1
|
Webster A, Mundora Y, Clark CH, Hawkins MA. To compress or to breath-hold? A systematic review of the impact of motion mitigation techniques on motion, interfraction set-up errors, and intrafraction errors in patients with hepatobiliary and pancreatic malignancies. Radiother Oncol 2024:110581. [PMID: 39395670 DOI: 10.1016/j.radonc.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND AND PURPOSE Reducing motion is vital in treating hepatobiliary (HPB) and pancreatic malignancies. Abdominal compression (AC) and breath-hold (BH) techniques aim to minimise respiratory motion, yet their adoption remains limited, and practices vary. This review examines the impact of AC and BH on motion, set-up errors, and patient tolerability in HPB and pancreatic patients. MATERIALS AND METHODS This systematic review, conducted using PRISMA and PICOS criteria, includes publications from January 2015 to February 2023. Eligible studies focused on AC and BH interventions in adults with HPB and pancreatic malignancies. Endpoints examined motion, set-up errors, intra-fraction errors, and patient tolerability. Due to study heterogeneity, Synthesis Without Meta-Analysis was used, and a 5 mm threshold assessed the impact of motion mitigation. RESULTS In forty studies, 14 explored AC and 26 BH, with 20 on HPB, 13 on pancreatic, and 7 on mixed cohorts. Six studied pre-treatment, 22 inter/intra-fraction errors, and 12 both. Six AC pre-treatment studies showed > 5 mm motion, and 4 BH and 2 AC studies reported > 5 mm inter-fraction errors. Compression studies commonly investigated the arch and belt, and DIBH was the predominant BH technique. No studies compared AC and BH. There was variation in the techniques, and several studies did not follow standardised error reporting. Patient experience and tolerability were under-reported. CONCLUSION The results indicate that AC effectively reduces motion, but its effectiveness may vary. BH can immobilise motion; however, it can be inconsistent between fractions. The review underscores the need for larger, standardised studies and emphasizes the importance of considering the patient's perspective for tailored treatments.
Collapse
Affiliation(s)
- Amanda Webster
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Yemurai Mundora
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catharine H Clark
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; National Physical Laboratory, Teddington, UK
| | - Maria A Hawkins
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
2
|
Samadi Miandoab P, Worm E, Hansen R, Weber B, Høyer M, Saramad S, Setayeshi S, Poulsen PR. Accuracy of four models and update strategies to estimate liver tumor motion from external respiratory motion. Front Oncol 2024; 14:1470650. [PMID: 39381048 PMCID: PMC11458717 DOI: 10.3389/fonc.2024.1470650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Background This study investigates different strategies for estimating internal liver tumor motion during radiotherapy based on continuous monitoring of external respiratory motion combined with sparse internal imaging. Methods Fifteen patients underwent three-fraction stereotactic liver radiotherapy. The 3D internal tumor motion (INT) was monitored by electromagnetic transponders while a camera monitored the external marker block motion (EXT). The ability of four external-internal correlation models (ECM) to estimate INT as function of EXT was investigated: a simple linear model (ECM1), an augmented linear model (ECM2), an augmented quadratic model (ECM3), and an extended quadratic model (ECM4). Each ECM was constructed by fitting INT and EXT during the first 60s of each fraction. The fit accuracy was calculated as the root-mean-square error (RMSE) between ECM-estimated and actual tumor motion. Next, the RMSE of the ECM-estimated tumor motion throughout the fractions was calculated for four simulated ECM update strategies: (A) no update, 0.33Hz internal sampling with continuous update of either (B) all ECM parameters based on the last 2 minutes samples or (C) only the baseline term based on the last 5 samples, (D) full ECM update every minute using 20s continuous internal sampling. Results The augmented quadratic ECM3 had best fit accuracy with mean (± SD)) RMSEs of 0.32 ± 0.11mm (left-right, LR), 0.79 ± 0.30mm (cranio-caudal, CC) and 0.56 ± 0.31mm (anterior-posterior, AP). However, the simpler augmented linear ECM2 combined with frequent baseline updates (update strategy C) gave best motion estimations with mean RMSEs of 0.41 ± 0.14mm (LR), 1.02 ± 0.33mm (CC) and 0.78 ± 0.48mm (AP). This was significantly better than all other ECM-update strategy combinations for CC motion (Wilcoxon signed rank p<0.05). Conclusion The augmented linear ECM2 combined with frequent baseline updates provided the best compromise between fit accuracy and robustness towards irregular motion. It allows accurate internal motion monitoring by combining external motioning with sparse 0.33Hz kV imaging, which is available at conventional linacs.
Collapse
Affiliation(s)
- Payam Samadi Miandoab
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Shahyar Saramad
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Setayeshi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Khaledi N, Karshafian R, Taggar AS, Alrabiah K, Khan R, Gräfe JL. RBE-based dose planning, and calculation of TCP and NTCP with gold nanoparticles for intermediate photon energy in pancreatic cancer. Phys Med Biol 2024; 69:175006. [PMID: 39074499 DOI: 10.1088/1361-6560/ad68be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Objective.This study simulated the potential of gold nanoparticles (GNPs) to improve the effectiveness of radiation therapy in pancreatic cancer cases. The purpose of this study was to assess the impact of GNPs on tumor control probability (TCP) and normal tissue complication probability (NTCP) in pancreatic cancer cases undergoing radiation therapy. The work aimed to compare treatment plans generated with a novel 2.5 MV beam using GNPs to conventional 6 MV plans and evaluate the dose-volume histogram (DVH), TCP, and NTCP.Approach.Treatment planning for five pancreatic computed tomography (CT) images was performed using the open-source MATLAB-based treatment planning program matRad. MATLAB codes were developed to calculate the relative biological effectiveness (RBE) of GNPs and apply the corresponding dose and RBE values to each voxel. TCP and NTCP were calculated based on the applied RBE values.Main results.Adding GNPs to the 2.5 MV treatment plan resulted in a significant increase in TCP, from around 59% to 93.5%, indicating that the inclusion of GNPs improved the effectiveness of the radiation treatment. The range in NTCP without GNPs was relatively larger compared to that with GNPs.Significance.The results indicated that the addition of GNPs to a 2.5 MV plan can increase TCP while maintaining a relatively low NTCP value (<1%). The use of GNPs may also reduce NTCP values by decreasing the dose to normal tissues while maintaining the same prescribed dose to the tumor. Hence, the addition of GNPs can improve the balance between TCP and NTCP.
Collapse
Affiliation(s)
- Navid Khaledi
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Raffi Karshafian
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto, ON M5B 1W8, Canada
| | - Amandeep S Taggar
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Khalid Alrabiah
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Rao Khan
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Department of Physics and Astronomy, Howard University, Washington, District of Columbia, United States of America
| | - James L Gräfe
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Cancer Care Program, Dr H. Bliss Murphy Cancer Center, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
4
|
Neibart SS, Moningi S, Jethwa KR. Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer. Clin Exp Gastroenterol 2024; 17:213-225. [PMID: 39050120 PMCID: PMC11268661 DOI: 10.2147/ceg.s341189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction For patients with locally advanced pancreatic cancer (LAPC), who are candidates for radiation therapy, dose-escalated radiation therapy (RT) offers unique benefits over traditional radiation techniques. In this review, we present a historical perspective of dose-escalated RT for LAPC. We also outline advances in SBRT delivery, one form of dose escalation and a framework for selecting patients for treatment with SBRT. Results Techniques for delivering SBRT to patients with LAPC have evolved considerably, now allowing for dose-escalation and superior respiratory motion management. At the same time, advancements in systemic therapy, particularly the use of induction multiagent chemotherapy, have called into question which patients would benefit most from radiation therapy. Multidisciplinary assessment of patients with LAPC is critical to guide management and select patients for local therapy. Results from ongoing trials will establish if there is a role of dose-escalated SBRT after induction chemotherapy for carefully selected patients. Conclusion Patients with LAPC have more therapeutic options than ever before. Careful selection for SBRT may enhance patient outcomes, pending the maturation of pivotal clinical trials.
Collapse
Affiliation(s)
- Shane S Neibart
- Department of Radiation Oncology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shalini Moningi
- Department of Radiation Oncology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Gonsalves D, Ocanto A, Meilan E, Gomez A, Dominguez J, Torres L, Pascual CF, Teja M, Linde MM, Guijarro M, Rivas D, Begara J, González JA, Andreescu J, Holgado E, Alcaraz D, López E, Dzhugashvli M, Lopez-Campos F, Alongi F, Couñago F. Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain. Cancers (Basel) 2024; 16:1685. [PMID: 38730637 PMCID: PMC11083553 DOI: 10.3390/cancers16091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This observational, descriptive, longitudinal, and prospective basket-type study (Registry #5289) prospectively evaluated the feasibility and acute toxicity of hypo-fractionated radiotherapy on the first 0.35T MR-LINAC in Spain. A total of 37 patients were included between August and December 2023, primarily with prostate tumors (59.46%), followed by pancreatic tumors (32.44%). Treatment regimens typically involved extreme hypo-fractionated radiotherapy, with precise dose delivery verified through quality assurance measures. Acute toxicity assessment at treatment completion revealed manageable cystitis, with one case persisting at the three-month follow-up. Gastrointestinal toxicity was minimal. For pancreatic tumors, daily adaptation of organ-at-risk (OAR) and gross tumor volume (GTV) was practiced, with median doses to OAR within acceptable limits. Three patients experienced gastrointestinal toxicity, mainly nausea. Overall, the study demonstrates the feasibility and safety of extreme hypo-fractionated radiotherapy on a 0.35T MR-LINAC, especially for challenging anatomical sites like prostate and pancreatic tumors. These findings support the feasibility of MR-LINAC-based radiotherapy in delivering precise treatments with minimal toxicity, highlighting its potential for optimizing cancer treatment strategies.
Collapse
Affiliation(s)
- Daniela Gonsalves
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Abrahams Ocanto
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Eduardo Meilan
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Alberto Gomez
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Jesus Dominguez
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Lisselott Torres
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Castalia Fernández Pascual
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Macarena Teja
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Miguel Montijano Linde
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Marcos Guijarro
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Daniel Rivas
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | - Jose Begara
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | | | - Jon Andreescu
- Department of Radiation Oncology, GenesisCare Cordoba, 14012 Madrid, Spain;
| | - Esther Holgado
- Department of Medical Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (E.H.); (D.A.)
| | - Diego Alcaraz
- Department of Medical Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (E.H.); (D.A.)
| | - Escarlata López
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | - Maia Dzhugashvli
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Fernando Lopez-Campos
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy;
- Radiation Oncology School, University of Brescia, 25121 Brescia, Italy
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
6
|
Feng Z, Sun E, China D, Huang X, Hooshangnejad H, Gonzalez EA, Bell MAL, Ding K. Enhancing Image-Guided Radiation Therapy for Pancreatic Cancer: Utilizing Aligned Peak Response Beamforming in Flexible Array Transducers. Cancers (Basel) 2024; 16:1244. [PMID: 38610923 PMCID: PMC11011135 DOI: 10.3390/cancers16071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/14/2024] Open
Abstract
To develop ultrasound-guided radiotherapy, we proposed an assistant structure with embedded markers along with a novel alternative method, the Aligned Peak Response (APR) method, to alter the conventional delay-and-sum (DAS) beamformer for reconstructing ultrasound images obtained from a flexible array. We simulated imaging targets in Field-II using point target phantoms with point targets at different locations. In the experimental phantom ultrasound images, image RF data were acquired with a flexible transducer with in-house assistant structures embedded with needle targets for testing the accuracy of the APR method. The lateral full width at half maximum (FWHM) values of the objective point target (OPT) in ground truth ultrasound images, APR-delayed ultrasound images with a flat shape, and images acquired with curved transducer radii of 500 mm and 700 mm were 3.96 mm, 4.95 mm, 4.96 mm, and 4.95 mm. The corresponding axial FWHM values were 1.52 mm, 4.08 mm, 5.84 mm, and 5.92 mm, respectively. These results demonstrate that the proposed assistant structure and the APR method have the potential to construct accurate delay curves without external shape sensing, thereby enabling a flexible ultrasound array for tracking pancreatic tumor targets in real time for radiotherapy.
Collapse
Affiliation(s)
- Ziwei Feng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Z.F.); (E.S.); (H.H.)
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (E.A.G.); (M.A.L.B.)
| | - Edward Sun
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Z.F.); (E.S.); (H.H.)
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Debarghya China
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.C.); (X.H.)
| | - Xinyue Huang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.C.); (X.H.)
| | - Hamed Hooshangnejad
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Z.F.); (E.S.); (H.H.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.C.); (X.H.)
| | - Eduardo A. Gonzalez
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (E.A.G.); (M.A.L.B.)
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (E.A.G.); (M.A.L.B.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.C.); (X.H.)
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Z.F.); (E.S.); (H.H.)
| |
Collapse
|
7
|
Young T, Lee M, Johnston M, Nguyen T, Ko R, Arumugam S. Assessment of interfraction dose variation in pancreas SBRT using daily simulation MR images. Phys Eng Sci Med 2023; 46:1619-1627. [PMID: 37747645 DOI: 10.1007/s13246-023-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Pancreatic Cancer is associated with poor treatment outcomes compared to other cancers. High local control rates have been achieved by using hypofractionated stereotactic body radiotherapy (SBRT) to treat pancreatic cancer. Challenges in delivering SBRT include close proximity of several organs at risk (OARs) and target volume inter and intra fraction positional variations. Magnetic resonance image (MRI) guided radiotherapy has shown potential for online adaptive radiotherapy for pancreatic cancer, with superior soft tissue contrast compared to CT. The aim of this study was to investigate the variability of target and OAR volumes for different treatment approaches for pancreatic cancer, and to assess the suitability of utilizing a treatment-day MRI for treatment planning purposes. Ten healthy volunteers were scanned on a Siemens Skyra 3 T MRI scanner over two sessions (approximately 3 h apart), per day over 5 days to simulate an SBRT daily simulation scan for treatment planning. A pretreatment scan was also done to simulate patient setup and treatment. A 4D MRI scan was taken at each session for internal target volume (ITV) generation and assessment. For each volunteer a treatment plan was generated in the Raystation treatment planning system (TPS) following departmental protocols on the day one, first session dataset (D1S1), with bulk density overrides applied to enable dose calculation. This treatment plan was propagated through other imaging sessions, and the dose calculated. An additional treatment plan was generated on each first session of each day (S1) to simulate a daily replan process, with this plan propagated to the second session of the day. These accumulated mock treatment doses were assessed against the original treatment plan through DVH comparison of the PTV and OAR volumes. The generated ITV showed large variations when compared to both the first session ITV and daily ITV, with an average magnitude of 22.44% ± 13.28% and 25.83% ± 37.48% respectively. The PTV D95 was reduced by approximately 23.3% for both plan comparisons considered. Surrounding OARs had large variations in dose, with the small bowel V30 increasing by 128.87% when compared to the D1S1 plan, and 43.11% when compared to each daily S1 plan. Daily online adaptive radiotherapy is required for accurate dose delivery for pancreas cancer in the absence of additional motion management and tumour tracking techniques.
Collapse
Affiliation(s)
- Tony Young
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.
- Ingham Institute, Sydney, Australia.
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia.
| | - Mark Lee
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | | | - Theresa Nguyen
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Rebecca Ko
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
- Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Dong Y, Hu P, Li X, Liu W, Yan B, Yang F, Ford JC, Portelance L, Yang Y. Dosimetry impact of distinct gating strategies in cine MR image-guided breath-hold pancreatic cancer radiotherapy. J Appl Clin Med Phys 2023; 24:e14078. [PMID: 37335543 PMCID: PMC10562039 DOI: 10.1002/acm2.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE To investigate the dosimetry effects of different gating strategies in cine magnetic resonance imaging (MRI)-guided breath-hold pancreatic cancer radiotherapy. METHODS Two cine MRI-based gating strategies were investigated: a tumor contour-based gating strategy at a gating threshold of 0-5% and a tumor displacement-based gating strategy at a gating threshold of 3-5 mm. The cine MRI videos were obtained from 17 pancreatic cancer patients who received MRI-guided radiation therapy. We calculated the tumor displacement in each cine MR frame that satisfied the gating threshold and obtained the proportion of frames with different displacements. We generated IMRT and VMAT plans using a 33 Gy prescription, and motion plans were generated by adding up all isocenter-shift plans corresponding to different tumor displacements. The dose parameters of GTV, PTV, and organs at risk (OAR) were compared between the original and motion plans. RESULTS In both gating strategies, the difference was significant in PTV coverage but not in GTV coverage between the original and motion plans. OAR dose parameters deteriorate with increasing gating threshold. The beam duty cycle increased from 19.5±14.3% (median 18.0%) to 60.8±15.6% (61.1%) for gating thresholds from 0% to 5% in tumor contour-based gating and from 51.7±11.5% (49.7%) to 67.3±12.4% (67.1%) for gating thresholds from 3 to 5 mm in tumor displacement-based gating. CONCLUSION In tumor contour-based gating strategy, the dose delivery accuracy deteriorates while the dose delivery efficiency improves with increasing gating thresholds. To ensure treatment efficiency, the gating threshold might be no less than 3%. A threshold up to 5% may be acceptable in terms of the GTV coverage. The displacement-based gating strategy may serve as a potential alternative to the tumor contour based gating strategy, in which the gating threshold of approximately 4 mm might be a good choice for reasonably balancing the dose delivery accuracy and efficiency.
Collapse
Affiliation(s)
- Yuyan Dong
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Panpan Hu
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Xiaoyang Li
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Wei Liu
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Bing Yan
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Fei Yang
- The Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | | | | | - Yidong Yang
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
9
|
Palacios MA, Gerganov G, Cobussen P, Tetar SU, Finazzi T, Slotman BJ, Senan S, Haasbeek CJ, Kawrakow I. Accuracy of deformable image registration-based intra-fraction motion management in Magnetic Resonance-guided radiotherapy. Phys Imaging Radiat Oncol 2023; 26:100437. [PMID: 37089906 PMCID: PMC10113900 DOI: 10.1016/j.phro.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Background and Purpose Intra-fraction motion management is key in Stereotactic Ablative Radiotherapy (SABR) gated delivery. This study assessed the accuracy of automatic tumor segmentation in the delivery of MR-guided radiotherapy (MRgRT) by comparing it to manual delineations performed by experienced observers. Materials and Methods Twenty patients previously treated with MR-guided SABR for thoracic and abdominal tumors were included. Five observers with at least two years of experience in MRgRT manually delineated the gross tumor volume (GTV) for 20 patients on 240 frames of a cine MRI on a sagittal plane. Deformable Image Registration (DIR) based GTV contours were propagated using four different algorithms from a reference frame to subsequent frames.Geometrical analysis based on the Dice Similarity Coefficient (DSC), centroid distance and Hausdorff Distance (HDD) were performed to assess the inter-observer variability and the accuracy of automatic segmentation. A Confidence Value (CV) metric for the reliability of the tumor auto-contouring was also calculated. Results Inter-observer delineation variability resulted in mean DSC of 0.89, HDD of 5.8 mm and centroid distance of 1.7 mm. Tumor auto-contouring by the four DIR algorithms resulted in an excellent agreement with the manual delineations by the experienced observers. Mean DSC for each algorithm across all patients was greater than 0.90, whereas the HDD and centroid distances were below 4.0 mm and 1.5 mm, respectively. The CV showed a strong correlation with the DSC. Conclusions DIR-based auto-contouring in MRgRT exhibited a high level of agreement with the manual contouring performed by experts, allowing accurate gated delivery.
Collapse
|
10
|
Jassar H, Tai A, Chen X, Keiper TD, Paulson E, Lathuilière F, Bériault S, Hébert F, Savard L, Cooper DT, Cloake S, Li XA. Real-time motion monitoring using orthogonal cine MRI during MR-guided adaptive radiation therapy for abdominal tumors on 1.5T MR-Linac. Med Phys 2023; 50:3103-3116. [PMID: 36893292 DOI: 10.1002/mp.16342] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Real-time motion monitoring (RTMM) is necessary for accurate motion management of intrafraction motions during radiation therapy (RT). PURPOSE Building upon a previous study, this work develops and tests an improved RTMM technique based on real-time orthogonal cine magnetic resonance imaging (MRI) acquired during magnetic resonance-guided adaptive RT (MRgART) for abdominal tumors on MR-Linac. METHODS A motion monitoring research package (MMRP) was developed and tested for RTMM based on template rigid registration between beam-on real-time orthogonal cine MRI and pre-beam daily reference 3D-MRI (baseline). The MRI data acquired under free-breathing during the routine MRgART on a 1.5T MR-Linac for 18 patients with abdominal malignancies of 8 liver, 4 adrenal glands (renal fossa), and 6 pancreas cases were used to evaluate the MMRP package. For each patient, a 3D mid-position image derived from an in-house daily 4D-MRI was used to define a target mask or a surrogate sub-region encompassing the target. Additionally, an exploratory case reviewed for an MRI dataset of a healthy volunteer acquired under both free-breathing and deep inspiration breath-hold (DIBH) was used to test how effectively the RTMM using the MMRP can address through-plane motion (TPM). For all cases, the 2D T2/T1-weighted cine MRIs were captured with a temporal resolution of 200 ms interleaved between coronal and sagittal orientations. Manually delineated contours on the cine frames were used as the ground-truth motion. Common visible vessels and segments of target boundaries in proximity to the target were used as anatomical landmarks for reproducible delineations on both the 3D and the cine MRI images. Standard deviation of the error (SDE) between the ground-truth and the measured target motion from the MMRP package were analyzed to evaluate the RTMM accuracy. The maximum target motion (MTM) was measured on the 4D-MRI for all cases during free-breathing. RESULTS The mean (range) centroid motions for the 13 abdominal tumor cases were 7.69 (4.71-11.15), 1.73 (0.81-3.05), and 2.71 (1.45-3.93) mm with an overall accuracy of <2 mm in the superior-inferior (SI), the left-right (LR), and the anterior-posterior (AP) directions, respectively. The mean (range) of the MTM from the 4D-MRI was 7.38 (2-11) mm in the SI direction, smaller than the monitored motion of centroid, demonstrating the importance of the real-time motion capture. For the remaining patient cases, the ground-truth delineation was challenging under free-breathing due to the target deformation and the large TPM in the AP direction, the implant-induced image artifacts, and/or the suboptimal image plane selection. These cases were evaluated based on visual assessment. For the healthy volunteer, the TPM of the target was significant under free-breathing which degraded the RTMM accuracy. RTMM accuracy of <2 mm was achieved under DIBH, indicating DIBH is an effective method to address large TPM. CONCLUSIONS We have successfully developed and tested the use of a template-based registration method for an accurate RTMM of abdominal targets during MRgART on a 1.5T MR-Linac without using injected contrast agents or radio-opaque implants. DIBH may be used to effectively reduce or eliminate TPM of abdominal targets during RTMM.
Collapse
Affiliation(s)
- Hassan Jassar
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy D Keiper
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Samadi Miandoab P, Saramad S, Setayeshi S. Respiratory motion prediction based on deep artificial neural networks in CyberKnife system: A comparative study. J Appl Clin Med Phys 2023; 24:e13854. [PMID: 36457192 PMCID: PMC10018664 DOI: 10.1002/acm2.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In external beam radiotherapy, a prediction model is required to compensate for the temporal system latency that affects the accuracy of radiation dose delivery. This study focused on a thorough comparison of seven deep artificial neural networks to propose an accurate and reliable prediction model. METHODS Seven deep predictor models are trained and tested with 800 breathing signals. In this regard, a nonsequential-correlated hyperparameter optimization algorithm is developed to find the best configuration of parameters for all models. The root mean square error (RMSE), mean absolute error, normalized RMSE, and statistical F-test are also used to evaluate network performance. RESULTS Overall, tuning the hyperparameters results in a 25%-30% improvement for all models compared to previous studies. The comparison between all models also shows that the gated recurrent unit (GRU) with RMSE = 0.108 ± 0.068 mm predicts respiratory signals with higher accuracy and better performance. CONCLUSION Overall, tuning the hyperparameters in the GRU model demonstrates a better result than the hybrid predictor model used in the CyberKnife VSI system to compensate for the 115 ms system latency. Additionally, it is demonstrated that the tuned parameters have a significant impact on the prediction accuracy of each model.
Collapse
Affiliation(s)
- Payam Samadi Miandoab
- Department of Energy Engineering and Physics, Medical Radiation Engineering Group, Amirkabir University of Technology, Tehran, Iran
| | - Shahyar Saramad
- Department of Energy Engineering and Physics, Medical Radiation Engineering Group, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Setayeshi
- Department of Energy Engineering and Physics, Medical Radiation Engineering Group, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Feasibility of delivered dose reconstruction for MR-guided SBRT of pancreatic tumors with fast, real-time 3D cine MRI. Radiother Oncol 2023; 182:109506. [PMID: 36736589 DOI: 10.1016/j.radonc.2023.109506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE In MR-guided SBRT of pancreatic cancer, intrafraction motion is typically monitored with (interleaved) 2D cine MRI. However, tumor surroundings are often not fully captured in these images, and motion might be distorted by through-plane movement. In this study, the feasibility of highly accelerated 3D cine MRI to reconstruct the delivered dose during MR-guided SBRT was assessed. MATERIALS AND METHODS A 3D cine MRI sequence was developed for fast, time-resolved 4D imaging, featuring a low spatial resolution that allows for rapid volumetric imaging at 430 ms. The 3D cines were acquired during the entire beam-on time of 23 fractions of online adaptive MR-guided SBRT for pancreatic tumors on a 1.5 T MR-Linac. A 3D deformation vector field (DVF) was extracted for every cine dynamic using deformable image registration. Next, these DVFs were used to warp the partial dose delivered in the time interval between consecutive cine acquisitions. The warped dose plans were summed to obtain a total delivered dose. The delivered dose was also calculated under various motion correction strategies. Key DVH parameters of the GTV, duodenum, small bowel and stomach were extracted from the delivered dose and compared to the planned dose. The uncertainty of the calculated DVFs was determined with the inverse consistency error (ICE) in the high-dose regions. RESULTS The mean (SD) relative (ratio delivered/planned) D99% of the GTV was 0.94 (0.06), and the mean (SD) relative D0.5cc of the duodenum, small bowel, and stomach were respectively 0.98 (0.04), 1.00 (0.07), and 0.98 (0.06). In the fractions with the lowest delivered tumor coverage, it was found that significant lateral drifts had occurred. The DVFs used for dose warping had a low uncertainty with a mean (SD) ICE of 0.65 (0.07) mm. CONCLUSION We employed a fast, real-time 3D cine MRI sequence for dose reconstruction in the upper abdomen, and demonstrated that accurate DVFs, acquired directly from these images, can be used for dose warping. The reconstructed delivered dose showed only a modest degradation of tumor coverage, mostly attainable to baseline drifts. This emphasizes the need for motion monitoring and development of intrafraction treatment adaptation solutions, such as baseline drift corrections.
Collapse
|
13
|
Evaluation of short-term gastrointestinal motion and its impact on dosimetric parameters in stereotactic body radiation therapy for pancreatic cancer. Clin Transl Radiat Oncol 2023; 39:100576. [PMID: 36686564 PMCID: PMC9852488 DOI: 10.1016/j.ctro.2023.100576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Background The aim of this study is to quantify the short-term motion of the gastrointestinal tract (GI-tract) and its impact on dosimetric parameters in stereotactic body radiation therapy (SBRT) for pancreatic cancer. Methods The analyzed patients were eleven pancreatic cancer patients treated with SBRT or proton beam therapy. To ensure a fair analysis, the simulation SBRT plan was generated on the planning CT in all patients with the dose prescription of 40 Gy in 5 fractions. The GI-tract motion (stomach, duodenum, small and large intestine) was evaluated using three CT images scanned at spontaneous expiration. After fiducial-based rigid image registration, the contours in each CT image were generated and transferred to the planning CT, then the organ motion was evaluated. Planning at risk volumes (PRV) of each GI-tract were generated by adding 5 mm margins, and the volume receiving at least 33 Gy (V33) < 0.5 cm3 was evaluated as the dose constraint. Results The median interval between the first and last CT scans was 736 s (interquartile range, IQR:624-986). To compensate for the GI-tract motion based on the planning CT, the necessary median margin was 8.0 mm (IQR: 8.0-10.0) for the duodenum and 14.0 mm (12.0-16.0) for the small intestine. Compared to the planned V33 with the worst case, the median V33 in the PRV of the duodenum significantly increased from 0.20 cm3 (IQR: 0.02-0.26) to 0.33 cm3 (0.10-0.59) at Wilcoxon signed-rank test (p = 0.031). Conclusion The short-term motions of the GI-tract lead to high dose differences.
Collapse
Key Words
- 4DCT, four-dimensional computed tomography,
- CTV, clinical target volume
- FFF, flattening filter-free
- GI-tract, gastrointestinal tract
- GTV, gross tumor volume
- Gastrointestinal tract
- IQR, interquartile range
- Intra-fractional motion
- MV, mega-voltage
- PRV, planning at risk volume
- PTV, planning target volume
- Pancreatic cancer
- ROI, region of interest
- SBRT
- SBRT, stereotactic body radiation therapy
- SD, standard deviation
- Short-term organ motion
- VMAT, volumetric modulated arc therapy
Collapse
|
14
|
Arumugam S, Young T, Johnston M, Pavey D, Lee M. The delivered dose assessment in pancreas SBRT with the target position determined using an in-house position monitoring system. Front Oncol 2022; 12:1009916. [PMID: 36518308 PMCID: PMC9743991 DOI: 10.3389/fonc.2022.1009916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
PURPOSE This study assessed the delivered dose accuracy in pancreas SBRT by incorporating the real-time target position determined using an in-house position monitoring system. METHODS AND MATERIALS An online image-based position monitoring system, SeedTracker, was developed to monitor radiopaque marker positions using monoscopic x-ray images, available from the Elekta XVI imaging system. This system was applied to patients receiving SBRT for pancreatic cancer on the MASTERPLAN Pilot trial (ACTRN 12617001642370). All patients were implanted pre-treatment with at least three peri-tumoral radiopaque markers for target localisation. During treatment delivery, marker positions were compared to expected positions delineated from the planning CT. The position tolerance of ±3mm from the expected position of the markers was set to trigger a gating event (GE) during treatment. The dosimetric impact of position deviations and actual dose delivered with position corrections was assessed by convolving the plan control point dose matrices with temporal target positions determined during treatment. RESULTS Eight patients were treated within this study. At least one GE was observed in 38% of the treatment fractions and more than one GE was observed in 10% of the fractions. The position deviations resulted in the mean(range) difference of -0.1(-1.1 - 0.4)Gy in minimum dose to tumour and 1.9(-0.1- 4.6)Gy increase to Dmax to duodenum compared to planned dose. In actual treatment delivery with the patient realignment, the mean difference of tumour min dose and duodenal Dmax was reduced to 0.1(-1.0 - 1.1)Gy and 1.1 (-0.7 - 3.3)Gy respectively compared to the planned dose. CONCLUSIONS The in-house real-time position monitoring system improved the treatment accuracy of pancreatic SBRT in a general-purpose linac and enabled assessment of delivered dose by incorporating the temporal target position during delivery. The intrafraction motion impacts the dose to tumour even if target position is maintained within a 3mm position tolerance.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tony Young
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Meredith Johnston
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Darren Pavey
- Department of Radiology, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
| | - Mark Lee
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| |
Collapse
|
15
|
Grimbergen G, Eijkelenkamp H, Heerkens HD, Raaymakers BW, Intven MPW, Meijer GJ. Dosimetric impact of intrafraction motion under abdominal compression during MR-guided SBRT for (Peri-) pancreatic tumors. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8ddd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Intrafraction motion is a major concern for the safety and effectiveness of high dose stereotactic body radiotherapy (SBRT) in the upper abdomen. In this study, the impact of the intrafraction motion on the delivered dose was assessed in a patient group that underwent MR-guided radiotherapy for upper abdominal malignancies with an abdominal corset. Approach. Fast online 2D cine MRI was used to extract tumor motion during beam-on time. These tumor motion profiles were combined with linac log files to reconstruct the delivered dose in 89 fractions of MR-guided SBRT in twenty patients. Aside the measured tumor motion, motion profiles were also simulated for a wide range of respiratory amplitudes and drifts, and their subsequent dosimetric impact was calculated in every fraction. Main results. The average (SD) D
99% of the gross tumor volume (GTV), relative to the planned D
99%, was 0.98 (0.03). The average (SD) relative D
0.5cc
of the duodenum, small bowel and stomach was 0.99 (0.03), 1.00 (0.03), and 0.97 (0.05), respectively. No correlation of respiratory amplitude with dosimetric impact was observed. Fractions with larger baseline drifts generally led to a larger uncertainty of dosimetric impact on the GTV and organs at risk (OAR). The simulations yielded that the delivered dose is highly dependent on the direction of on baseline drift. Especially in anatomies where the OARs are closely abutting the GTV, even modest LR or AP drifts can lead to substantial deviations from the planned dose. Significance. The vast majority of the fractions was only modestly impacted by intrafraction motion, increasing our confidence that MR-guided SBRT with abdominal compression can be safely executed for patients with abdominal tumors, without the use of gating or tracking strategies.
Collapse
|
16
|
Tanaka O, Taniguchi T, Adachi K, Nakaya S, Kiryu T, Ukai A, Makita C, Matsuo M. Effect of stomach size on organs at risk in pancreatic stereotactic body radiotherapy. Radiat Oncol 2022; 17:136. [PMID: 35909121 PMCID: PMC9339195 DOI: 10.1186/s13014-022-02107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In clinical practice, the organs at risk (OARs) should be carefully determined when performing pancreatic stereotactic body radiotherapy (SBRT). We conducted a simulation study to examine the effect of the stomach size on the radiation dose to the OARs when performing pancreatic SBRT. METHODS Twenty-five cases were included in this study. Pancreatic head and body tumors were 2-cm-sized pseudotumors, which were included as gross target volume (GTV) contours. The stomach, pancreas, small intestine, liver, kidneys, and spinal cord were considered as the OARs. The prescription dose for planning target volume (PTV) was 40 Gy/5fx, and the dose limit for the OARs was determined. The dose to X% of the OAR volume at X values of 0.1, 5.0, and 10.0 cc (DX) and the percentage of the OAR volume that received more than X Gy were recorded. RESULTS In terms of the radiation dose to the pancreatic body tumors, the stomach size was positively correlated with a dose of D10cc [correlation coefficient (r) = 0.5516) to the stomach. The r value between the radiation dose to the pancreatic head tumor and the stomach size was 0.3499. The stomach size and radiation dose to the head and body of the pancreas were positively correlated (pancreatic head D10cc: r = 0.3979, pancreatic body D10cc: r = 0.3209). The larger the stomach, the larger the radiation dose to the healthy portion of the pancreas outside the PTV. CONCLUSIONS When performing pancreatic SBRT, the dose to the OARs depends on the stomach size. Reducing the dose to the stomach and pancreas can be achieved by shrinking the stomach.
Collapse
Affiliation(s)
- Osamu Tanaka
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan.
| | - Takuya Taniguchi
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Kousei Adachi
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Shuto Nakaya
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Takuji Kiryu
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Akira Ukai
- Department of Oral and Maxillofacial Surgery, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Chiyoko Makita
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| |
Collapse
|
17
|
Ji X, Zhou B, Ding W, Wang J, Jiang W, Li Y, Hu J, Sun X. Efficacy of stereotactic body radiation therapy for locoregional recurrent pancreatic cancer after radical resection. Front Oncol 2022; 12:925043. [PMID: 35936670 PMCID: PMC9353056 DOI: 10.3389/fonc.2022.925043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to analyze the efficacy and toxicity of stereotactic body radiotherapy (SBRT) for locoregional recurrent pancreatic cancer after radical resection. Methods Patients with locoregional recurrent pancreatic cancer after surgery treated with SBRT in our institution were retrospectively investigated from January 2010 to January 2020. Absolute neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) recorded at pretreatment were analyzed. Endpoints included overall survival (OS), progression-free survival (PFS) and cumulative incidences of local failure (LF) and metastatic failure (MF). Results A total of 22 patients received SBRT with a median prescribed dose of 40 Gy (range of 30-50 Gy)/4 to 7 fractions. The median OS of all patients was 13.6 months (95% CI, 9.6-17.5 months). 0-1 performance status (HR 12.10, 95% CI 2.04-71.81, P=0.006) and ≤2.1 pre-SBRT NLR (HR 4.05, 95% CI 1.21-13.59, P=0.023) were significant predictors of higher OS on multivariable analysis. The median progression-free survival (PFS) of the cohort was 7.5 months (95% CI, 6.5-8.5 months). The median time to LF and MF were 15.6 months and 6.4 months, respectively. The rate of MF as a first event was higher than that of first event LF. Pain relief was observed in all patients (100%) 6 weeks after SBRT. In terms of acute toxicity, grade 1 including fatigue (6, 27.3%), anorexia (6, 27.3%), nausea (4, 18.2%) and leukopenia (4, 18.2%) was often observed. No acute toxicity of grade 4 or 5 was observed. In terms of late toxicity, no treatment-related toxicity was found during follow-up. Conclusion This study showed that SBRT can significantly reduce pain, effectively control local tumor progression, and have acceptable toxicity for patients with locoregional recurrence after radical resection of primary pancreatic cancer. Good performance status and lower pre-SBRT NLR were associated with improved overall survival.
Collapse
|
18
|
Kaučić H, Kosmina D, Schwarz D, Mack A, Čehobašić A, Leipold V, Avdićević A, Mlinarić M, Lekić M, Schwarz K, Banović M. Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer Using Optical Surface Management System - AlignRT as an Optical Body Surface Motion Management in Deep Breath Hold Patients: Results from a Single-Arm Retrospective Study. Cancer Manag Res 2022; 14:2161-2172. [PMID: 35855763 PMCID: PMC9288179 DOI: 10.2147/cmar.s368662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess the efficacy and safety of stereotactic body radiotherapy for patients with unresectable, locally advanced pancreatic cancer using Optical Surface Management System - AlignRT (OSMS-AlignRT) as an optical body surface motion management in deep breath hold. Patients and Methods Forty-five patients diagnosed with locally advanced pancreatic cancer were treated with stereotactic body radiotherapy in 3 or 5 fractions, and received varying BED10 (median 79.5 Gy) from April 2017 to December 2020. All patients were treated in deep breath hold with OSMS-AlignRT used as optical body surface motion management. Thirty-three patients received systemic treatment before and/or after stereotactic body radiotherapy, and twelve patients received no systemic treatment. In this retrospective, observational, single-arm study, primary endpoints were overall survival and freedom from local progression (ie, local control). Secondary endpoints were progression-free survival and toxicity. Actuarial survival analysis and univariate analysis were investigated. Results Data from forty-five patients were analyzed. Median follow-up was 15 months. One-year freedom from local progression and survival were 95.5% and 71.1%, respectively. Median progression-free survival was 14 months. Median overall survival from diagnosis for all patients was 17 months, and 19 months for patients alive at the time of analysis. No patient had >G2 toxicity. Conclusion Stereotactic body radiotherapy for locally advanced pancreatic cancer using OSMS-AlignRT as optical body surface motion management in deep breath hold patients is an effective and safe local treatment option, with no >G2 toxicity, and could be a promising therapeutic option with acceptable toxicity, either as a single treatment or in a multimodal regimen. OSMS-AlignRT provided accurate and reliable body surface motion management during stereotactic body radiotherapy.
Collapse
Affiliation(s)
- Hrvoje Kaučić
- Department of Radiosurgery and Radiotherapy, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia.,University Josip Juraj Strossmayer in Osijek - Medical Faculty Osijek, Osijek, Croatia
| | - Domagoj Kosmina
- Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Dragan Schwarz
- Department of Surgery, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia.,Department of Surgery, Medical Faculty of University in Rijeka, Rijeka, Croatia.,Department of Surgery, University Josip Juraj Strossmayer in Osijek - Faculty of Dental medicine and Health, Osijek, Croatia
| | - Andreas Mack
- Swiss NeuroRadiosurgery Center, Swiss Clinical NeuroScience Institute, Zürich, Switzerland
| | - Adlan Čehobašić
- University Josip Juraj Strossmayer in Osijek - Medical Faculty Osijek, Osijek, Croatia.,Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Vanda Leipold
- University Josip Juraj Strossmayer in Osijek - Medical Faculty Osijek, Osijek, Croatia.,Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Asmir Avdićević
- Department of Radiosurgery and Radiotherapy, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Mihaela Mlinarić
- Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Matea Lekić
- Department of Radiosurgery and Radiotherapy, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Karla Schwarz
- University of Zagreb, Medical Faculty, Zagreb, Croatia
| | - Marija Banović
- Department of Endocrinology, Polyclinic Leptir, Zagreb, Croatia
| |
Collapse
|
19
|
Ermongkonchai T, Khor R, Muralidharan V, Tebbutt N, Lim K, Kutaiba N, Ng SP. Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer. World J Gastroenterol 2022; 28:745-754. [PMID: 35317275 PMCID: PMC8891728 DOI: 10.3748/wjg.v28.i7.745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a malignancy with one of the poorest prognoses amongst all cancers. Patients with unresectable tumours either receive palliative care or undergo various chemoradiotherapy regimens. Conventional techniques are often associated with acute gastrointestinal toxicities, as adjacent critical structures such as the duodenum ultimately limits delivered doses. Stereotactic body radiotherapy (SBRT) is an advanced radiation technique that delivers highly ablative radiation split into several fractions, with a steep dose fall-off outside target volumes.
AIM To discuss the latest data on SBRT and whether there is a role for magnetic resonance-guided techniques in multimodal management of locally advanced, unresectable pancreatic cancer.
METHODS We conducted a search on multiple large databases to collate the latest records on radiotherapy techniques used to treat pancreatic cancer. Out of 1229 total records retrieved from our search, 36 studies were included in this review.
RESULTS Studies indicate that SBRT is associated with improved clinical efficacy and toxicity profiles compared to conventional radiotherapy techniques. Further dose escalation to the tumour with SBRT is limited by the poor soft-tissue visualisation of computed tomography imaging during radiation planning and treatment delivery. Magnetic resonance-guided techniques have been introduced to improve imaging quality, enabling treatment plan adaptation and re-optimisation before delivering each fraction.
CONCLUSION Therefore, SBRT may lead to improved survival outcomes and safer toxicity profiles compared to conventional techniques, and the addition of magnetic resonance-guided techniques potentially allows dose escalation and conversion of unresectable tumours to operable cases.
Collapse
Affiliation(s)
- Tai Ermongkonchai
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | - Richard Khor
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | | | - Niall Tebbutt
- Department of Medical Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | - Kelvin Lim
- Department of Diagnostic Radiology, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Numan Kutaiba
- Department of Diagnostic Radiology, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| |
Collapse
|
20
|
Niedzielski JS, Liu Y, Ng SSW, Martin RM, Perles LA, Beddar S, Rebueno N, Koay EJ, Taniguchi C, Holliday EB, Das P, Smith GL, Minsky BD, Ludmir EB, Herman JM, Koong A, Sawakuchi GO. Dosimetric Uncertainties Resulting From Interfractional Anatomic Variations for Patients Receiving Pancreas Stereotactic Body Radiation Therapy and Cone Beam Computed Tomography Image Guidance. Int J Radiat Oncol Biol Phys 2021; 111:1298-1309. [PMID: 34400267 DOI: 10.1016/j.ijrobp.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To estimate the effects of interfractional anatomic changes on dose to organs at risk (OARs) and tumors, as measured with cone beam computed tomography (CBCT) image guidance for pancreatic stereotactic body radiation therapy. METHODS AND MATERIALS We evaluated 11 patients with pancreatic cancer whom were treated with stereotactic body radiation therapy (33-40 Gy in 5 fractions) using daily CT-on-rails (CTOR) image guidance immediately before treatment with breath-hold motion management. CBCT alignment was simulated in the treatment planning software by aligning the original planning CT to each fractional CTOR image set via fiducial markers. CTOR data sets were used to calculate fractional doses after alignment by applying the rigid shift of the planning CT and CTOR image sets to the planning treatment isocenter and recalculating the fractional dose. Accumulated dose to the gross tumor volume (GTV), tumor vessel interface, duodenum, small bowel, and stomach were calculated by summing the 5 fractional absolute dose-volume histograms into a single dose-volume histogram for comparison with the original planned dose. RESULTS Four patients had a GTV D100% of at least 1.5 Gy less than the fractional planned value in several fractions; 4 patients had fractional underestimation of duodenum dose by 1.0 Gy per fraction. The D1.0 cm3 <35 Gy constraint was violated for at least 1 OAR in 3 patients, with either the duodenum (n = 2) or small bowel (n = 1) D1.0 cm3 being higher on the accumulated dose distribution (P = .01). D100% was significantly lower according to accumulated dose GTV (P = .01) and tumor vessel interface (P = .02), with 4 and 2 patients having accumulated D100% ≥4 Gy lower than the planned value for the GTV and tumor vessel interface, respectively. CONCLUSIONS For some patients, CBCT image guidance based on fiducial alignment may cause large dosimetric uncertainties for OARs and target structures, according to accumulated dose.
Collapse
Affiliation(s)
| | - Yufei Liu
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Sylvia S W Ng
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Luis A Perles
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Sam Beddar
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Neal Rebueno
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Eugene J Koay
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Emma B Holliday
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Prajnan Das
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Grace L Smith
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Bruce D Minsky
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Ethan B Ludmir
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Joseph M Herman
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Albert Koong
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, UT-MD Anderson Cancer Center; Graduate School of Biomedical Sciences, UT-MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
21
|
An Evaluation of Total Internal Motions of Locally Advanced Pancreatic Cancer during SABR Using Calypso ® Extracranial Tracking, and Its Possible Clinical Impact on Motion Management. Curr Oncol 2021; 28:4597-4610. [PMID: 34898575 PMCID: PMC8628737 DOI: 10.3390/curroncol28060389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
(1) Background: the aims of this study were to determine the total extent of pancreatic cancer’s internal motions, using Calypso® extracranial tracking, and to indicate possible clinical advantages of continuous intrafractional fiducial-based tumor motion tracking during SABR. (2) Methods: thirty-four patients were treated with SABR for LAPC using Calypso® for motion management. Planning MSCTs in FB and DBH, and 4D-CTs were performed. Using data from Calypso® and 4D-CTs, the movements of the lesions in the CC, AP and LR directions, as well as the volumes of the 4D-CT-based ITV and the volumes of the Calypso®-based ITV were compared. (3) Results: significantly larger medians of tumor excursions were found with Calypso® than with 4D-CT: CC: 29 mm (p < 0.001); AP: 14 mm (p < 0.001) and LR: 11 mm (p < 0.039). The median volume of the Calypso®-based ITV was significantly larger than that of the 4D-CT based ITV (p < 0.001). (4) Conclusion: beside known respiratory-induced internal motions, pancreatic cancer seems to have significant additional motions which should be considered during respiratory motion management. Only direct and continuous intrafractional fiducial-based motion tracking seems to provide complete coverage of the target lesion with the prescribed isodose, which could allow for safe tumor dose escalation.
Collapse
|
22
|
Dai X, Lei Y, Wynne J, Janopaul-Naylor J, Wang T, Roper J, Curran WJ, Liu T, Patel P, Yang X. Synthetic CT-aided multiorgan segmentation for CBCT-guided adaptive pancreatic radiotherapy. Med Phys 2021; 48:7063-7073. [PMID: 34609745 PMCID: PMC8595847 DOI: 10.1002/mp.15264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The delineation of organs at risk (OARs) is fundamental to cone-beam CT (CBCT)-based adaptive radiotherapy treatment planning, but is time consuming, labor intensive, and subject to interoperator variability. We investigated a deep learning-based rapid multiorgan delineation method for use in CBCT-guided adaptive pancreatic radiotherapy. METHODS To improve the accuracy of OAR delineation, two innovative solutions have been proposed in this study. First, instead of directly segmenting organs on CBCT images, a pretrained cycle-consistent generative adversarial network (cycleGAN) was applied to generating synthetic CT images given CBCT images. Second, an advanced deep learning model called mask-scoring regional convolutional neural network (MS R-CNN) was applied on those synthetic CT to detect the positions and shapes of multiple organs simultaneously for final segmentation. The OAR contours delineated by the proposed method were validated and compared with expert-drawn contours for geometric agreement using the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS). RESULTS Across eight abdominal OARs including duodenum, large bowel, small bowel, left and right kidneys, liver, spinal cord, and stomach, the geometric comparisons between automated and expert contours are as follows: 0.92 (0.89-0.97) mean DSC, 2.90 mm (1.63-4.19 mm) mean HD95, 0.89 mm (0.61-1.36 mm) mean MSD, and 1.43 mm (0.90-2.10 mm) mean RMS. Compared to the competing methods, our proposed method had significant improvements (p < 0.05) in all the metrics for all the eight organs. Once the model was trained, the contours of eight OARs can be obtained on the order of seconds. CONCLUSIONS We demonstrated the feasibility of a synthetic CT-aided deep learning framework for automated delineation of multiple OARs on CBCT. The proposed method could be implemented in the setting of pancreatic adaptive radiotherapy to rapidly contour OARs with high accuracy.
Collapse
Affiliation(s)
- Xianjin Dai
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jacob Wynne
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - James Janopaul-Naylor
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
He X, Cai W, Li F, Fan Q, Zhang P, Cuaron JJ, Cerviño LI, Li X, Li T. Decompose kV projection using neural network for improved motion tracking in paraspinal SBRT. Med Phys 2021; 48:7590-7601. [PMID: 34655442 DOI: 10.1002/mp.15295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE On-treatment kV images have been used in tracking patient motion. One challenge of markerless motion tracking in paraspinal SBRT is the reduced contrast when the X-ray beam needs to pass through a large portion of the patient's body, for example, from the lateral direction. Besides, due to the spine's overlapping with the surrounding moving organs in the X-ray images, auto-registration could lead to potential errors. This work aims to automatically extract the spine component from the conventional 2D X-ray images, to achieve more robust and more accurate motion management. METHODS A ResNet generative adversarial network (ResNetGAN) consisting of one generator and one discriminator was developed to learn the mapping between 2D kV image and the reference spine digitally reconstructed radiograph (DRR). A tailored multi-channel multi-domain loss function was used to improve the quality of the decomposed spine image. The trained model took a 2D kV image as input and learned to generate the spine component of the X-ray image. The training dataset included 1347 2D kV thoracic and lumbar region X-ray images from 20 randomly selected patients, and the corresponding matched reference spine DRR. Another 226 2D kV images from the remaining four patients were used for evaluation. The resulted decomposed spine images and the original X-ray images were registered to the reference spine DRRs, to compare the spine tracking accuracy. RESULTS The decomposed spine image had the mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of 60.08 and 0.99, respectively, indicating the model retained and enhanced the spine structure information in the original 2D X-ray image. The decomposed spine image matching with the reference spine DRR had submillimeter accuracy (in mm) with a mean error of 0.13, 0.12, and a maximum of 0.58, 0.49 in the x - and y -directions (in the imager coordinates), respectively. The accuracy improvement is robust in all lateral and anteroposterior X-ray beam angles. CONCLUSION We developed a deep learning-based approach to remove soft tissues in the kV image, leading to more accurate spine tracking in paraspinal SBRT.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Weixing Cai
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Feifei Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Qiyong Fan
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - John J Cuaron
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Laura I Cerviño
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Xiang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Tianfang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
24
|
Elamir AM, Stanescu T, Shessel A, Tadic T, Yeung I, Letourneau D, Kim J, Lukovic J, Dawson LA, Wong R, Barry A, Brierley J, Gallinger S, Knox J, O'Kane G, Dhani N, Hosni A, Taylor E. Simulated dose painting of hypoxic sub-volumes in pancreatic cancer stereotactic body radiotherapy. Phys Med Biol 2021; 66. [PMID: 34438383 DOI: 10.1088/1361-6560/ac215c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour controlin silicoin several sites, predominantly head and neck and lung cancers. Pancreatic cancer presents a more stringent challenge, given its proximity to critical gastro-intestinal organs-at-risk (OARs), anatomic motion, and impediments to reliable PET hypoxia quantification. A radiobiological model was developed to estimate clonogen survival fraction (SF), using18F-fluoroazomycin arabinoside PET (FAZA PET) images from ten patients with unresectable pancreatic ductal adenocarcinoma to quantify oxygen enhancement effects. For each patient, four simulated five-fraction stereotactic body radiotherapy (SBRT) plans were generated: (1) a standard SBRT plan aiming to cover the planning target volume with 40 Gy, (2) dose painting plans delivering escalated doses to a maximum of three FAZA-avid hypoxic sub-volumes, (3) dose painting plans with simulated spacer separating the duodenum and pancreatic head, and (4), plans with integrated boosts to geometric contractions of the gross tumour volume (GTV). All plans saturated at least one OAR dose limit. SF was calculated for each plan and sensitivity of SF to simulated hypoxia quantification errors was evaluated. Dose painting resulted in a 55% reduction in SF as compared to standard SBRT; 78% with spacer. Integrated boosts to hypoxia-blind geometric contractions resulted in a 41% reduction in SF. The reduction in SF for dose-painting plans persisted for all hypoxia quantification parameters studied, including registration and rigid motion errors that resulted in shifts and rotations of the GTV and hypoxic sub-volumes by as much as 1 cm and 10 degrees. Although proximity to OARs ultimately limited dose escalation, with estimated SFs (∼10-5) well above levels required to completely ablate a ∼10 cm3tumour, dose painting robustly reduced clonogen survival when accounting for expected treatment and imaging uncertainties and thus, may improve local response and associated morbidity.
Collapse
Affiliation(s)
- Ahmed M Elamir
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Teodor Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrea Shessel
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Canada
| | - Daniel Letourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - John Kim
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jelena Lukovic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Rebecca Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Aisling Barry
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - James Brierley
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Jennifer Knox
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Grainne O'Kane
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Neesha Dhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Umezawa R, Wakita A, Katsuta Y, Ito Y, Nakamura S, Okamoto H, Kadoya N, Takahashi K, Inaba K, Murakami N, Igaki H, Jingu K, Itami J. A Pilot Study of Synchronization of Respiration-Induced Motions in the Duodenum and Stomach for the Primary Tumor in Radiation Therapy for Pancreatic Cancer Using 4-Dimensional Computed Tomography. Adv Radiat Oncol 2021; 6:100730. [PMID: 34409214 PMCID: PMC8360956 DOI: 10.1016/j.adro.2021.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose We investigated the synchronization of respiration-induced motions at the primary tumor and organs at risk at radiation planning for pancreatic cancer. Methods and Materials Four-dimensional computed tomography images were acquired under the condition of shallow free breathing in patients with pancreatic cancer. The gross tumor volume (GTV), duodenum (DU), and stomach (ST) were contoured. The center of mass was computed for each 4-dimensional volume of interest. The respiration dependence of coordinates for the center of each volume of interest was computed relative to its location at the 50% (maximum exhalation) phase. Based on the shift of the GTV, we investigated the synchronization of respiration-induced motions between each contouring target. We examined the differences in the volume averaged dose to the ST and DU in each respiratory phase. Results Nine patients with pancreatic cancer were analyzed in this study. The mean maximum 3-dimensional excursions at the GTV, DU, and ST were 9.6, 9.8, and 11.4 mm, respectively. At phase 0% and 90% (inhale phases), mean distance changes in the positional relationship with the GTV were 0.3 and 0.7 mm respectively for the DU and -2.5 and -2.4 mm respectively for the ST. There was no significant respiration associated change (RAC) between each respiratory phase in the DU (P = .568), and there was a significant RAC in the ST (P < .001). There was a significant RAC of the volume averaged dose to the ST (P = .023). Conclusions Our results indicate that the DU but not the ST might move synchronously with GTV due to respiration.
Collapse
Affiliation(s)
- Rei Umezawa
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan.,Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihisa Wakita
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyuki Katsuta
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinori Ito
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan.,Department of Radiation Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Nakamura
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Okamoto
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Inaba
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Murakami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
26
|
Vaithianathan H, Harris B. Transmission study of the Abdominal Compression plate (BodyFIX Diaphragm Control) for abdominal and stereotactic body radiotherapy. J Appl Clin Med Phys 2021; 22:232-241. [PMID: 34339578 PMCID: PMC8425938 DOI: 10.1002/acm2.13373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Abdominal Compression is one of the methods available to minimize breathing motion during stereotactic body radiotherapy (SBRT), particularly for abdominal malignancies. It might be necessary to treat some tumors with radiation entering through the compression device. One clinically available compression plate device (Elekta BodyFIX Diaphragm Control) was evaluated to understand its impact on dosimetry during clinical treatments. Methods The BodyFIX compression device was CT scanned following departmental stereo scanning protocols. Treatment planning system (TPS) calculations were used to determine attenuation ratios through each section of the compression device: the outer frame, compression plate, and higher density couch fixation points and compression screw. TPS calculated skin doses where the compression plate will come in contact with the skin were recorded. All attenuation ratio fields were measured on an Elekta Versa HD linear accelerator. Where differences in attenuation were observed, TPS density overrides were found to bring calculated doses into agreement with measurement. Results The compression plate and frame showed low dose attenuation (3%–4%). Only minor density overrides for the frame were required due to artefacts from the limited CT field‐of‐view. The high‐density materials in the couch fixation points resulted in higher attenuation (14%–20%). Similarly, the compression screw recorded very high attenuation (44%–65%), depending on the length of screw used. Skin doses assessed from the TPS calculations showed dose build‐up under the compression plate that would result in skin receiving the maximum dose. Conclusion Compression devices can cause significant dose attenuation. Density overrides for TPS calculations are recommended for correcting attenuation in some sections of the device. High‐density structures like the fixation screw and frame fixation points create high levels of dosimetric uncertainty, and beam entry through those areas has been disallowed.
Collapse
Affiliation(s)
- Hema Vaithianathan
- Department of Radiation Oncology, Olivia Newton John Cancer Research & Wellness Centre, Austin Health, Heidelberg, Vic., Australia
| | - Benjamin Harris
- Department of Radiation Oncology, Olivia Newton John Cancer Research & Wellness Centre, Austin Health, Heidelberg, Vic., Australia
| |
Collapse
|
27
|
Lee M, Simeonov A, Stanescu T, Dawson LA, Brock KK, Velec M. MRI evaluation of normal tissue deformation and breathing motion under an abdominal compression device. J Appl Clin Med Phys 2021; 22:90-97. [PMID: 33449447 PMCID: PMC7882116 DOI: 10.1002/acm2.13165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/12/2022] Open
Abstract
Purpose Abdominal compression can minimize breathing motion in stereotactic radiotherapy, though it may impact the positioning of dose‐limiting normal tissues. This study quantified the reproducibility of abdominal normal tissues and respiratory motion with the use of an abdominal compression device using MR imaging. Methods Twenty healthy volunteers had repeat MR over 3 days under an abdominal compression plate device. Normal tissues were delineated on daily axial T2‐weighted MR and compared on days 2 and 3 relative to day 1, after adjusting for baseline shifts relative to bony anatomy. Inter‐fraction organ deformation was computed using deformable registration of axial T2 images. Deformation > 5 mm was assumed to be clinically relevant. Inter‐fraction respiratory amplitude changes and intra‐fraction baseline drifts during imaging were quantified on daily orthogonal cine‐MR (70 s each), and changes > 3 mm were assumed to be relevant. Results On axial MR, the mean inter‐fraction normal tissue deformation was > 5 mm for all organs (range 5.1–13.4 mm). Inter‐fraction compression device misplacements > 5 mm and changes in stomach volume > 50% occurred at a rate of 93% and 38%, respectively, in one or more directions and were associated with larger adjacent organ deformation, in particular for the duodenum. On cine‐MR, inter‐fraction amplitude changes > 3 mm on day 2 and 3 relative to day 1 occurred at a rate of < 12.5% (mean superior–inferior change was 1.6 mm). Intra‐fraction baseline drifts > 3 mm during any cine‐MR acquisition occurred at a rate of 23% (mean superior–inferior changes was 2.4 mm). Conclusions Respiratory motion under abdominal compression is reproducible in most subjects within 3 mm. However, inter‐fraction deformations greater than 5 mm in normal tissues were common and larger than inter‐ and intra‐fraction respiratory changes. Deformations were driven mostly by variable stomach contents and device positioning. The magnitude of this motion may impact normal tissue dosimetry during stereotactic radiotherapy.
Collapse
Affiliation(s)
- Maureen Lee
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Anna Simeonov
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Teo Stanescu
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,TECHNA Institute, University Health Network, 100 College Street, Toronto, ON, M5G 1L5, Canada
| | - Laura A Dawson
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Velec
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,TECHNA Institute, University Health Network, 100 College Street, Toronto, ON, M5G 1L5, Canada
| |
Collapse
|
28
|
Mazzarotto R, Simoni N, Guariglia S, Rossi G, Micera R, De Robertis R, Pierelli A, Zivelonghi E, Malleo G, Paiella S, Salvia R, Cavedon C, Milella M, Bassi C. Dosimetric Feasibility Study of Dose Escalated Stereotactic Body Radiation Therapy (SBRT) in Locally Advanced Pancreatic Cancer (LAPC) Patients: It Is Time to Raise the Bar. Front Oncol 2020; 10:600940. [PMID: 33392093 PMCID: PMC7773844 DOI: 10.3389/fonc.2020.600940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objective To assess the dosimetric feasibility of a stereotactic body radiotherapy (SBRT) dose escalated protocol, with a simultaneous integrated boost (SIB) and a simultaneous integrated protection (SIP) approach, in patients with locally advanced pancreatic cancer (LAPC). Material and Methods Twenty LAPC lesions, previously treated with SBRT at our Institution, were re-planned. The original prescribed and administered dose was 50/30/25 Gy in five fractions to PTVsib (tumor-vessel interface [TVI])/PTVt (tumor volume)/PTVsip (overlap area between PTVt and planning organs at risk volume [PRVoars]), respectively. At re-planning, the prescribed dose was escalated up to 60/40/33 Gy in five fractions to PTVsib/PTVt/PTVsip, respectively. All plans were performed using an inspiration breath hold (IBH) technique and generated with volumetric modulated arc therapy (VMAT). Well-established and accepted OAR dose constraints were used (D0.5cc < 33 Gy for luminal OARs and D0.5cc < 38 Gy for corresponding PRVoars). The primary end-point was to achieve a median dose equal to the prescription dose for the PTVsib with D98≥ 95% (95% of prescription dose is the minimum dose), and a coverage for PTVt and PTVsip of D95≥95%, with minor deviations in OAR dose constraints in < 10% of the plans. Results PTVsib median (± SD) dose/D95/conformity index (CI) were 60.54 (± 0.85) Gy/58.96 (± 0.86) Gy/0.99 (± 0.01), respectively; whilst PTVt median (± SD) dose/D95 were 44.51 (± 2.69) Gy/38.44 (± 0.82) Gy, and PTVsip median (± SD) dose/D95 were 35.18 (± 1.42) Gy/33.01 (± 0.84) Gy, respectively. With regard to OARs, median (± SD) maximum dose (D0.5cc) to duodenum/stomach/bowel was 29.31 (± 5.72) Gy/25.29 (± 6.90) Gy/27.03 (± 5.67) Gy, respectively. A minor acceptable deviation was found for a single plan (bowel and duodenum D0.5cc=34.8 Gy). V38 < 0.5 cc was achieved for all PRV luminal OARs. Conclusions In LAPC patients SBRT, with a SIB/SIP dose escalation approach up to 60/40/33 Gy in five fractions to PTVsib/PTVt/PTVsip, respectively, is dosimetrically feasible with adequate PTVs coverage and respect for OAR dose constraints.
Collapse
Affiliation(s)
- Renzo Mazzarotto
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Nicola Simoni
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Stefania Guariglia
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Gabriella Rossi
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Renato Micera
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | | | - Alessio Pierelli
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Emanuele Zivelonghi
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Giuseppe Malleo
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Salvatore Paiella
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Carlo Cavedon
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Michele Milella
- Department of Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| |
Collapse
|
29
|
Anastasi G, Bertholet J, Poulsen P, Roggen T, Garibaldi C, Tilly N, Booth JT, Oelfke U, Heijmen B, Aznar MC. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part I: Intra-fraction breathing motion management. Radiother Oncol 2020; 153:79-87. [PMID: 32585236 PMCID: PMC7758783 DOI: 10.1016/j.radonc.2020.06.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The POP-ART RT study aims to determine to what extent and how intra-fractional real-time respiratory motion management (RRMM) and plan adaptation for inter-fractional anatomical changes (ART), are used in clinical practice and to understand barriers to implementation. Here we report on part I: RRMM. MATERIAL AND METHODS A questionnaire was distributed worldwide to assess current clinical practice, wishes for expansion or new implementation and barriers to implementation. RRMM was defined as inspiration/expiration gating in free-breathing or breath-hold, or tracking where the target and the beam are continuously realigned. RESULTS The questionnaire was completed by 200 centres from 41 countries. RRMM was used by 68% of respondents ('users') for a median (range) of 2 (1-6) tumour sites. Eighty-one percent of users applied inspiration breath-hold in at least one tumour site (breast: 96%). External marker was used to guide RRMM by 61% of users. KV/MV imaging was frequently used for liver and pancreas (with fiducials) and for lung (with or without fiducials). Tracking was mainly performed on robotic linacs with hybrid internal-external monitoring. For breast and lung, approximately 75% of respondents used or wished to implement RRMM, which was lower for liver (44%) and pancreas (27%). Seventy-one percent of respondents wished to implement RRMM for a new tumour site. Main barriers were human/financial resources and capacity on the machine. CONCLUSION Sixty-eight percent of respondents used RRMM and 71% wished to implement RRMM for a new tumour site. The main barriers to implementation were human/financial resources and capacity on treatment machines.
Collapse
Affiliation(s)
- Gail Anastasi
- St. Luke's Cancer Centre, Royal Surrey Foundation Trust, Radiotherapy Physics, Guildford, United Kingdom.
| | - Jenny Bertholet
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom; Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, Switzerland
| | - Per Poulsen
- Aarhus University Hospital, Department of Oncology and Danish Center for Particle Therapy, Aarhus, Denmark
| | - Toon Roggen
- Varian Medical Systems Imaging Laboratory GmbH, Applied Research, Dättwil AG, Switzerland
| | - Cristina Garibaldi
- European Institute of Oncology IRCCS, IEO-Unit of Radiation Research, Milan, Italy
| | - Nina Tilly
- Elekta Instruments AB, Stockholm, Sweden; Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Jeremy T Booth
- Royal North Shore Hospital, Northern Sydney Cancer Centre, Australia
| | - Uwe Oelfke
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom
| | - Ben Heijmen
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, Netherlands
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom; Nuffield Department of Population Health, University of Oxford, United Kingdom
| |
Collapse
|
30
|
Cilla S, Ianiro A, Romano C, Deodato F, Macchia G, Viola P, Buwenge M, Cammelli S, Pierro A, Valentini V, Morganti AG. Automated treatment planning as a dose escalation strategy for stereotactic radiation therapy in pancreatic cancer. J Appl Clin Med Phys 2020; 21:48-57. [PMID: 33063456 PMCID: PMC7700933 DOI: 10.1002/acm2.13025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/17/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess the feasibility of automated stereotactic volumetric modulated arc therapy (SBRT-VMAT) planning using a simultaneous integrated boost (SIB) approach as a dose escalation strategy for SBRT in pancreatic cancer. METHODS Twelve patients with pancreatic cancer were retrospectively replanned. Dose prescription was 30 Gy to the planning target volume (PTV) and was escalated up to 50 Gy to the boost target volume (BTV) using a SIB technique in 5 fractions. All plans were generated by Pinnacle3 Autoplanning using 6MV dual-arc VMAT technique for flattened (FF) and flattening filter-free beams (FFF). An overlap volume (OLV) between the PRV duodenum and the PTV was defined to correlate with the ability to boost the BTV. Dosimetric metrics for BTV and PTV coverage, maximal doses for serial OARs, integral dose, conformation numbers, and dose contrast indexes were used to analyze the dosimetric results. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array. Differences between FF and FFF plans were quantified using the Wilcoxon matched-pair signed rank. RESULTS Full prescription doses to the 95% of PTV and BTV can be delivered to patients with no OLV. BTV mean dose was >90% of the prescribed doses for all patients at all dose levels. Compared to FF plans, FFF plans showed significant reduced integral doses, larger number of MUs, and reduced beam-on-times up to 51% for the highest dose level. Despite plan complexity, pre-treatment verification reported a gamma pass-rate greater than the acceptance threshold of 95% for all FF and FFF plans for 3%-2 mm criteria. CONCLUSIONS The SIB-SBRT strategy with Autoplanning was dosimetrically feasible. Ablative doses up to 50 Gy in 5 fractions can be delivered to the BTV for almost all patients respecting all the normal tissue constraints. A prospective clinical trial based on SBRT strategy using SIB-VMAT technique with FFF beams seems to be justified.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics UnitGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
| | - Anna Ianiro
- Medical Physics UnitGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
| | - Carmela Romano
- Medical Physics UnitGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
| | - Francesco Deodato
- Radiation Oncology UnitGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
| | - Gabriella Macchia
- Radiation Oncology UnitGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
| | - Pietro Viola
- Medical Physics UnitGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
| | - Milly Buwenge
- Radiation Oncology DepartmentDIMES Università di Bologna ‐ Ospedale S.Orsola MalpighiBolognaItaly
| | - Silvia Cammelli
- Radiation Oncology DepartmentDIMES Università di Bologna ‐ Ospedale S.Orsola MalpighiBolognaItaly
| | - Antonio Pierro
- Radiology DepartmentGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
| | - Vincenzo Valentini
- Radiation Oncology UnitGemelli Molise Hospital ‐ Università Cattolica del Sacro CuoreCampobassoItaly
- Radiation Oncology DepartmentFondazione Policlinico Universitario A. Gemelli ‐ Università Cattolica del Sacro Cuore ‐ RomaItaly
| | - Alessio G. Morganti
- Radiation Oncology DepartmentDIMES Università di Bologna ‐ Ospedale S.Orsola MalpighiBolognaItaly
| |
Collapse
|
31
|
Lo KM, Wu VW, Li Y, Jun Xu H. Factors affecting target motion in stereotactic body radiotherapy of liver cancer using CyberKnife. J Med Imaging Radiat Oncol 2020; 64:408-413. [PMID: 32174026 DOI: 10.1111/1754-9485.13020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In stereotactic body radiation therapy (SBRT) of solitary liver cancer, organ motion due to respiration is an important factor in the definition of planning target volume (PTV). This study evaluated the potential associations of target motion with gross tumour volume (GTV) size, tumour location, Child-Pugh score and intra-fraction treatment time in SBRT of liver cancer treated by CyberKnife. METHODS Translational motion data of 145 liver cancer patients, who were previously treated by CyberKnife with free breathing under tumour tracking, were recorded in the log files of the motion tracking system and analysed. The factors including target location based on liver segments, Child-Pugh score which was an indication of liver cirrhosis, GTV size and intra-fraction treatment time were recorded and their associations with the magnitude of target movement were evaluated. RESULTS Target location demonstrated significant association with the translational target motion in the supero-inferior (SI) and left-right (LR) directions but less in antero-posterior (AP) direction. Tumours located at the peripheral segments were more affected than the central segments. Child-Pugh score and GTV size were not significantly associated with target motion in any direction. Longer intra-fraction treatment time generally increased target motion in the SI and LR directions. CONCLUSION In SBRT of liver cancer, the target motions in SI and LR directions were correlated with the location of target and treatment time, but not with Child-Pugh score and GTV size. These results should assist in deciding the GTV-PTV margin in SBRT treatment planning for solitary liver cancer.
Collapse
Affiliation(s)
- Kevin My Lo
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Vincent Wc Wu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Yu Li
- Department of Radiation Oncology, 302 Military Hospital, Beijing, China
| | - Hui Jun Xu
- Department of Radiation Oncology, 302 Military Hospital, Beijing, China
| |
Collapse
|
32
|
Pettersson N, Oderinde OM, Murphy J, Simpson D, Cerviño LI. Intrafractional relationship changes between an external breathing signal and fiducial marker positions in pancreatic cancer patients. J Appl Clin Med Phys 2020; 21:153-161. [PMID: 32170900 PMCID: PMC7075406 DOI: 10.1002/acm2.12841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background and purpose The purpose of this study of pancreatic cancer patients treated with respiratory‐guided stereotactic body radiotherapy (SBRT) on a standard linac was to investigate (a) the intrafractional relationship change (IRC) between a breathing signal and the tumor position, (b) the impact of IRC on the delivered dose, and (c) potential IRC predictors. Materials and methods We retrospectively investigated 10 pancreatic cancer patients with 2–4 implanted fiducial markers in the tumor treated with SBRT. Fluoroscopic images were acquired before and after treatment delivery simultaneously with the abdominal breathing motion. We quantified the IRC as the change in fiducial location for a given breathing amplitude in the left–right (LR), anterior–posterior (AP), and superior–inferior (SI) directions from before to after treatment delivery. The treatment plans were re‐calculated after changing the isocenter coordinates according to the IRCs. Four treatment‐ or patient‐related factors were investigated as potential predictors for IRC using linear models. Results The average (±1 SD) absolute IRCs in the LR, AP, and SI directions were 1.2 ± 1.2 mm, 0.7 ± 0.7 mm, and 1.1 ± 0.8 mm, respectively. The average 3D IRC was 2.0 ± 1.3 mm (range: 0.4–5.3 mm) for a median treatment delivery time of 8.5 min (range: 5.7–19.9 min; n = 31 fractions). The dose coverage of the internal target volume (ITV) decreased by more than 3% points in three of 31 fractions. In those cases, the 3D IRC had been larger than 4.3 mm. The 3D IRC was found to correlate with changes in the minimum breathing amplitude during treatment delivery. Conclusion On average, 2 mm of treatment delivery accuracy was lost due to IRC. Periodical intrafractional imaging is needed to safely deliver respiratory‐guided SBRT.
Collapse
Affiliation(s)
- Niclas Pettersson
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Göteborg, Sweden.,Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Oluwaseyi M Oderinde
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA
| | - James Murphy
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA
| | - Daniel Simpson
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA
| | - Laura I Cerviño
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
Chu KY, Cooke R, Van den Heuvel F, Mukherjee S, Hawkins MA. Impact of abdominal compression on setup error and image matching during radical abdominal radiotherapy. Tech Innov Patient Support Radiat Oncol 2019; 12:28-33. [PMID: 32095552 PMCID: PMC7033789 DOI: 10.1016/j.tipsro.2019.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To determine the impact of abdominal compression (AC) on setup error and image matching time. MATERIALS AND METHODS This study included 72 liver, pancreas and abdominal node patients treated radically from 2016 to 2019 in a single centre. Patients received either SBRT or conventional radical fractionation (CRF). Compressed patients were supine, arms up with kneefix and AC equipment. Uncompressed patients were supine, arms up with kneefix. All patients received daily online-matched CBCTs before treatment. Initial setup error was determined for all patients. Registration error was assessed for 10 liver and 10 pancreas patients. Image matching times were determined using beam on times. Statistical tests conducted were an F-test to compare variances in setup error, Student's t-tests for setup error and average image analysis, and a Wilcoxon Mann Whitney test for imaging matching time analysis. RESULTS Initial setup displacement was similar between compressed and uncompressed patients. Displacements > 1 cm occurred more frequently in the longitudinal direction for most patients. SBRT patients required more additional manual positioning following imaging. Mean absolute registration error in the SI direction was 5.4 mm and 3.3 mm for uncompressed and compressed pancreas patients respectively and 1.7 mm and 0.8 mm for uncompressed and compressed liver patients respectively. Compressed patients required less time for image matching and fewer images per fraction on average. Repeat imaging occurred more frequently in SBRT and uncompressed patients. CONCLUSIONS Although abdominal compression has no significant impact on setup error, it can reduce imaging matching times resulting in improved treatment accuracy.
Collapse
Affiliation(s)
- Kwun-Ye Chu
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Oxford University Hospitals NHS FT, Churchill Hospital, Old Road, Oxford OX3 7LE, United Kingdom
| | - Rosie Cooke
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Oxford University Hospitals NHS FT, Churchill Hospital, Old Road, Oxford OX3 7LE, United Kingdom
| | - Frank Van den Heuvel
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Oxford University Hospitals NHS FT, Churchill Hospital, Old Road, Oxford OX3 7LE, United Kingdom
| | - Somnath Mukherjee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Oxford University Hospitals NHS FT, Churchill Hospital, Old Road, Oxford OX3 7LE, United Kingdom
| | - Maria A. Hawkins
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
34
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
35
|
Fujimoto K, Shiinoki T, Yuasa Y, Onizuka R, Yamane M. Evaluation of the effects of motion mitigation strategies on respiration-induced motion in each pancreatic region using cine-magnetic resonance imaging. J Appl Clin Med Phys 2019; 20:42-50. [PMID: 31385418 PMCID: PMC6753735 DOI: 10.1002/acm2.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Purpose This study aimed to quantify the respiration‐induced motion in each pancreatic region during motion mitigation strategies and to characterize the correlations between this motion and that of the surrogate signals in cine‐magnetic resonance imaging (MRI). We also aimed to evaluate the effects of these motion mitigation strategies in each pancreatic region. Methods Sagittal and coronal two‐dimensional cine‐MR images were obtained in 11 healthy volunteers, eight of whom also underwent imaging with abdominal compression (AC). For each pancreatic region, the magnitude of pancreatic motion with and without motion mitigation and the positional error between the actual and predicted pancreas motion based on surrogate signals were evaluated. Results The magnitude of pancreatic motion with and without AC in the left–right (LR) and superior–inferior (SI) directions varied depending on the pancreatic region. In respiratory gating (RG) assessments based on a surrogate signal, although the correlation was reasonable, the positional error was large in the pancreatic tail region. Furthermore, motion mitigation in the anterior‐posterior and SI directions with RG was more effective than was that with AC in the head region. Conclusions This study revealed pancreatic region‐dependent variations in respiration‐induced motion and their effects on motion mitigation outcomes during AC or RG. The magnitude of pancreatic motion with or without AC and the magnitude of the positional error with RG varied depending on the pancreatic region. Therefore, during radiation therapy for pancreatic cancer, it is important to consider that the effects of motion mitigation during AC or RG may differ depending on the pancreatic region.
Collapse
Affiliation(s)
- Koya Fujimoto
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryota Onizuka
- Department of Radiological Technology, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Masatoshi Yamane
- Department of Radiological Technology, Yamaguchi University Hospital, Yamaguchi, Japan
| |
Collapse
|
36
|
Ding Y, Campbell WG, Miften M, Vinogradskiy Y, Goodman KA, Schefter T, Jones BL. Quantifying Allowable Motion to Achieve Safe Dose Escalation in Pancreatic SBRT. Pract Radiat Oncol 2019; 9:e432-e442. [PMID: 30951868 PMCID: PMC6592725 DOI: 10.1016/j.prro.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Tumor motion plays a key role in the safe delivery of stereotactic body radiation therapy (SBRT) for pancreatic cancer. The purpose of this study was to use tumor motion measured in patients to establish limits on motion magnitude for safe delivery of pancreatic SBRT and to help guide motion-management decisions in potential dose-escalation scenarios. METHODS AND MATERIALS Using 91 sets of pancreatic tumor motion data, we calculated the motion-convolved dose of the gross tumor volume, duodenum, and stomach for 25 patients with pancreatic cancer. We derived simple linear or quadratic models relating motion to changes in dose and used these models to establish the maximum amount of motion allowable while satisfying error thresholds on key dose metrics. In the same way, we studied the effects of dose escalation and tumor volume on allowable motion. RESULTS In our patient cohort, the mean (range) allowable motion for 33, 40, and 50 Gy to the planning target volume was 11.9 (6.3-22.4), 10.4 (5.2-19.1), and 9.0 (4.2-16.0) mm, respectively. The maximum allowable motion decreased as the dose was escalated and was smaller in patients with larger tumors. We found significant differences in allowable motion between the different plans, suggesting a patient-specific approach to motion management is possible. CONCLUSIONS The effects of motion on pancreatic SBRT are highly variable among patients, and there is potential to allow more motion in certain patients, even in dose-escalated scenarios. In our dataset, a conservative limit of 6.3 mm would ensure safe treatment of all patients treated to 33 Gy in 5 fractions.
Collapse
Affiliation(s)
- Yijun Ding
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Warren G Campbell
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | | | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Tracey Schefter
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Bernard L Jones
- Department of Radiation Oncology, University of Colorado, Denver, Colorado.
| |
Collapse
|
37
|
Borazanci E, Sckolnik S, Amini A. Neo-adjuvant therapy for pancreatic cancer: hope for the future. Expert Rev Gastroenterol Hepatol 2019; 13:579-589. [PMID: 30979348 DOI: 10.1080/17474124.2019.1607294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In 2018, pancreatic ductal adenocarcinoma (PDAC) was the 3rd highest cause cancer related death in the United States. Worldwide estimates in 2018 indicate 458,918 cases diagnosed with 432,242 deaths. Standard therapy for decades for localized PDAC has been to pursue surgical resection for localized disease. For the individuals who are diagnosed with localized PDAC and undergo surgical resection, historical survival has been reported to be around 24 months. While recent advancements in the use of multiagent systemic therapy has allowed for greater survival benefit, adjuvant therapy does have limitations. Recently, neo-adjuvant therapy for PDAC has become more accepted in practice. Areas covered: In this review, we will discuss the current guidelines for treatment of localized PDAC, the pros and cons of neo-adjuvant versus adjuvant therapy for PDAC, the utilization of available biomarkers for the management of PDAC, and future possibilities for clinical trials. Expert commentary: Neo-adjuvant therapy for localized PDAC has tremendous promise in leading to greater survival by treating for micro-metastatic disease along with selecting for patients for better outcomes. Further work based upon molecular insights will lead to better biomarkers for treatment assessment along with improvements in treatment.
Collapse
Affiliation(s)
| | | | - Albert Amini
- c Arizona Premier Surgery , Scottsdale , AZ , USA
| |
Collapse
|
38
|
Ding Y, Barrett HH, Kupinski MA, Vinogradskiy Y, Miften M, Jones BL. Objective assessment of the effects of tumor motion in radiation therapy. Med Phys 2019; 46:3311-3323. [PMID: 31111961 DOI: 10.1002/mp.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Internal organ motion reduces the accuracy and efficacy of radiation therapy. However, there is a lack of tools to objectively (based on a medical or scientific task) assess the dosimetric consequences of motion, especially on an individual basis. We propose to use therapy operating characteristic (TOC) analysis to quantify the effects of motion on treatment efficacy for individual patients. We demonstrate the application of this tool with pancreatic stereotactic body radiation therapy (SBRT) clinical data and explore the origin of motion sensitivity. METHODS The technique is described as follows. (a) Use tumor-motion data measured from patients to calculate the motion-convolved dose of the gross tumor volume (GTV) and the organs at risk (OARs). (b) Calculate tumor control probability (TCP) and normal tissue complication probability (NTCP) from the motion-convolved dose-volume histograms. (c) Construct TOC curves from TCP and NTCP models. (d) Calculate the area under the TOC curve (AUTOC) and use it as a figure of merit for treatment efficacy. We used tumor motion data measured from patients to calculate the relation between AUTOC and motion magnitude for 25 pancreatic SBRT treatment plans. Furthermore, to explore the driving factor of motion sensitivity of a given plan, we compared the dose distribution of motion-sensitive plans and motion-robust plans and studied the dependence of motion sensitivity to motion directions. RESULTS Our technique is able to recognize treatment plans that are sensitive to motion. Under the presence of motion, the treatment efficacy of some plans changes from providing high tumor control and low risks of complications to providing no tumor control and high risks of side effects. Several treatment plans experience falloffs in AUTOC at a smaller magnitude of motion than other plans. In our dataset, a potential indicator of a motion-sensitive treatment plan is that the duodenum is in proximity to the tumor in the SI direction. CONCLUSIONS The TOC framework can serve as a tool to quantify the effects of internal organ motion in radiation therapy. With pancreatic SBRT clinical data, we applied this tool to study the change in treatment efficacy induced by motion for individual treatment plans. This framework could potentially be used clinically to understand the effects of motion in an individual patient and to design a patient-specific motion management plan. This framework could also be used in research to evaluate different components of the treatment process, such as motion-management techniques, treatment-planning algorithms, and treatment margins.
Collapse
Affiliation(s)
- Yijun Ding
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Harrison H Barrett
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA.,Department of Medical Imaging, University of Arizona, Tucson, AZ, 85719, USA
| | - Matthew A Kupinski
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bernard L Jones
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
39
|
Bertholet J, Hunt A, Dunlop A, Bird T, Mitchell RA, Oelfke U, Nill S, Aitken K. Comparison of the dose escalation potential for two hypofractionated radiotherapy regimens for locally advanced pancreatic cancer. Clin Transl Radiat Oncol 2019; 16:21-27. [PMID: 30911688 PMCID: PMC6416653 DOI: 10.1016/j.ctro.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To determine the potential for dose escalation to a biological equivalent dose BED10 ≅ 100 Gy in hypofractionated radiotherapy for locally advanced pancreatic cancer (LAPC). MATERIALS AND METHODS Ten unselected LAPC patients were retrospectively included in the study. Two fractionation regimens were compared (5 and 15 fractions). The aim was to cover 95% of the Planning Target Volume (PTV) with a BED10 = 54 Gy (base dose = 33 Gy in 5 fractions, 42.5 Gy in 15 fractions) whilst respecting organs-at-risk (OAR) constraints. Once the highest PTV coverage was achieved dose escalation to a BED10 ≅ 100 Gy (escalated dose = 50 Gy in 5 fractions, 67.5 Gy in 15 fractions) was attempted, limiting the PTV maximum dose to 130% of the escalated dose. RESULTS In 5 fractions, 95% PTV coverage by both base and escalated doses could be achieved for one patient with PTV more than 1 cm away from OAR. 95% and 90% PTV coverage by the base dose was achieved in one and two patients respectively. In all other patients, coverage even by the base dose had to be compromised to comply with OAR constraints. In 15 fractions, 95% PTV coverage by the base dose was feasible for all patients except one. Dose escalation allowed improvement in target coverage by the base dose in both fractionation regimen whilst covering a sub-volume of the PTV with a BED10 ≅ 100 Gy. Both fractionation schemes were equivalent in terms of dose escalation potential. CONCLUSION LAPC patients with OAR close to the PTV are generally not eligible for hypofractionation with dose escalation. However, this planning study shows that it is possible to cover PTV sub-volumes with a BED10 ≅ 100 Gy in addition to delivering a BED10 = 54 Gy to 90-95% of the PTV as commonly prescribed to this population. Combined with an adaptive approach, this may maximize PTV coverage by a high BED on days with favourable anatomy.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, UK
| | - Arabella Hunt
- The Institute of Cancer Research, London SM2 5PT, UK
- The Royal Marsden NHS Foundation Trust, Downs Rd, Sutton SM2 5PT, UK
| | - Alex Dunlop
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, UK
| | - Thomas Bird
- The Royal Marsden NHS Foundation Trust, Downs Rd, Sutton SM2 5PT, UK
- The Bristol Cancer Institute, Bristol BS2 8ED, UK
| | - Robert A. Mitchell
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, UK
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, UK
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, UK
| | - Katharine Aitken
- The Royal Marsden NHS Foundation Trust, Downs Rd, Sutton SM2 5PT, UK
| |
Collapse
|
40
|
Lewis B, Cadrain R, Fields E, Kim S, Kim T. A pressure based respiratory motion management system with biofeedback for MR-based radiotherapy. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Roy S, Kuznetsova S, Thind K, Grendarova P, Ploquin N, Sinha RS. Dosimetric and radiobiological impact of abdominal compression on adjacent gastro-intestinal critical structures for patients treated with upper and mid-abdominal stereotactic body radiotherapy. JOURNAL OF RADIOSURGERY AND SBRT 2019; 6:139-151. [PMID: 31641550 PMCID: PMC6774489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES We evaluated the dosimetric and radiobiological impact of abdominal compression (AC) on nearby gastrointestinal critical structures (GI-CS) and reported toxicities of patients treated with non-hepatic abdominal stereotactic body radiotherapy (SBRT). METHODS Two sets of CT scans, planning scans with AC and pre-treatment diagnostic scans without AC (non-AC) were compared for patients treated with a prescription dose to planning target volume (PTV) ≥25 Gy/5-fractions at a single institution. Target volumes were delineated on both sets of scans and PTV was expanded isotropically by 2 cm (PTV+2) and 4 cm (PTV+4). All GI-CS were summated to create a composite CS (GI-lumen). Rigid registration of AC and non-AC scans was done using Velocity AI (Varian Medical Systems) to obtain dose distribution information. Lymann-Probit and logit models were used for radiobiological calculations. Toxicity scores were obtained from prospectively collected clinical data. RESULTS A total of 12 patients were included. Mean PTV volumes were 190.3cc and 196.4cc with AC and non-AC (p=0.95). Significant improvement in V30 of GI-lumen was seen with AC (0.11cc vs. 4.97cc, p=0.04). There were no differences in the normal tissue complication probabilities of the individual GI-CS or the summary indices except a notable trend towards better NTCP for small bowel late effects with AC (0.21% vs. 2.45%; p=0.055). Three patients had acute grade-1 anorexia, one patient had acute grade-2 gastritis. There was no grade ≥3 GI toxicity. At a median follow-up of 2.6 years, total of 8/12 (66.7%) patients developed local recurrence of whom 4 (33.3%) had isolated local recurrence. CONCLUSION Use of AC did not result in any dosimetric or radiobiological inferiority for GI-CS. The current cohort completed their treatment with minimal toxicity.
Collapse
Affiliation(s)
- Soumyajit Roy
- Radiation Medicine Program, Ottawa Hospital Cancer Center, University of Ottawa, Ontario, Canada†
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Division of Radiation Oncology, Tom Baker Cancer Center, Alberta Health Services, 1331-29th Street NW, Calgary, Alberta, T2N 4N2, Canada
| | - Svetlana Kuznetsova
- Division of Medical Physics, Tom Baker Cancer Center, Alberta Health Services, 1331-29th Street NW, Calgary, Alberta, T2N 4N2, Canada
| | - Kundan Thind
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Division of Medical Physics, Tom Baker Cancer Center, Alberta Health Services, 1331-29th Street NW, Calgary, Alberta, T2N 4N2, Canada
| | - Petra Grendarova
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Division of Radiation Oncology, Tom Baker Cancer Center, Alberta Health Services, 1331-29th Street NW, Calgary, Alberta, T2N 4N2, Canada
| | - Nicolas Ploquin
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Division of Medical Physics, Tom Baker Cancer Center, Alberta Health Services, 1331-29th Street NW, Calgary, Alberta, T2N 4N2, Canada
| | - Richie S. Sinha
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Division of Radiation Oncology, Tom Baker Cancer Center, Alberta Health Services, 1331-29th Street NW, Calgary, Alberta, T2N 4N2, Canada
| |
Collapse
|
42
|
Wu VWC, Ng APL, Cheung EKW. Intrafractional motion management in external beam radiotherapy. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:1071-1086. [PMID: 31476194 DOI: 10.3233/xst-180472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent advancements in radiotherapy technologies have made delivery of the highly conformal dose to the target volume possible. With the increasing popularity of delivering high dose per fraction in modern radiotherapy schemes such as in stereotactic body radiotherapy and stereotactic body ablative therapy, high degree of treatment precision is essential. In order to achieve this, we have to overcome the potential difficulties caused by patient instability due to immobilization problems; patient anxiety and random motion due to prolonged treatment time; tumor deformation and baseline shift during a treatment course. This is even challenging for patients receiving radiotherapy in the chest and abdominal regions because it is affected by the patient's respiration which inevitably leads to tumor motion. Therefore, monitoring of intrafractional motion has become increasingly important in modern radiotherapy. Major intrafractional motion management strategies including integration of respiratory motion in treatment planning; breath-hold technique; forced shallow breathing with abdominal compression; respiratory gating and dynamic real-time tumor tracking have been developed. Successful intrafractional motion management is able to reduce the planning target margin and ensures planned dose delivery to the target and organs at risk. Meanwhile, the emergency of MRI-linear accelerator has facilitated radiation-free real-time monitoring of soft tissue during treatment and could be the future modality in motion management. This review article summarizes the various approaches that deal with intrafractional target, organs or patient motion with discussion of their advantages and limitations. In addition, the potential future advancements including MRI-based tumor tracking are also discussed.
Collapse
Affiliation(s)
- Vincent W C Wu
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Amanda P L Ng
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Emily K W Cheung
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
43
|
The Clinical and Dosimetric Impact of Real-Time Target Tracking in Pancreatic SBRT. Int J Radiat Oncol Biol Phys 2018; 103:268-275. [PMID: 30145394 DOI: 10.1016/j.ijrobp.2018.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/28/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Motion often hinders the safe delivery of ablative doses of radiation in the treatment of pancreatic tumors. Real-time tumor-tracking methods are an emerging technique to increase the accuracy of delivery. In this study, we report on a large, retrospective cohort of pancreatic patients treated with real-time, fiducial-based, kV-image guidance of stereotactic body radiation therapy (SBRT). The purpose of our study was to determine the impact of real-time tracking on treatment accuracy, tumor dose, and clinical workflow. METHODS AND MATERIALS Real-time tracking data from 68 patients treated with pancreatic SBRT were analyzed. The kV images orthogonal to the treatment beam were acquired in real time during treatment to visualize the location of implanted fiducial markers. Positional corrections were made if the fiducial markers were observed >3 mm from the expected reference position. We recorded the frequency and nature of treatment interventions resulting from real-time tracking and derived a neural network-based dosimetric model to calculate the impact of these in-treatment interventions on target dose. RESULTS Treatment pauses that required patient realignment because of real-time tumor tracking occurred during 32% of all fractions. The median magnitude of realignment shifts was 5.2 mm (range, 2.1-18.9 mm). Forty-five percent of shifts resulted in dosimetric differences to the tumor; of these, the median point dose difference was 23% ± 22% of prescription dose (maximum, 94%). The number of pauses per fraction was significantly higher in patients treated with respiratory gating (vs abdominal compression) and in patients with greater treatment time. CONCLUSION Fiducial-based, real-time target tracking is clinically feasible for pancreatic SBRT treatment. Our data indicate that real-time tumor tracking leads to patient realignment in 32% of cases and results in significant benefits to target coverage. The increased accuracy of real-time target tracking may potentially enable safe dose escalation in pancreatic SBRT.
Collapse
|
44
|
Dreher C, Habermehl D, Jäkel O, Combs SE. Effective radiotherapeutic treatment intensification in patients with pancreatic cancer: higher doses alone, higher RBE or both? Radiat Oncol 2017; 12:203. [PMID: 29282139 PMCID: PMC5745986 DOI: 10.1186/s13014-017-0945-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, especially in case of locally advanced stage has a poor prognosis. Radiotherapy in general can lead to tumor volume reduction, but further improvements, such as ion beam therapy have to be promoted in order to enable dose escalation, which in turn results in better local control rates and downsizing of the tumor itself. Ion beam therapy with its highly promising physical properties is also accompanied by distinct inter- and intrafractional challenges in case of robustness. First clinical results are promising, but further research in motion mitigation and biological treatment planning is necessary, in order to determine the best clinical rationales and conditions of ion beam therapy of pancreatic cancer. This review summarizes the current knowledge and studies on ion beam therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, INF, 280 Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), INF 450, 69120 Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| |
Collapse
|