implementation of hypofractionated treatment regimens has successfully reduced the radiotherapy workload and operational treatment hours required to treat patients. This analysis describes the impact of changes to the standard of care on institutional resources.
Collapse
Affiliation(s)
- Michael Roumeliotis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kundan Thind
- Henry Ford Cancer Institute, Detroit, Michigan, USA
| | - Hali Morrison
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Ben Burke
- University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Martell
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | | | - Lisa Barbera
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Sarah Quirk
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Abstract
Organ preservation for muscle-invasive bladder cancer (MIBC) may use trimodality therapy. This includes transurethral resection followed by radiation therapy. Radiosensitization has become one of the standard of care approaches for MIBC with high rates of local disease control and overall survival. The goal of organ preservation is to treat MIBC while preserving a well-functioning natural bladder. Debate remains over the best way to optimize radiation therapy in bladder cancer. In MIBC the role of partial cystectomy has been utilized in smaller solitary tumors with adequate local control and good urinary function. As radiation therapy techniques improve and modernize, smaller radiation volumes to a partial bladder may play an increasing role as we utilize imaging techniques coupled with adaptive radiation therapy planning and other techniques such as brachytherapy. In this review, we explore the use of brachytherapy and partial bladder fields of external beam radiation therapy in the treatment of MIBC.
Collapse
|
4
|
Åström LM, Behrens CP, Calmels L, Sjöström D, Geertsen P, Mouritsen LS, Serup-Hansen E, Lindberg H, Sibolt P. Online adaptive radiotherapy of urinary bladder cancer with full re-optimization to the anatomy of the day: initial experience and dosimetric benefits. Radiother Oncol 2022; 171:37-42. [DOI: 10.1016/j.radonc.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
|
5
|
Portner R, Bajaj A, Elumalai T, Huddart R, Murthy V, Nightingale H, Patel K, Sargos P, Song Y, Hoskin P, Choudhury A. A practical approach to bladder preservation with hypofractionated radiotherapy for localised muscle-invasive bladder cancer. Clin Transl Radiat Oncol 2021; 31:1-7. [PMID: 34466667 PMCID: PMC8385113 DOI: 10.1016/j.ctro.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Bladder preservation with trimodality treatment (TMT) is an alternative strategy to radical cystectomy (RC) for the management of localised muscle invasive bladder cancer (MIBC). TMT comprises of transurethral resection of the bladder tumour (TURBT) followed by radiotherapy with concurrent radiosensitisation. TMT studies have shown neo-adjuvant chemotherapy with cisplatin-based regimens is often given to further improve survival outcomes. A hypofractionated radiotherapy regimen is preferable due to its non-inferiority in local control and late toxicities. Radiosensitisation can comprise concurrent chemotherapy (with gemcitabine, cisplatin or combination fluorouracil and mitomycin), CON (carbogen and nicotinomide) or hyperthermic treatment. Radiotherapy techniques are continuously improving and becoming more personalised. As the bladder is a mobile structure subject to volumetric changes from filling, an adaptive approach can optimise bladder coverage and reduce dose to normal tissue. Adaptive radiotherapy (ART) is an evolving field that aims to overcome this. Improved knowledge of tumour biology and advances in imaging techniques aims to further optimise and personalise treatment.
Collapse
Affiliation(s)
- R. Portner
- The Christie NHS Foundation Trust, Manchester, UK
| | - A. Bajaj
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - T. Elumalai
- The Christie NHS Foundation Trust, Manchester, UK
| | - R. Huddart
- Royal Marsden NHS Foundation Trust, London, UK
- Institute of Cancer Research, UK
| | - V. Murthy
- Department of Radiation Oncology, ACTREC and Tata Memorial Hospital, Homi Bhabha National University, Mumbai, India
| | | | - K. Patel
- The Christie NHS Foundation Trust, Manchester, UK
| | - P. Sargos
- Department of Radiation Oncology, Institut Bergonié, F-33076 Bordeaux Cedex, France
| | - Y. Song
- The Christie NHS Foundation Trust, Manchester, UK
| | - P. Hoskin
- Mount Vernon Cancer Centre, Northwood, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - A. Choudhury
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Yeh J, Bressel M, Tai KH, Kron T, Foroudi F. A retrospective review of the long-term outcomes of online adaptive radiation therapy and conventional radiation therapy for muscle invasive bladder cancer. Clin Transl Radiat Oncol 2021; 30:65-70. [PMID: 34401535 PMCID: PMC8358463 DOI: 10.1016/j.ctro.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022] Open
Abstract
Risks with tight adaptive RT margins. Cancer control may be poorer if margins tight. Prospective studies required.
Background and Purpose To report long-term outcomes of online image-guided (IG) adaptive radiation therapy (aRT) versus conventional IG radiation therapy (cRT) for bladder preservation in muscle-invasive bladder cancer (MIBC). Materials and Methods A retrospective review of patients with histologically proven MIBC who were prescribed radical intent radiation therapy (RT) following trans-urethral resection of bladder tumour (TURBT) was conducted. There were three groups based on their RT treatment modality: conventional RT (cRT), margin 5 mm adaptive RT (aRT5mm) and margin 7 mm adaptive RT (aRT7mm). Results 171 patients were included in this study, with median age of 79.4 years (41–90). Approximately half of all patients received concurrent chemotherapy. N = 57 underwent cRT, n = 39 underwent aRT5mm, and n = 75 underwent aRT7mm. Response evaluable patients in all three groups (n = 133) had high rates of complete response (CR, 83%) on first post-RT cystoscopy with no significant differences between the groups. At a median follow-up of 54 months, the 5-year freedom from muscle-invasive failure survival (FFMIFS) in the cRT, aRT5mm, and aRT7mm groups were 75%, 59%, and 98%, respectively. The estimated cancer specific survival (CSS) at 5 years were 60%, 30%, and 59%, respectively. The estimated overall survival (OS) at 5 years were 43%, 26%, and 38%, respectively. The incidence of late grade 3 or 4 toxicity was n = 5 in aRT5mm, n = 2 in cRT group, and n = 1 in aRT7mm. Conclusion IG aRT with 7 mm expansion for MIBC provides higher rates of FFMIFS, similar 5-year CSS and OS, as well as toxicity outcomes when compared to cRT. aRT with 5 mm expansion with this RT protocol is not recommended for treatment.
Collapse
Affiliation(s)
- Janice Yeh
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia.,Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Hospital, Victoria, Australia
| | - Mathias Bressel
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Keen Hun Tai
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Tomas Kron
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Farshad Foroudi
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Hospital, Victoria, Australia
| |
Collapse
|
7
|
Webster A, Hafeez S, Lewis R, Griffins C, Warren-Oseni K, Patel E, Hansen VN, Hall E, Huddart R, Miles E, McNair HA. The Development of Therapeutic Radiographers in Imaging and Adaptive Radiotherapy Through Clinical Trial Quality Assurance. Clin Oncol (R Coll Radiol) 2021; 33:461-467. [PMID: 33766503 DOI: 10.1016/j.clon.2021.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
AIMS Adaptive radiotherapy (ART) is an emerging advanced treatment option for bladder cancer patients. Therapeutic radiographers (RTTs) are central to the successful delivery of this treatment. The purpose of this work was to evaluate the image-guided radiotherapy (IGRT) and ART experience of RTTs before participating in the RAIDER trial. A plan of the day (PoD) quality assurance programme was then implemented. Finally, the post-trial experience of RTTs was evaluated, together with the impact of trial quality assurance participation on their routine practice. MATERIALS AND METHODS A pre-trial questionnaire to assess the experience of the RTT staff group in IGRT and ART in bladder cancer was sent to each centre. Responses were grouped according to experience. The PoD quality assurance programme was implemented, and the RAIDER trial commenced. During stage 1 of the trial, RTTs reported difficulties in delivering PoD and the quality assurance programme was updated accordingly. A follow-up questionnaire was sent assessing experience in IGRT and ART post-trial. Any changes in routine practice were also recorded. RESULTS The experience of RTTs in IGRT and ART pre-trial varied. For centres deemed to have RTTs with more experience, the initial PoD quality assurance programme was streamlined. For RTTs without ART experience, the full quality assurance programme was implemented, of which 508 RTTs completed. The quality assurance programme was updated (as the trial recruited) and it was mandated that at least one representative RTT (regardless of pre-trial experience) participated in the update in real-time. The purpose of the updated quality assurance programme was to provide further support to RTTs in delivering a complex treatment. Engagement with the updated quality assurance programme was high, with RTTs in 24/33 centres participating in the real-time online workshop. All 33 UK centres reported all RTTs reviewed the updated training offline. Post-trial, the RTTs' experience in IGRT and ART was increased. CONCLUSION Overall, 508 RTTs undertook the PoD quality assurance programme. There was a high engagement of RTTs in the PoD quality assurance programme and trial. RTTs increased their experience in IGRT and ART and subsequently updated their practice for bladder cancer and other treatment sites.
Collapse
Affiliation(s)
- A Webster
- National Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, London, UK.
| | - S Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - R Lewis
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - C Griffins
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | - E Patel
- University College Hospital, London, UK
| | - V N Hansen
- Odense University Hospital, Odense, Denmark
| | - E Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - R Huddart
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - E Miles
- National Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, London, UK
| | - H A McNair
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Khalifa J, Supiot S, Pignot G, Hennequin C, Blanchard P, Pasquier D, Magné N, de Crevoisier R, Graff-Cailleaud P, Riou O, Cabaillé M, Azria D, Latorzeff I, Créhange G, Chapet O, Rouprêt M, Belhomme S, Mejean A, Culine S, Sargos P. Recommendations for planning and delivery of radical radiotherapy for localized urothelial carcinoma of the bladder. Radiother Oncol 2021; 161:95-114. [PMID: 34118357 DOI: 10.1016/j.radonc.2021.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Curative radio-chemotherapy is recognized as a standard treatment option for muscle-invasive bladder cancer (MIBC). Nevertheless, the technical aspects for MIBC radiotherapy are heterogeneous with a lack of practical recommendations. METHODS AND MATERIALS In 2018, a workshop identified the need for two cooperative groups to develop consistent, evidence-based guidelines for irradiation technique in the delivery of curative radiotherapy. Two radiation oncologists performed a review of the literature addressing several topics relative to radical bladder radiotherapy: planning computed tomography acquisition, target volume delineation, radiation schedules (total dose and fractionation) and dose delivery (including radiotherapy techniques, image-guided radiotherapy (IGRT) and adaptive treatment modalities). Searches for original and review articles in the PubMed and Google Scholar databases were conducted from January 1990 until March 2020. During a meeting conducted in October 2020, results on 32 topics were presented and discussed with a working group involving 15 radiation oncologists, 3 urologists and one medical oncologist. We applied the American Urological Association guideline development's method to define a consensus strategy. RESULTS A consensus was obtained for all 34 except 4 items. The group did not obtain an agreement on CT enhancement added value for planning, PTV margins definition for empty bladder and full bladder protocols, and for pelvic lymph-nodes irradiation. High quality evidence was shown in 6 items; 8 items were considered as low quality of evidence. CONCLUSION The current recommendations propose a homogenized modality of treatment both for routine clinical practice and for future clinical trials, following the best evidence to date, analyzed with a robust methodology. The XXX group formulates practical guidelines for the implementation of innovative techniques such as adaptive radiotherapy.
Collapse
Affiliation(s)
- Jonathan Khalifa
- Department of Radiotherapy, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Stéphane Supiot
- Department of Radiotherapy, Institut de Cancérologie de l'Ouest, Nantes Saint-Herblain, France
| | - Géraldine Pignot
- Department of Urology, Institut Paoli Calmettes, Marseille, France
| | | | - Pierre Blanchard
- Department of Radiotherapy, Institut Gustave Roussy, Villejuif, France
| | - David Pasquier
- Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| | - Nicolas Magné
- Department of Radiotherapy, Institut de Cancérologie Lucien Neuwirth, Saint Priest en Jarez, France
| | | | - Pierre Graff-Cailleaud
- Department of Radiotherapy, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Olivier Riou
- Department of Radiotherapy, Institut du Cancer de Montpellier, France
| | | | - David Azria
- Department of Radiotherapy, Institut du Cancer de Montpellier, France
| | - Igor Latorzeff
- Department of Radiotherapy, Clinique Pasteur, Toulouse, France
| | | | - Olivier Chapet
- Department of Radiotherapy, Hospices Civils de Lyon, France
| | - Morgan Rouprêt
- Department of Urology, Hôpital Pitié-Salpétrière, APHP Sorbonne Université, Paris, France
| | - Sarah Belhomme
- Department of Medical Physics, Institut Bergonié, Bordeaux, France
| | - Arnaud Mejean
- Department of Urology, Hôpital Européen Georges-Pompidou, Paris, France
| | - Stéphane Culine
- Department of Medical Oncology, Hôpital Saint-Louis, Paris, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, Bordeaux, France.
| |
Collapse
|
9
|
Kong V, Hansen VN, Hafeez S. Image-guided Adaptive Radiotherapy for Bladder Cancer. Clin Oncol (R Coll Radiol) 2021; 33:350-368. [PMID: 33972024 DOI: 10.1016/j.clon.2021.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Technological advancement has facilitated patient-specific radiotherapy in bladder cancer. This has been made possible by developments in image-guided radiotherapy (IGRT). Particularly transformative has been the integration of volumetric imaging into the workflow. The ability to visualise the bladder target using cone beam computed tomography and magnetic resonance imaging initially assisted with determining the magnitude of inter- and intra-fraction target change. It has led to greater confidence in ascertaining true anatomy at each fraction. The increased certainty of dose delivered to the bladder has permitted the safe reduction of planning target volume margins. IGRT has therefore improved target coverage with a reduction in integral dose to the surrounding tissue. Use of IGRT to feed back into plan and dose delivery optimisation according to the anatomy of the day has enabled adaptive radiotherapy bladder solutions. Here we undertake a review of the stepwise developments underpinning IGRT and adaptive radiotherapy strategies for external beam bladder cancer radiotherapy. We present the evidence in accordance with the framework for systematic clinical evaluation of technical innovations in radiation oncology (R-IDEAL).
Collapse
Affiliation(s)
- V Kong
- Radiation Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - V N Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - S Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
10
|
Hijab A, Tocco B, Hanson I, Meijer H, Nyborg CJ, Bertelsen AS, Smeenk RJ, Smith G, Michalski J, Baumann BC, Hafeez S. MR-Guided Adaptive Radiotherapy for Bladder Cancer. Front Oncol 2021; 11:637591. [PMID: 33718230 PMCID: PMC7947660 DOI: 10.3389/fonc.2021.637591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has an important role in the curative and palliative treatment settings for bladder cancer. As a target for radiotherapy the bladder presents a number of technical challenges. These include poor tumor visualization and the variability in bladder size and position both between and during treatment delivery. Evidence favors the use of magnetic resonance imaging (MRI) as an important means of tumor visualization and local staging. The availability of hybrid systems incorporating both MRI scanning capabilities with the linear accelerator (MR-Linac) offers opportunity for in-room and real-time MRI scanning with ability of plan adaption at each fraction while the patient is on the treatment couch. This has a number of potential advantages for bladder cancer patients. In this article, we examine the technical challenges of bladder radiotherapy and explore how magnetic resonance (MR) guided radiotherapy (MRgRT) could be leveraged with the aim of improving bladder cancer patient outcomes. However, before routine clinical implementation robust evidence base to establish whether MRgRT translates into improved patient outcomes should be ascertained.
Collapse
Affiliation(s)
- Adham Hijab
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Boris Tocco
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ian Hanson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Hanneke Meijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gillian Smith
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Brian C Baumann
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Shaista Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Cabaillé M, Khalifa J, Tessier AM, Belhomme S, Créhange G, Sargos P. [A review of adaptive radiotherapy for bladder cancer]. Cancer Radiother 2021; 25:271-278. [PMID: 33402293 DOI: 10.1016/j.canrad.2020.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Radiation therapy (RT) for muscle invasive bladder cancer (MIBC) is challenging, with observed variations in bladder shape and size resulting in inappropriate coverage of the target volumes (CTV). Large margins were historically applied around the CTV, increasing the dose delivered to organs at risk (OAR). With repositioning imaging and visualization of soft tissues during image guided RT, an opportunity to consider these movements and deformations appeared possible with an adaptive RT approach (ART). MATERIALS AND METHODS A bibliographic search on the PubMed database has been done in January 2019. Studies focusing on patients with MIBC, treating on ART, with the objectives of feasibility, clinical and/or dosimetric evaluation and comparison with a standard irradiation technique were eligible. The purpose of this review was to define the different ART techniques used in clinical practice, to discuss their advantages compared to conventional RT in terms of target volume's coverage and OAR dose and to describe their feasibility in clinical practice. RESULTS A total of 30 studies were selected. The strategies known as "composite offline", "plan of the day" not individualized or individualized, and "re-optimization" have been identified. All the studies have shown a significant benefit of ART in target coverage and dose of OAR, especially the rectum and small bowel. All ART plans produced are not used during RT sessions. Inter-observer variability for the selection of these plans can be observed. The practical implementation within a department required staff education and training, and increases the duration of treatment preparation. The "A-POLO" approach seems to be the most suitable for practice. CONCLUSION ART is the technique of choice for bladder cancer RT. The "plan of the day" approach, individualized according to the A-POLO methodology, seems to be the most effective. The emergence of daily re-optimization, especially using MRI-Linac, is promising. The correlation between dosimetric benefits and clinical efficacy and safety results should be demonstrated into future trials.
Collapse
Affiliation(s)
- M Cabaillé
- Département de radiothérapie, Institut Bergonié, 229, cours de l'Argonne, 33076 Bordeaux cedex, France
| | - J Khalifa
- Département de radiothérapie, Institut universitaire du Cancer de Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France
| | - A M Tessier
- Département de radiothérapie, Institut Bergonié, 229, cours de l'Argonne, 33076 Bordeaux cedex, France
| | - S Belhomme
- Département de physique médicale, Institut Bergonié, 229, cours de l'Argonne, 33076 Bordeaux cedex, France
| | - G Créhange
- Département de radiothérapie, Institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - P Sargos
- Département de radiothérapie, Institut Bergonié, 229, cours de l'Argonne, 33076 Bordeaux cedex, France.
| |
Collapse
|
12
|
Hafeez S, Webster A, Hansen VN, McNair HA, Warren-Oseni K, Patel E, Choudhury A, Creswell J, Foroudi F, Henry A, Kron T, McLaren DB, Mitra AV, Mostafid H, Saunders D, Miles E, Griffin C, Lewis R, Hall E, Huddart R. Protocol for tumour-focused dose-escalated adaptive radiotherapy for the radical treatment of bladder cancer in a multicentre phase II randomised controlled trial (RAIDER): radiotherapy planning and delivery guidance. BMJ Open 2020; 10:e041005. [PMID: 33384390 PMCID: PMC7780718 DOI: 10.1136/bmjopen-2020-041005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Daily radiotherapy delivered with radiosensitisation offers patients with muscle invasive bladder cancer (MIBC) comparable outcomes to cystectomy with functional organ preservation. Most recurrences following radiotherapy occur within the bladder. Increasing the delivered radiotherapy dose to the tumour may further improve local control. Developments in image-guided radiotherapy have allowed bladder tumour-focused 'plan of the day' radiotherapy delivery. We aim to test within a randomised multicentre phase II trial whether this technique will enable dose escalation with acceptable rates of toxicity. METHODS AND ANALYSIS Patients with T2-T4aN0M0 unifocal MIBC will be randomised (1:1:2) between standard/control whole bladder single plan radiotherapy, standard dose adaptive tumour-focused radiotherapy or dose-escalated adaptive tumour-focused radiotherapy (DART). Adaptive tumour-focused radiotherapy will use a library of three plans (small, medium and large) for treatment. A cone beam CT taken prior to each treatment will be used to visualise the anatomy and inform selection of the most appropriate plan for treatment.Two radiotherapy fractionation schedules (32f and 20f) are permitted. A minimum of 120 participants will be randomised in each fractionation cohort (to ensure 57 evaluable DART patients per cohort).A comprehensive radiotherapy quality assurance programme including pretrial and on-trial components is instituted to ensure standardisation of radiotherapy planning and delivery.The trial has a two-stage non-comparative design. The primary end point of stage I is the proportion of patients meeting predefined normal tissue constraints in the DART group. The primary end point of stage II is late Common Terminology Criteria for Adverse Events grade 3 or worse toxicity aiming to exclude a rate of >20% (80% power and 5% alpha, one sided) in each DART fractionation cohort. Secondary end points include locoregional MIBC control, progression-free survival overall survival and patient-reported outcomes. ETHICS AND DISSEMINATION This clinical trial is approved by the London-Surrey Borders Research Ethics Committee (15/LO/0539). The results when available will be disseminated via peer-reviewed scientific journals, conference presentations and submission to regulatory authorities. TRIAL REGISTRATION NUMBER NCT02447549; Pre-results.
Collapse
Affiliation(s)
- Shaista Hafeez
- Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Radiotherapy Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Amanda Webster
- National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Hospital, Northwood, UK
| | - Vibeke N Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Helen A McNair
- Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Radiotherapy Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Karole Warren-Oseni
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Patel
- National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Hospital, Northwood, UK
| | - Ananya Choudhury
- Division of Cancer Studies, The University of Manchester, Manchester, UK
- Department of Clinical Oncology, Christie NHS Foundation Trust, Manchester, UK
| | - Joanne Creswell
- Department of Urology, James Cook University Hospital, Middlesbrough, UK
| | - Farshad Foroudi
- Department of Radiation Oncology, Austin Health, Heidelberg, Victoria, Australia
| | - Ann Henry
- Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Duncan B McLaren
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK
| | - Anita V Mitra
- Cancer Services, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hugh Mostafid
- The Stokes Centre for Urology, Royal Surrey Hospital NHS Foundation Trust, Guildford, Surrey, UK
| | - Daniel Saunders
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Elizabeth Miles
- National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Hospital, Northwood, UK
| | - Clare Griffin
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Rebecca Lewis
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Robert Huddart
- Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Radiotherapy Department, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Sibolt P, Andersson LM, Calmels L, Sjöström D, Bjelkengren U, Geertsen P, Behrens CF. Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 17:1-7. [PMID: 33898770 PMCID: PMC8057957 DOI: 10.1016/j.phro.2020.12.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Background and purpose Studies have demonstrated the potential of online adaptive radiotherapy (oART). However, routine use has been limited due to resource demanding solutions. This study reports on experiences with oART in the pelvic region using a novel cone-beam computed tomography (CBCT)-based, artificial intelligence (AI)-driven solution. Material and methods Automated pre-treatment planning for thirty-nine pelvic cases (bladder, rectum, anal, and prostate), and one hundred oART simulations were conducted in a pre-clinical release of Ethos (Varian Medical Systems, Palo Alto, CA). Plan quality, AI-segmentation accuracy, oART feasibility and an integrated calculation-based quality assurance solution were evaluated. Experiences from the first five clinical oART patients (three bladder, one rectum and one sarcoma) are reported. Results Auto-generated pre-treatment plans demonstrated similar planning target volume (PTV) coverage and organs at risk doses, compared to institution reference. More than 75% of AI-segmentations during simulated oART required none or minor editing and the adapted plan was superior in 88% of cases. Limitations in AI-segmentation correlated to cases where AI model training was lacking. The five first treated patients complied well with the median adaptive procedure duration of 17.6 min (from CBCT acceptance to treatment delivery start). The treated bladder patients demonstrated a 42% median primary PTV reduction, indicating a 24%-30% reduction in V45Gy to the bowel cavity, compared to non-ART. Conclusions A novel commercial oART solution was demonstrated feasible for various pelvic sites. Clinically acceptable AI-segmentation and auto-planning enabled adaptation within reasonable timeslots. Possibilities for reduced PTVs observed for bladder cancer indicated potential for toxicity reductions.
Collapse
Affiliation(s)
- Patrik Sibolt
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Lina M Andersson
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Lucie Calmels
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - David Sjöström
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Ulf Bjelkengren
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Poul Geertsen
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Claus F Behrens
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
14
|
Webster A, Appelt A, Eminowicz G. Image-Guided Radiotherapy for Pelvic Cancers: A Review of Current Evidence and Clinical Utilisation. Clin Oncol (R Coll Radiol) 2020; 32:805-816. [DOI: 10.1016/j.clon.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
|
15
|
de Jong R, Crama KF, Visser J, van Wieringen N, Wiersma J, Geijsen ED, Bel A. Online adaptive radiotherapy compared to plan selection for rectal cancer: quantifying the benefit. Radiat Oncol 2020; 15:162. [PMID: 32641080 PMCID: PMC7371470 DOI: 10.1186/s13014-020-01597-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background To compare online adaptive radiation therapy (ART) to a clinically implemented plan selection strategy (PS) with respect to dose to the organs at risk (OAR) for rectal cancer. Methods The first 20 patients treated with PS between May–September 2016 were included. This resulted in 10 short (SCRT) and 10 long (LCRT) course radiotherapy treatment schedules with a total of 300 Conebeam CT scans (CBCT). New dual arc VMAT plans were generated using auto-planning for both the online ART and PS strategy. For each fraction bowel bag, bladder and mesorectum were delineated on daily Conebeam CTs. The dose distribution planned was used to calculate daily DVHs. Coverage of the CTV was calculated, as defined by the dose received by 99% of the CTV volume (D99%). The volume of normal tissue irradiated with 95% of the prescribed fraction dose was calculated by calculating the volume receiving 95% of the prescribed fraction or more dose minus the volume of the CTV. For each fraction the difference between the plan selection and online adaptive strategy of each DVH parameter was calculated, as well as the average difference per patient. Results Target coverage remained the same for online ART. The median volume of the normal tissue irradiated with 95% of the prescribed dose dropped from 642 cm3 (PS) to 237 cm3 (online-ART)(p < 0.001). Online ART reduced dose to the OARs for all tested dose levels for SCRT and LCRT (p < 0.001). For V15Gy of the bowel bag the median difference over all fractions of all patients was − 126 cm3 in LCRT, while the average difference per patient ranged from − 206 cm3 to − 40 cm3. For SCRT the median difference was − 62 cm3, while the range of the average difference per patient was − 105 cm3 to − 51 cm3. For V15Gy of the bladder the median difference over all fractions of all patients was 26% in LCRT, while the average difference per patient ranged from − 34 to 12%. For SCRT the median difference of V95% was − 8%, while the range of the average difference per patient was − 29 to 0%. Conclusions Online ART for rectal cancer reduces dose the OARs significantly compared to a clinically implemented plan selection strategy, without compromising target coverage. Trial registration Medical Research Involving Human Subjects Act (WMO) does not apply to this study and was retrospectively approved by the Medical Ethics review Committee of the Academic Medical Center (W19_357 # 19.420; Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands).
Collapse
Affiliation(s)
- R de Jong
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - K F Crama
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - J Visser
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - N van Wieringen
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - J Wiersma
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - E D Geijsen
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Huddart R, Hall E, Lewis R, Porta N, Hussain SA, James ND. Reply to Wei Liu, Xiaoping Liu, Sheng Li's Letter to the Editor, re: Robert A. Huddart, Emma Hall, Rebecca Lewis, et al. Patient-reported Quality of Life Outcomes in Patients Treated for Muscle-invasive Bladder Cancer with Radiotherapy ± Chemotherapy in the BC2001 Phase III Randomised Controlled Trial. Eur Urol 2020;77:260-8. Eur Urol 2020; 77:e156-e157. [PMID: 32169314 DOI: 10.1016/j.eururo.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Robert Huddart
- Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK.
| | - Emma Hall
- Institute of Cancer Research, London, UK
| | | | | | - Syed A Hussain
- Academic Unit of Oncology, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Nicholas D James
- Institute of Cancer Research, London, UK; University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
17
|
Wilson C, Moseshvili E, Tacey M, Quin I, Lawrentschuk N, Bolton D, Joon DL, Chao M, Dunshea T, Kron T, Foroudi F. Assessment of Intrafraction Motion of the Urinary Bladder Using Magnetic Resonance Imaging (cineMRI). Clin Oncol (R Coll Radiol) 2019; 32:101-109. [PMID: 31607612 DOI: 10.1016/j.clon.2019.09.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022]
Abstract
AIM To assess the intrafraction motion of the urinary bladder and delineate the appropriate margin size for radiotherapy planning, for both the full and empty bladder. MATERIALS AND METHODS This was a single-site, single-arm study of 20 patients planned to undergo radical cystectomy for histologically confirmed muscle-invasive bladder cancer. Patients underwent magnetic resonance imaging (cineMRI) of the entire pelvis using a 3-Tesla system, prior to cystectomy. Patients first underwent a cineMRI with a full bladder, then voided and underwent a second MRI with an empty bladder. All MRI sequences were acquired over 18 min. We assessed the differences in bladder filling and subsequent bladder wall displacement, between the empty and full bladder, during a time period consistent with radiotherapy treatment delivery. RESULTS Twenty patients underwent cineMRI of the entire pelvis. The maximum mean directional displacements of the bladder walls over the 18 min duration of the scan for the empty bladders were 9.8 mm superiorly, 1.1 mm inferiorly, 2.39 mm anteriorly, 3.73 mm posteriorly, 2.74 mm to the left and 2.48 mm to the right. The maximal mean displacements for the full bladders were 9.2 mm superiorly, 1.1 mm inferiorly, 2.28 mm anteriorly, 1.08 mm posteriorly, 1.85 mm to the left and 1.73 mm to the right. Statistically significant differences were seen in the posterior, left and right displacements but were quantitatively small. CONCLUSIONS Intrafractional motion secondary to bladder filling showed minimal variation between the full and empty bladder. Similar clinical target volume to planning target volume margins can be applied for the delivery of radiotherapy for a full and empty bladder.
Collapse
Affiliation(s)
- C Wilson
- Austin Health, Heidelberg, Victoria, Australia.
| | | | - M Tacey
- Austin Health, Heidelberg, Victoria, Australia; Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - I Quin
- GenesisCare, Wembley, Western Australia, Australia
| | | | - D Bolton
- Austin Health, Heidelberg, Victoria, Australia
| | - D L Joon
- Austin Health, Heidelberg, Victoria, Australia
| | - M Chao
- Austin Health, Heidelberg, Victoria, Australia
| | - T Dunshea
- Austin Health, Heidelberg, Victoria, Australia; MIA Radiology, Heidelberg, Victoria, Australia
| | - T Kron
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - F Foroudi
- Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
18
|
|
19
|
Aragon-Ching JB, Choudhury A, Margulis V, Yu EY. Formidable Scenarios in Urothelial and Variant Cancers of the Urinary Tract. Am Soc Clin Oncol Educ Book 2019; 39:262-275. [PMID: 31099661 DOI: 10.1200/edbk_237451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diagnostic and therapeutic challenges in the field of bladder and upper tract cancers provide opportunities for multidisciplinary care. Urothelial cancers make up the majority of the histologic subtype of bladder and upper tract cancers. Although the existence of variant histology, nonurothelial cancers, and urethral cancers is rare, these cancers pose a challenging clinical dilemma given the lack of well-defined consensus treatment guidelines. This review focuses on key issues of treatment: cisplatin ineligibility with emphasis on the definition, nuances of chemotherapy and frontline immune checkpoint inhibitor therapy, use of radiation in bladder-preservation strategies, upper tract urothelial cancer management, and highlights of urothelial variants and nonurothelial tumors and management.
Collapse
Affiliation(s)
| | - Ananya Choudhury
- 2 The Christie National Health Service Foundation Trust, Manchester, United Kingdom
| | - Vitaly Margulis
- 3 The Univeristy of Texas Southwestern Medical Center, Dallas, TX
| | - Evan Y Yu
- 4 University of Washington, Seattle, WA
| |
Collapse
|
20
|
Krishnan A, Tsang YM, Stewart-Lord A. The impact of intra-fractional bladder filling on "Plan of the day" adaptive bladder radiotherapy. Tech Innov Patient Support Radiat Oncol 2019; 9:31-34. [PMID: 32095593 PMCID: PMC7033786 DOI: 10.1016/j.tipsro.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 01/04/2023] Open
Abstract
A retrospective audit on the "Plan of the day" (POD) selection and intra-fractional bladder fillings were carried out on twenty adaptive bladder radiotherapy patients at a single institution. Treatment time, differences in bladder volume and displacement of outer bladder wall expansion over the treatment fraction were analysed. Average treatment time was 8.9 min. The mean percentage difference in bladder volume pre and post treatment was 13.7%, resulting in expansion of the bladder predominately in the superior and anterior directions. This audit confirmed that the institution's POD process sufficed without being significantly affected by the intra-fractional bladder filings.
Collapse
Affiliation(s)
- Aisling Krishnan
- East and North Hertfordshire NHS Trust, Radiotherapy, Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, United Kingdom
| | - Yat Man Tsang
- East and North Hertfordshire NHS Trust, Radiotherapy, Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, United Kingdom
| | - Adéle Stewart-Lord
- School of Health and Social Care, London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
| |
Collapse
|
21
|
Zou W, Dong L, Kevin Teo BK. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Semin Radiat Oncol 2018; 28:238-247. [PMID: 29933883 DOI: 10.1016/j.semradonc.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Image guidance technology has evolved and seen widespread application in the past several decades. Advancements in the diagnostic imaging field have found new applications in radiation oncology and promoted the development of therapeutic devices with advanced imaging capabilities. A recent example is the development of linear accelerators that offer magnetic resonance imaging for real-time imaging and online adaptive planning. Volumetric imaging, in particular, offers more precise localization of soft tissue targets and critical organs which reduces setup uncertainty and permit the use of smaller setup margins. We present a review of the status of current imaging modalities available for radiation oncology and its impact on target margins and use for adaptive therapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Collins SD, Leech MM. A review of plan library approaches in adaptive radiotherapy of bladder cancer. Acta Oncol 2018; 57:566-573. [PMID: 29299945 DOI: 10.1080/0284186x.2017.1420908] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Large variations in the shape and size of the bladder volume are commonly observed in bladder cancer radiotherapy (RT). The clinical target volume (CTV) is therefore frequently inadequately treated and large isotropic margins are inappropriate in terms of dose to organs at risk (OAR); thereby making adaptive radiotherapy (ART) attractive for this tumour site. There are various methods of ART delivery, however, for bladder cancer, plan libraries are frequently used. MATERIAL AND METHODS A review of published studies on plan libraries for bladder cancer using four databases (Pubmed, Science Direct, Embase and Cochrane Library) was conducted. The endpoints selected were accuracy and feasibility of initiation of a plan library strategy into a RT department. RESULTS Twenty-four articles were included in this review. The majority of studies reported improvement in accuracy with 10 studies showing an improvement in planning target volume (PTV) and CTV coverage with plan libraries, some by up to 24%. Seventeen studies showed a dose reduction to OARs, particularly the small bowel V45Gy, V40Gy, V30Gy and V10Gy, and the rectal V30Gy. However, the occurrence of no suitable plan was reported in six studies, with three studies showing no significant difference between adaptive and non-adaptive strategies in terms of target coverage. In addition, inter-observer variability in plan selection appears to remain problematic. The additional resources, education and technology required for the initiation of plan library selection for bladder cancer may hinder its routine clinical implementation, with eight studies illustrating increased treatment time required. CONCLUSIONS While there is a growing body of evidence in support of plan libraries for bladder RT, many studies differed in their delivery approach. The advent of the clinical use of the MRI-linear accelerator will provide RT departments with the opportunity to consider daily online adaption for bladder cancer as an alternate to plan library approaches.
Collapse
Affiliation(s)
- Shane D. Collins
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College, Dublin, Ireland
| | - Michelle M. Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College, Dublin, Ireland
| |
Collapse
|
23
|
Bert C, Herfarth K. Management of organ motion in scanned ion beam therapy. Radiat Oncol 2017; 12:170. [PMID: 29110693 PMCID: PMC5674859 DOI: 10.1186/s13014-017-0911-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Scanned ion beam therapy has special demands for treatment of intra-fractionally moving tumors such as lesions in lung or liver. Interplay effects between beam and organ motion can in those settings lead to under-dosage of the target volume. Dedicated treatment techniques such as gating or abdominal compression are required. In addition 4D treatment planning should be used to determine strategies for patient specific treatment planning such as an increased beam focus or the use of internal target volumes incorporating range changes.Several work packages of the Clinical Research Units 214 and 214/2 funded by the German Research Council investigated the management of organ motion in scanned ion beam therapy. A focus was laid on 4D treatment planning using TRiP4D and the development of motion mitigation strategies including their quality assurance. This review focuses on the activity in the second funding period covering adaptive treatment planning strategies, 4D treatment plan optimization, and the application of motion management in pre-clinical research on radiation therapy of cardiac arrhythmias.
Collapse
Affiliation(s)
- Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Huddart RA, Birtle A, Maynard L, Beresford M, Blazeby J, Donovan J, Kelly JD, Kirkbank T, McLaren DB, Mead G, Moynihan C, Persad R, Scrase C, Lewis R, Hall E. Clinical and patient-reported outcomes of SPARE - a randomised feasibility study of selective bladder preservation versus radical cystectomy. BJU Int 2017; 120:639-650. [PMID: 28453896 PMCID: PMC5655733 DOI: 10.1111/bju.13900] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To test the feasibility of a randomised trial in muscle-invasive bladder cancer (MIBC) and compare outcomes in patients who receive neoadjuvant chemotherapy followed by radical cystectomy (RC) or selective bladder preservation (SBP), where definitive treatment [RC or radiotherapy (RT)] is determined by response to chemotherapy. PATIENTS AND METHODS SPARE is a multicentre randomised controlled trial comparing RC and SBP in patients with MIBC staged T2-3 N0 M0, fit for both treatment strategies and receiving three cycles of neoadjuvant chemotherapy. Patients were randomised between RC and SBP before a cystoscopy after cycle three of neoadjuvant chemotherapy. Patients with ≤T1 residual tumour received a fourth cycle of neoadjuvant chemotherapy in both groups, followed by radical RT in the SBP group and RC in in the RC group; non-responders in both groups proceeded immediately to RC following cycle three. Feasibility study primary endpoints were accrual rate and compliance with assigned treatment strategy. The phase III trial was designed to demonstrate non-inferiority of SBP in terms of overall survival (OS) in patients whose tumours responded to neoadjuvant chemotherapy. Secondary endpoints included patient-reported quality of life, clinician assessed toxicity, loco-regional recurrence-free survival, and rate of salvage RC after SBP. RESULTS Trial recruitment was challenging and below the predefined target with 45 patients recruited in 30 months (25 RC; 20 SBP). Non-compliance with assigned treatment strategy was frequent, six of the 25 patients (24%) randomised to RC received RT. Long-term bladder preservation rate was 11/15 (73%) in those who received RT per protocol. OS survival was not significantly different between groups. CONCLUSIONS Randomising patients with MIBC between RC and SBP based on response to neoadjuvant chemotherapy was not feasible in the UK health system. Strong clinician and patient preferences for treatments impacted willingness to undergo randomisation and acceptance of treatment allocation. Due to the few participants, firm conclusions about disease and toxicity outcomes cannot be drawn.
Collapse
Affiliation(s)
- Robert A. Huddart
- The Institute of Cancer ResearchLondonUK
- Royal Marsden NHS Foundation TrustLondonUK
| | - Alison Birtle
- Royal Preston HospitalPreston and University of ManchesterManchesterUK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Emma Hall
- The Institute of Cancer ResearchLondonUK
| |
Collapse
|
25
|
Canlas R, McVicar N, Nakano S, Sahota H, Mahajan P, Tyldesley S. Assessment of Adaptive Margins Using a Single Planning Computed Tomography Scan for Bladder Radiotherapy. J Med Imaging Radiat Sci 2016; 47:227-234. [DOI: 10.1016/j.jmir.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
|
26
|
Thörnqvist S, Hysing LB, Tuomikoski L, Vestergaard A, Tanderup K, Muren LP, Heijmen BJM. Adaptive radiotherapy strategies for pelvic tumors - a systematic review of clinical implementations. Acta Oncol 2016; 55:943-58. [PMID: 27055486 DOI: 10.3109/0284186x.2016.1156738] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Introdution: Variation in shape, position and treatment response of both tumor and organs at risk are major challenges for accurate dose delivery in radiotherapy. Adaptive radiotherapy (ART) has been proposed to customize the treatment to these motion/response patterns of the individual patients, but increases workload and thereby challenges clinical implementation. This paper reviews strategies and workflows for clinical and in silico implemented ART for prostate, bladder, gynecological (gyne) and ano-rectal cancers. MATERIAL AND METHODS Initial identification of papers was based on searches in PubMed. For each tumor site, the identified papers were screened independently by two researches for selection of studies describing all processes of an ART workflow: treatment monitoring and evaluation, decision and execution of adaptations. Both brachytherapy and external beam studies were eligible for review. RESULTS The review consisted of 43 clinical studies and 51 in silico studies. For prostate, 1219 patients were treated with offline re-planning, mainly to adapt prostate motion relative to bony anatomy. For gyne 1155 patients were treated with online brachytherapy re-planning while 25 ano-rectal cancer patients were treated with offline re-planning, all to account for tumor regression detected by magnetic resonance imaging (MRI)/computed tomography (CT). For bladder and gyne, 161 and 64 patients, respectively, were treated with library-based online plan selection to account for target volume and shape variations. The studies reported sparing of rectum (prostate and bladder cancer), bladder (ano-rectal cancer) and bowel cavity (gyne and bladder cancer) as compared to non-ART. CONCLUSION Implementations of ART were dominated by offline re-planning and online brachytherapy re-planning strategies, although recently online plan selection workflows have increased with the availability of cone-beam CT. Advantageous dosimetric and outcome patterns using ART was documented by the studies of this review. Despite this, clinical implementations were scarce due to challenges in target/organ re-contouring and suboptimal patient selection in the ART workflows.
Collapse
Affiliation(s)
- Sara Thörnqvist
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Liv B. Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Laura Tuomikoski
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Anne Vestergaard
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig P. Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ben J. M. Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
27
|
A Multidisciplinary Evaluation of a Web-based eLearning Training Programme for SAFRON II (TROG 13.01): a Multicentre Randomised Study of Stereotactic Radiotherapy for Lung Metastases. Clin Oncol (R Coll Radiol) 2016; 28:e101-8. [PMID: 27116931 DOI: 10.1016/j.clon.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
AIMS In technically advanced multicentre clinical trials, participating centres can benefit from a credentialing programme before participating in the trial. Education of staff in participating centres is an important aspect of a successful clinical trial. In the multicentre study of fractionated versus single fraction stereotactic ablative body radiotherapy in lung oligometastases (TROG 13.01), knowledge transfer of stereotactic ablative body radiotherapy techniques to the local multidisciplinary team is intended as part of the credentialing process. In this study, a web-based learning platform was developed to provide education and training for the multidisciplinary trial teams at geographically distinct sites. MATERIALS AND METHODS A web-based platform using eLearning software consisting of seven training modules was developed. These modules were based on extracranial stereotactic theory covering the following discrete modules: Clinical background; Planning technique and evaluation; Planning optimisation; Four-dimensional computed tomography simulation; Patient-specific quality assurance; Cone beam computed tomography and image guidance; Contouring organs at risk. Radiation oncologists, medical physicists and radiation therapists from hospitals in Australia and New Zealand were invited to participate in this study. Each discipline was enrolled into a subset of modules (core modules) and was evaluated before and after completing each module. The effectiveness of the eLearning training will be evaluated based on (i) knowledge retention after participation in the web-based training and (ii) confidence evaluation after participation in the training. Evaluation consisted of a knowledge test and confidence evaluation using a Likert scale. RESULTS In total, 130 participants were enrolled into the eLearning programme: 81 radiation therapists (62.3%), 27 medical physicists (20.8%) and 22 radiation oncologists (16.9%). There was an average absolute improvement of 14% in test score (P < 0.001) after learning. This score improvement compared with initial testing was also observed in the long-term testing (>4 weeks) after completing the modules (P < 0.001). For most there was significant increase in confidence (P < 0.001) after completing all the modules.
Collapse
|
28
|
Hafeez S, Warren-Oseni K, McNair HA, Hansen VN, Jones K, Tan M, Khan A, Harris V, McDonald F, Lalondrelle S, Mohammed K, Thomas K, Thompson A, Kumar P, Dearnaley D, Horwich A, Huddart R. Prospective Study Delivering Simultaneous Integrated High-dose Tumor Boost (≤70 Gy) With Image Guided Adaptive Radiation Therapy for Radical Treatment of Localized Muscle-Invasive Bladder Cancer. Int J Radiat Oncol Biol Phys 2016; 94:1022-30. [PMID: 27026308 DOI: 10.1016/j.ijrobp.2015.12.379] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/20/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022]
Abstract
PURPOSE Image guided adaptive radiation therapy offers individualized solutions to improve target coverage and reduce normal tissue irradiation, allowing the opportunity to increase the radiation tumor dose and spare normal bladder tissue. METHODS AND MATERIALS A library of 3 intensity modulated radiation therapy plans were created (small, medium, and large) from planning computed tomography (CT) scans performed at 30 and 60 minutes; treating the whole bladder to 52 Gy and the tumor to 70 Gy in 32 fractions. A "plan of the day" approach was used for treatment delivery. A post-treatment cone beam CT (CBCT) scan was acquired weekly to assess intrafraction filling and coverage. RESULTS A total of 18 patients completed treatment to 70 Gy. The plan and treatment for 1 patient was to 68 Gy. Also, 1 patient's plan was to 70 Gy but the patient was treated to a total dose of 65.6 Gy because dose-limiting toxicity occurred before dose escalation. A total of 734 CBCT scans were evaluated. Small, medium, and large plans were used in 36%, 48%, and 16% of cases, respectively. The mean ± standard deviation rate of intrafraction filling at the start of treatment (ie, week 1) was 4.0 ± 4.8 mL/min (range 0.1-19.4) and at end of radiation therapy (ie, week 5 or 6) was 1.1 ± 1.6 mL/min (range 0.01-7.5; P=.002). The mean D98 (dose received by 98% volume) of the tumor boost and bladder as assessed on the post-treatment CBCT scan was 97.07% ± 2.10% (range 89.0%-104%) and 99.97% ± 2.62% (range 96.4%-112.0%). At a median follow-up period of 19 months (range 4-33), no muscle-invasive recurrences had developed. Two patients experienced late toxicity (both grade 3 cystitis) at 5.3 months (now resolved) and 18 months after radiation therapy. CONCLUSIONS Image guided adaptive radiation therapy using intensity modulated radiation therapy to deliver a simultaneous integrated tumor boost to 70 Gy is feasible, with acceptable toxicity, and will be evaluated in a randomized trial.
Collapse
Affiliation(s)
- Shaista Hafeez
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom.
| | - Karole Warren-Oseni
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Helen A McNair
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Vibeke N Hansen
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Kelly Jones
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Melissa Tan
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Attia Khan
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Victoria Harris
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Fiona McDonald
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Susan Lalondrelle
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Kabir Mohammed
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Karen Thomas
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Alan Thompson
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Pardeep Kumar
- The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - David Dearnaley
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Alan Horwich
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Robert Huddart
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
29
|
Vestergaard A, Hafeez S, Muren LP, Nill S, Høyer M, Hansen VN, Grønborg C, Pedersen EM, Petersen JB, Huddart R, Oelfke U. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol 2016; 118:154-9. [PMID: 26631646 DOI: 10.1016/j.radonc.2015.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Adaptive radiotherapy (ART) using plan selection is being introduced clinically for bladder cancer, but the challenge of how to compensate for intra-fractional motion remains. The purpose of this study was to assess target coverage with respect to intra-fractional motion and the potential for normal tissue sparing in MRI-guided ART (MRIGART) using isotropic (MRIGARTiso), an-isotropic (MRIGARTanIso) and population-based margins (MRIGARTpop). MATERIALS AND METHODS Nine bladder cancer patients treated in a phase II trial of plan selection underwent 6-7 weekly repeat MRI series, each with volumetric scans acquired over a 10 min period. Adaptive re-planning on the 0 min MRI scans was performed using density override, simulating a hypo-fractionated schedule. Target coverage was evaluated on the 10 min scan to quantify the impact of intra-fractional motion. RESULTS MRIGARTanIso reduced the course-averaged PTV by median 304 cc compared to plan selection. Bladder shifts affected target coverage in individual fractions for all strategies. Two patients had a v95% of the bladder below 98% for MRIGARTiso. MRIGARTiso decreased the bowel V25 with 15-46 cc compared to MRIGARTpop. CONCLUSION Online re-optimised ART has a considerable normal tissue sparing potential. MRIGART with online corrections for target shift during a treatment fraction should be considered in ART for bladder cancer.
Collapse
Affiliation(s)
- Anne Vestergaard
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark; Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Shaista Hafeez
- Academic Urology Unit, The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Ludvig P Muren
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Morten Høyer
- Department of Oncology, AarhusUniversity/Aarhus University Hospital, Denmark
| | - Vibeke N Hansen
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Caroline Grønborg
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| | - Erik M Pedersen
- Department of Radiology, Aarhus University/Aarhus University Hospital, Denmark
| | - Jørgen B Petersen
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| | - Robert Huddart
- Academic Urology Unit, The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
30
|
A comparison between two clinically applied plan library strategies in adaptive radiotherapy of bladder cancer. Radiother Oncol 2015; 117:448-52. [DOI: 10.1016/j.radonc.2015.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022]
|
31
|
Henriques de Figueiredo B, Petit A, Sargos P, Kantor G, Pouypoudat C, Saut O, Zacharatou C, Antoine M. Radiothérapie adaptative en routine : point de vue de l’oncologue radiothérapeute. Cancer Radiother 2015; 19:446-9. [DOI: 10.1016/j.canrad.2015.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
|
32
|
Whalley D, Caine H, McCloud P, Guo L, Kneebone A, Eade T. Promising results with image guided intensity modulated radiotherapy for muscle invasive bladder cancer. Radiat Oncol 2015; 10:205. [PMID: 26407726 PMCID: PMC4583158 DOI: 10.1186/s13014-015-0499-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023] Open
Abstract
AIM To describe the feasibility of image guided intensity modulated radiotherapy (IG-IMRT) using daily soft tissue matching in the treatment of bladder cancer. METHODS Twenty-eight patients with muscle-invasive carcinoma of the bladder were recruited to a protocol of definitive radiation using IMRT with accelerated hypofractionation with simultaneous integrated boost (SIB). Isotropic margins of .5 and 1 cm were used to generate the high risk and intermediate risk planning target volumes respectively. Cone beam CT (CBCT) was acquired daily and a soft tissue match was performed. Cystoscopy was scheduled 6 weeks post treatment. RESULTS The median age was 83 years (range 58-92). Twenty patients had stage II or III disease, and eight were stage IV. Gross disease received 66 Gy in 30 fractions in 11 patients (ten with concurrent chemotherapy) or 55 Gy in 20 fractions for those of poorer performance status or with palliative intent. All patients completed radiation treatment as planned. Three patients ceased chemotherapy early due to toxicity. Six patients (21 %) had acute Grade ≥ 2 genitourinary (GU) toxicity and six (21 %) had acute Grade ≥ 2 gastrointestinal (GI) toxicity. Five patients (18 %) developed Grade ≥2 late GU toxicity and no ≥2 late GI toxicity was observed. Nineteen patients underwent cystoscopy following radiation, with complete response (CR) in 16 cases (86 %), including all patients treated with chemoradiotherapy. Eight patients relapsed, four of which were local relapses. Of the patients with local recurrence, one underwent salvage cystectomy. For patients treated with definitive intent, freedom from locoregional recurrence (FFLR) and overall survival (OS) was 90 %/100 % for chemoradiotherapy versus 86 %/69 % for radiotherapy alone. CONCLUSION IG- IMRT using daily soft tissue matching is a feasible in the treatment of bladder cancer, enabling the delivery of accelerated synchronous integrated boost with good early local control outcomes and low toxicity.
Collapse
Affiliation(s)
- D Whalley
- Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia.
| | - H Caine
- Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia.
| | - P McCloud
- Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia. .,McCloud Consulting Group, 7-9 Merriwa Street, Gordon, NSW, 2072, Australia.
| | - L Guo
- Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia.
| | - A Kneebone
- Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia. .,McCloud Consulting Group, 7-9 Merriwa Street, Gordon, NSW, 2072, Australia.
| | - T Eade
- Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia. .,Northern Clinical School, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
33
|
A review of the 2014 English Language publications pertinent to the treatment of invasive bladder cancer by radiotherapy. Curr Opin Support Palliat Care 2015; 9:245-8. [DOI: 10.1097/spc.0000000000000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Grønborg C, Vestergaard A, Høyer M, Söhn M, Pedersen EM, Petersen JB, Agerbæk M, Muren LP. Intra-fractional bladder motion and margins in adaptive radiotherapy for urinary bladder cancer. Acta Oncol 2015; 54:1461-6. [PMID: 26313410 DOI: 10.3109/0284186x.2015.1062138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The bladder is a tumour site well suited for adaptive radiotherapy (ART) due to large inter-fractional changes, but it also displays considerable intra-fractional motion. The aim of this study was to assess target coverage with a clinically applied method for plan selection ART and to estimate population-based and patient-specific intra-fractional margins, also relevant for a future re-optimisation strategy. MATERIAL AND METHODS Nine patients treated in a clinical phase II ART trial of daily plan selection for bladder cancer were included. In the library plans, 5 mm isotropic margins were added to account for intra-fractional changes. Pre-treatment and weekly repeat magnetic resonance imaging (MRI) series were acquired in which a full three-dimensional (3D) volume was scanned every second min for 10 min (a total of 366 scans in 61 series). Initially, the bladder clinical target volume (CTV) was delineated in all scans. The t = 0 min scan was then rigidly registered to the planning computed tomography (CT) and plan selections were simulated using the CTV_0 (at t = 0 min). To assess intra-fractional motion, coverage of the CTV_10 (at t = 10 min) was quantified using the applied PTV. Population-based margins were calculated using the van Herk margin recipe while patient-specific margins were calculated using a linear model. RESULTS For 49% of the cases, the CTV_10 extended more than 5 mm outside the CTV_0. However, in 58 of the 61 cases (97%) CTV_10 was covered by the selected PTV. Population-based margins of 14 mm Sup/Ant, 9 mm Post and 5 mm Inf/Lat were sufficient to cover the bladder. Using patient-specific margins, the overlap between PTV and bowel-cavity was reduced from 137 cm(3) with the plan selection strategy to 24 cm(3). CONCLUSION In this phase II ART trial, 5 mm isotropic margin for intra-fractional motion was sufficient even though considerable intra-fractional motion was observed. In online re-optimised ART, population-based margin can be applied although patient-specific margins are preferable.
Collapse
Affiliation(s)
- Caroline Grønborg
- a Department of Medical Physics , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| | - Anne Vestergaard
- a Department of Medical Physics , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| | - Morten Høyer
- b Department of Oncology , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| | - Matthias Söhn
- c Department of Radiation Oncology , University Hospital Grosshadern , LMU Munich, Munich , Germany
| | - Erik M Pedersen
- d Department of Radiology , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| | - Jørgen B Petersen
- a Department of Medical Physics , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| | - Mads Agerbæk
- b Department of Oncology , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| | - Ludvig P Muren
- a Department of Medical Physics , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
- b Department of Oncology , Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
35
|
Abstract
BACKGROUND In many cases radical cystectomy is not feasible in patients suffering from muscle-invasive bladder cancer due to advanced age of the patient or limiting comorbidities which increase the perioperative risk. A further group of patients decline radical cystectomy due to potential postoperative complications and the resulting impairment in the quality of life. OBJECTIVES This article provides an overview of alternative therapeutic concepts to radical cystectomy in muscle-invasive bladder cancer. MATERIAL AND METHODS The study involved a database analysis and gives a discussion of clinical trials concerning alternative therapeutic concepts for muscle-invasive bladder cancer treatment strategies. RESULTS Transurethral resection, open partial cystectomy, radiotherapy, chemotherapy and combined therapeutic regimens are available as alternatives to radical cystectomy. CONCLUSION Radical cystectomy is the accepted standard of care in the treatment of muscle-invasive bladder cancer but in selected patients, established alternative methods can also be offered. A comprehensive patient information and counseling is therefore necessary to find the best therapeutic option in each individual case. Salvage cystectomy is a therapeutic option in cases of failure of organ-preserving treatment.
Collapse
Affiliation(s)
- C Niedworok
- Klinik für Urologie und Kinderurologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Deutschland,
| | | |
Collapse
|
36
|
McNair HA, Hafeez S, Taylor H, Lalondrelle S, McDonald F, Hansen VN, Huddart R. Radiographer-led plan selection for bladder cancer radiotherapy: initiating a training programme and maintaining competency. Br J Radiol 2015; 88:20140690. [PMID: 25564753 DOI: 10.1259/bjr.20140690] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The implementation of plan of the day selection for patients receiving radiotherapy (RT) for bladder cancer requires efficient and confident decision-making. This article describes the development of a training programme and maintenance of competency. METHODS Cone beam CT (CBCT) images acquired on patients receiving RT for bladder cancer were assessed to establish baseline competency and training needs. A training programme was implemented, and observers were asked to select planning target volumes (PTVs) on two groups of 20 patients' images. After clinical implementation, the PTVs chosen were reviewed offline, and an audit performed after 3 years. RESULTS A mean of 73% (range, 53-93%) concordance rate was achieved prior to training. Subsequent to training, the mean score decreased to 66% (Round 1), then increased to 76% (Round 2). Six radiographers and two clinicians successfully completed the training programme. An independent observer reviewed the images offline after clinical implementation, and a 91% (126/139) concordance rate was achieved. During the audit, 125 CBCT images from 13 patients were reviewed by a single observer and concordance was 92%. CONCLUSION Radiographer-led selection of plan of the day was implemented successfully with the use of a training programme and continual assessment. Quality has been maintained over a period of 3 years. ADVANCES IN KNOWLEDGE The training programme was successful in achieving and maintaining competency for a plan of the day technique.
Collapse
Affiliation(s)
- H A McNair
- 1 Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Bellefqih S, Khalil J, Mezouri I, ElKacemi H, Kebdani T, Hadadi K, Benjaafar N. [Concomitant chemoradiotherapy for muscle-invasive bladder cancer: current knowledge, controversies and future directions]. Cancer Radiother 2014; 18:779-89. [PMID: 25454383 DOI: 10.1016/j.canrad.2014.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023]
Abstract
Radical cystectomy with lymphadenectomy is currently the standard of care for muscle-invasive urothelial bladder cancer; however and because of its morbidity and its impact on quality of life, there is a growing tendency for bladder-sparing strategies. Initially reserved for elderly or unfit patients unable to undergo radical cystectomy, chemoradiotherapy became a true alternative to surgery for highly selected patients. Although there are no randomized trials comparing radical cystectomy with bladder preserving approaches, surgery remains the preferred treatment for many clinicians. Furthermore, comparison is even more difficult as modalities of radiotherapy are not consensual and differ between centers with a variability of protocols, volume of irradiation and type of chemotherapy. Several ongoing trials are attempting to optimize chemoradiotherapy and limit its toxicity, especially through techniques of adaptive radiotherapy or targeted therapies.
Collapse
Affiliation(s)
- S Bellefqih
- Service de radiothérapie, Institut national d'oncologie, université Mohammed-V Souissi, avenue Allal-El Fassi, 10100 Rabat, Maroc.
| | - J Khalil
- Service de radiothérapie, Institut national d'oncologie, université Mohammed-V Souissi, avenue Allal-El Fassi, 10100 Rabat, Maroc
| | - I Mezouri
- Service de radiothérapie, Institut national d'oncologie, université Mohammed-V Souissi, avenue Allal-El Fassi, 10100 Rabat, Maroc
| | - H ElKacemi
- Service de radiothérapie, Institut national d'oncologie, université Mohammed-V Souissi, avenue Allal-El Fassi, 10100 Rabat, Maroc
| | - T Kebdani
- Service de radiothérapie, Institut national d'oncologie, université Mohammed-V Souissi, avenue Allal-El Fassi, 10100 Rabat, Maroc
| | - K Hadadi
- Service de radiothérapie, hôpital militaire d'instruction Mohamed-V, 10100 Rabat, Maroc
| | - N Benjaafar
- Service de radiothérapie, Institut national d'oncologie, université Mohammed-V Souissi, avenue Allal-El Fassi, 10100 Rabat, Maroc
| |
Collapse
|