1
|
Torelli N, Bicker Y, Marc L, Fabiano S, Unkelbach J. A new approach to combined proton-photon therapy for metastatic cancer patients. Phys Med Biol 2024; 69:145008. [PMID: 38942008 DOI: 10.1088/1361-6560/ad5d48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.Proton therapy is a limited resource and is typically not available to metastatic cancer patients. Combined proton-photon therapy (CPPT), where most fractions are delivered with photons and only few with protons, represents an approach to distribute proton resources over a larger patient population. In this study, we consider stereotactic radiotherapy of multiple brain or liver metastases, and develop an approach to optimally take advantage of a single proton fraction by optimizing the proton and photon dose contributions to each individual metastasis.Approach.CPPT treatments must balance two competing goals: (1) deliver a larger dose in the proton fractions to reduce integral dose, and (2) fractionate the dose in the normal tissue between metastases, which requires using the photon fractions. Such CPPT treatments are generated by simultaneously optimizing intensity modulated proton therapy (IMPT) and intensity modulated radiotherapy (IMRT) plans based on their cumulative biologically effective dose (BEDα/β). The dose contributions of the proton and photon fractions to each individual metastasis are handled as additional optimization variables in the optimization problem. The method is demonstrated for two patients with 29 and 30 brain metastases, and two patients with 4 and 3 liver metastases.Main results.Optimized CPPT plans increase the proton dose contribution to most of the metastases, while using photons to fractionate the dose around metastases which are large or located close to critical structures. On average, the optimized CPPT plans reduce the mean brain BED2by 29% and the mean liver BED4by 42% compared to IMRT-only plans. Thereby, the CPPT plans approach the dosimetric quality of IMPT-only plans, for which the mean brain BED2and mean liver BED4are reduced by 28% and 58%, respectively, compared to IMRT-only plans.Significance.CPPT with optimized proton and photon dose contributions to individual metastases may benefit selected metastatic cancer patients without tying up major proton resources.
Collapse
Affiliation(s)
- Nathan Torelli
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yves Bicker
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Louise Marc
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Li W, Lin Y, Li HH, Shen X, Chen RC, Gao H. Biological optimization for hybrid proton-photon radiotherapy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad4d51. [PMID: 38759678 PMCID: PMC11260294 DOI: 10.1088/1361-6560/ad4d51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Objective.Hybrid proton-photon radiotherapy (RT) is a cancer treatment option to broaden access to proton RT. Additionally, with a refined treatment planning method, hybrid RT has the potential to offer superior plan quality compared to proton-only or photon-only RT, particularly in terms of target coverage and sparing organs-at-risk (OARs), when considering robustness to setup and range uncertainties. However, there is a concern regarding the underestimation of the biological effect of protons on OARs, especially those in close proximity to targets. This study seeks to develop a hybrid treatment planning method with biological dose optimization, suitable for clinical implementation on existing proton and photon machines, with each photon or proton treatment fraction delivering a uniform target dose.Approach.The proposed hybrid biological dose optimization method optimized proton and photon plan variables, along with the number of fractions for each modality, minimizing biological dose to the OARs and surrounding normal tissues. To mitigate underestimation of hot biological dose spots, proton biological dose was minimized within a ring structure surrounding the target. Hybrid plans were designed to be deliverable separately and robustly on existing proton and photon machines, with enforced uniform target dose constraints for the proton and photon fraction doses. A probabilistic formulation was utilized for robust optimization of setup and range uncertainties for protons and photons. The nonconvex optimization problem, arising from minimum monitor unit constraint and dose-volume histogram constraints, was solved using an iterative convex relaxation method.Main results.Hybrid planning with biological dose optimization effectively eliminated hot spots of biological dose, particularly in normal tissues surrounding the target, outperforming proton-only planning. It also provided superior overall plan quality and OAR sparing compared to proton-only or photon-only planning strategies.Significance.This study presents a novel hybrid biological treatment planning method capable of generating plans with reduced biological hot spots, superior plan quality to proton-only or photon-only plans, and clinical deliverability on existing proton and photon machines, separately and robustly.
Collapse
Affiliation(s)
- Wangyao Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Yuting Lin
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Harold H Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Xinglei Shen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Ronald C Chen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Hao Gao
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| |
Collapse
|
3
|
Amstutz F, Krcek R, Bachtiary B, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - From a fixed beam line to an arc. Radiother Oncol 2024; 190:109973. [PMID: 37913953 DOI: 10.1016/j.radonc.2023.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.
| |
Collapse
|
4
|
Han Y, Geng C, Altieri S, Bortolussi S, Liu Y, Wahl N, Tang X. Combined BNCT-CIRT treatment planning for glioblastoma using the effect-based optimization. Phys Med Biol 2023; 69:015024. [PMID: 38048635 DOI: 10.1088/1361-6560/ad120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Objective. Boron neutron capture therapy (BNCT) and carbon ion radiotherapy (CIRT) are emerging treatment modalities for glioblastoma. In this study, we investigated the methodology and feasibility to combine BNCT and CIRT treatments. The combined treatment plan illustrated how the synergistic utilization of BNCT's biological targeting and CIRT's intensity modulation capabilities could lead to optimized treatment outcomes.Approach. The Monte Carlo toolkit, TOPAS, was employed to calculate the dose distribution for BNCT, while matRad was utilized for the optimization of CIRT. The biological effect-based approach, instead of the dose-based approach, was adopted to develop the combined BNCT-CIRT treatment plans for six patients diagnosed with glioblastoma, considering the different radiosensitivity and fraction. Five optional combined treatment plans with specific BNCT effect proportions for each patient were evaluated to identify the optimal treatment that minimizes damage on normal tissue.Main results. Individual BNCT exhibits a significant effect gradient along with the beam direction in the large tumor, while combined BNCT-CIRT treatments can achieve uniform effect delivery within the clinical target volume (CTV) through the effect filling with reversed gradient by the CIRT part. In addition, the increasing BNCT effect proportion in combined treatments can reduce damage in the normal brain tissue near the CTV. Besides, the combined treatments effectively minimize damage to the skin compared to individual BNCT treatments.Significance. The initial endeavor to combine BNCT and CIRT treatment plans is achieved by the effect-based optimization. The observed advantages of the combined treatment suggest its potential applicability for tumors characterized by pleomorphic, infiltrative, radioresistant and voluminous features.
Collapse
Affiliation(s)
- Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Saverio Altieri
- Department of Physics, University of Pavia, Pavia, Italy
- National Institute of Nuclear Physics, Unit of Pavia, Pavia, Italy
| | - Silva Bortolussi
- Department of Physics, University of Pavia, Pavia, Italy
- National Institute of Nuclear Physics, Unit of Pavia, Pavia, Italy
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Neuboron Medtech. Ltd, Nanjing, People's Republic of China
| | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Wu X, Amstutz F, Weber DC, Unkelbach J, Lomax AJ, Zhang Y. Patient-specific quality assurance for deformable IMRT/IMPT dose accumulation: Proposition and validation of energy conservation based validation criterion. Med Phys 2023; 50:7130-7138. [PMID: 37345380 DOI: 10.1002/mp.16564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Deformable image registration (DIR)-based dose accumulation (DDA) is regularly used in adaptive radiotherapy research. However, the applicability and reliability of DDA for direct clinical usage are still being debated. One primary concern is the validity of DDA, particularly for scenarios with substantial anatomical changes, for which energy-conservation problems were observed in conceptual studies. PURPOSE We present and validate an energy-conservation (EC)-based DDA validation workflow and further investigate its usefulness for actual patient data, specifically for lung cancer cases. METHODS For five non-small cell lung cancer (NSCLC) patients, DDA based on five selective DIR methods were calculated for five different treatment plans, which include one intensity-modulated photon therapy (IMRT), two intensity-modulated proton therapy (IMPT), and two combined proton-photon therapy (CPPT) plans. All plans were optimized on the planning CT (planCT) acquired in deep inspiration breath-hold (DIBH) and were re-optimized on the repeated DIBH CTs of three later fractions. The resulting fractional doses were warped back to the planCT using each DIR. An EC-based validation of the accumulation process was implemented and applied to all DDA results. Correlations between relative organ mass/volume variations and the extent of EC violation were then studied using Bayesian linear regression (BLR). RESULTS For most OARs, EC violation within 10% is observed. However, for the PTVs and GTVs with substantial regression, severe overestimation of the fractional energy was found regardless of treatment type and applied DIR method. BLR results show that EC violation is linearly correlated to the relative mass variation (R^2 > 0.95) and volume variation (R^2 > 0.60). CONCLUSION DDA results should be used with caution in regions with high mass/volume variation for intensity-based DIRs. EC-based validation is a useful approach to provide patient-specific quality assurance of the validity of DDA in radiotherapy.
Collapse
Affiliation(s)
- Xin Wu
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Information Technology & Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
6
|
Guerra Liberal FDC, Thompson SJ, Prise KM, McMahon SJ. High-LET radiation induces large amounts of rapidly-repaired sublethal damage. Sci Rep 2023; 13:11198. [PMID: 37433844 PMCID: PMC10336062 DOI: 10.1038/s41598-023-38295-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
There is agreement that high-LET radiation has a high Relative Biological Effectiveness (RBE) when delivered as a single treatment, but how it interacts with radiations of different qualities, such as X-rays, is less clear. We sought to clarify these effects by quantifying and modelling responses to X-ray and alpha particle combinations. Cells were exposed to X-rays, alpha particles, or combinations, with different doses and temporal separations. DNA damage was assessed by 53BP1 immunofluorescence, and radiosensitivity assessed using the clonogenic assay. Mechanistic models were then applied to understand trends in repair and survival. 53BP1 foci yields were significantly reduced in alpha particle exposures compared to X-rays, but these foci were slow to repair. Although alpha particles alone showed no inter-track interactions, substantial interactions were seen between X-rays and alpha particles. Mechanistic modelling suggested that sublethal damage (SLD) repair was independent of radiation quality, but that alpha particles generated substantially more sublethal damage than a similar dose of X-rays, [Formula: see text]. This high RBE may lead to unexpected synergies for combinations of different radiation qualities which must be taken into account in treatment design, and the rapid repair of this damage may impact on mechanistic modelling of radiation responses to high LETs.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
7
|
Yan S, Ngoma TA, Ngwa W, Bortfeld TR. Global democratisation of proton radiotherapy. Lancet Oncol 2023; 24:e245-e254. [PMID: 37269856 DOI: 10.1016/s1470-2045(23)00184-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Proton radiotherapy is an advanced treatment option compared with conventional x-ray treatment, delivering much lower doses of radiation to healthy tissues surrounding the tumour. However, proton therapy is currently not widely available. In this Review, we summarise the evolution of proton therapy to date, together with the benefits to patients and society. These developments have led to an exponential growth in the number of hospitals using proton radiotherapy worldwide. However, the gap between the number of patients who should be treated with proton radiotherapy and those who have access to it remains large. We summarise the ongoing research and development that is contributing to closing this gap, including the improvement of treatment efficiency and efficacy, and advances in fixed-beam treatments that do not require an enormously large, heavy, and costly gantry. The ultimate goal of decreasing the size of proton therapy machines to fit into standard treatment rooms appears to be within reach, and we discuss future research and development opportunities to achieve this goal.
Collapse
Affiliation(s)
- Susu Yan
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Twalib A Ngoma
- Department Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Information and Sciences, ICT University, Yaoundé, Cameroon
| | - Thomas R Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Li W, Zhang W, Lin Y, Chen RC, Gao H. Fraction optimization for hybrid proton-photon treatment planning. Med Phys 2023. [PMID: 36786202 DOI: 10.1002/mp.16297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Hybrid proton-photon radiotherapy (RT) can provide better plan quality than proton or photon only RT, in terms of robustness of target coverage and sparing of organs-at-risk (OAR). PURPOSE This work develops a hybrid treatment planning method that can optimize the number of proton and photon fractions as well as proton and photon plan variables, so that the hybrid plans can be clinically delivered day-to-day using either proton or photon machine. METHODS In the new hybrid treatment planning method, the total dose distribution (sum of proton dose and photon dose) is optimized for robust target coverage and optimal OAR sparing, by jointly optimizing proton spots and photon fluences, while the target dose uniformity is also enforced individually on both proton dose and photon dose, so that the hybrid plans can be separately and robustly delivered on proton or photon machine. To ensure the target dose uniformity for proton and photon plans, the number of proton and photon fractions is explicitly modeled and optimized, so that the target dose for proton and photon dose components is constrained to be a constant fraction of the total prescription dose while the plan quality based on total dose is optimized. The feasibility of hybrid planning using the proposed method is validated with representative clinical cases including abdomen, lung, head-and-neck (HN), and brain. RESULTS For all cases, hybrid plans provided better overall plan quality and OAR sparing than proton-only or photon-only plans, better target dose uniformity and robustness than proton-only plans, quantified by treatment planning objectives and dosimetric parameters. Moreover, for HN and brain cases, hybrid plans also had better target coverage than photon-only plans. CONCLUSIONS We have developed a new hybrid treatment planning method that optimizes number of proton and photon fractions as well as proton spots and photon fluences, for generating hybrid plans that can be separately and robustly delivered on proton or photon machines. Preliminary results have demonstrated that hybrid plans generated by the new method have better plan quality than proton-only or photon-only plans.
Collapse
Affiliation(s)
- Wangyao Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Weijie Zhang
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
9
|
Mueller S, Guyer G, Volken W, Frei D, Torelli N, Aebersold DM, Manser P, Fix MK. Efficiency enhancements of a Monte Carlo beamlet based treatment planning process: implementation and parameter study. Phys Med Biol 2023; 68. [PMID: 36655485 DOI: 10.1088/1361-6560/acb480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Objective.The computational effort to perform beamlet calculation, plan optimization and final dose calculation of a treatment planning process (TPP) generating intensity modulated treatment plans is enormous, especially if Monte Carlo (MC) simulations are used for dose calculation. The goal of this work is to improve the computational efficiency of a fully MC based TPP for static and dynamic photon, electron and mixed photon-electron treatment techniques by implementing multiple methods and studying the influence of their parameters.Approach.A framework is implemented calculating MC beamlets efficiently in parallel on each available CPU core. The user can specify the desired statistical uncertainty of the beamlets, a fractional sparse dose threshold to save beamlets in a sparse format and minimal distances to the PTV surface from which 2 × 2 × 2 = 8 (medium) or even 4 × 4 × 4 = 64 (large) voxels are merged. The compromise between final plan quality and computational efficiency of beamlet calculation and optimization is studied for several parameter values to find a reasonable trade-off. For this purpose, four clinical and one academic case are considered with different treatment techniques.Main results.Setting the statistical uncertainty to 5% (photon beamlets) and 15% (electron beamlets), the fractional sparse dose threshold relative to the maximal beamlet dose to 0.1% and minimal distances for medium and large voxels to the PTV to 1 cm and 2 cm, respectively, does not lead to substantial degradation in final plan quality compared to using 2.5% (photon beamlets) and 5% (electron beamlets) statistical uncertainty and no sparse format nor voxel merging. Only OAR sparing is slightly degraded. Furthermore, computation times are reduced by about 58% (photon beamlets), 88% (electron beamlets) and 96% (optimization).Significance.Several methods are implemented improving computational efficiency of beamlet calculation and plan optimization of a fully MC based TPP without substantial degradation in final plan quality.
Collapse
Affiliation(s)
- S Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - N Torelli
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - D M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| |
Collapse
|
10
|
Ferini *G, Palmisciano P, Scalia G, Haider AS, Bin-Alamer O, Sagoo NS, Bozkurt I, Deora H, Priola SM, Aoun SG, Umana GE. The role of radiation therapy in the treatment of spine metastases from hepatocellular carcinoma: a systematic review and meta-analysis. Neurosurg Focus 2022; 53:E12. [DOI: 10.3171/2022.8.focus2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE
Spine hepatocellular carcinoma (HCC) metastases severely worsen quality of life and prognosis, with the role of radiotherapy being controversial. The authors systematically reviewed the literature on radiotherapy for spine metastatic HCCs.
METHODS
The PubMed, Scopus, Web of Science, and Cochrane databases were searched according to the PRISMA guidelines to include studies of radiotherapy for spine metastatic HCCs. Outcomes, complications, and local control were analyzed with indirect random-effect meta-analyses.
RESULTS
The authors included 12 studies comprising 713 patients. The median time interval from diagnosis of HCC to spine metastases was 12 months (range 0–105 months). Most lesions were thoracic (35.9%) or lumbar (24.7%). Radiotherapy was delivered with conventional external-beam (67.3%) or stereotactic (31.7%) techniques. The median dose was 30.3 Gy (range 12.5–52 Gy) in a median of 5 fractions (range 1–20 fractions). The median biologically effective dose was 44.8 Gy10 (range 14.4–112.5 Gy10). Actuarial rates of postradiotherapy pain relief and radiological response were 87% (95% CI 84%–90%) and 70% (95% CI 65%–75%), respectively. Radiation-related adverse events and vertebral fractures had actuarial rates of 8% (95% CI 5%–11%) and 16% (95% CI 10%–23%), respectively, with fracture rates significantly higher after stereotactic radiotherapy (p = 0.033). Fifty-eight patients (27.6%) had local recurrences after a median of 6.8 months (range 0.1–59 months), with pooled local control rates of 61.6% at 6 months and 40.8% at 12 months, and there were no significant differences based on radiotherapy type (p = 0.068). The median survival was 6 months (range 0.1–62 months), with pooled rates of 52.5% at 6 months and 23.4% at 12 months.
CONCLUSIONS
Radiotherapy in spine metastatic HCCs shows favorable rates of pain relief, radiological responses, and local control. Rates of postradiotherapy vertebral fractures are higher after high-dose stereotactic radiotherapy.
Collapse
Affiliation(s)
- *Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, Viagrande, Catania, Italy
| | | | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance "Garibaldi," Catania, Italy
| | - Ali S Haider
- Texas A&M University College of Medicine, Houston, Texas
| | - Othman Bin-Alamer
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Navraj S Sagoo
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ismail Bozkurt
- Department of Neurosurgery, Cankiri State Hospital, Cankiri, Turkey
| | - Harsh Deora
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Stefano M Priola
- Division of Neurosurgery, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Salah G Aoun
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Giuseppe E Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
11
|
Khaledi N, Hayes C, Belshaw L, Grattan M, Khan R, Gräfe JL. Treatment planning with a 2.5 MV photon beam for radiation therapy. J Appl Clin Med Phys 2022; 23:e13811. [PMID: 36300870 PMCID: PMC9797178 DOI: 10.1002/acm2.13811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The shallow depth of maximum dose and higher dose fall-off gradient of a 2.5 MV beam along the central axis that is available for imaging on linear accelerators is investigated for treatment of shallow tumors and sparing the organs at risk (OARs) beyond it. In addition, the 2.5 MV beam has an energy bridging the gap between kilo-voltage (kV) and mega-voltage (MV) beams for applications of dose enhancement with high atomic number (Z) nanoparticles. METHODS We have commissioned and utilized a MATLAB-based, open-source treatment planning software (TPS), matRad, for intensity-modulated radiation therapy (IMRT) dose calculations. Treatment plans for prostate, liver, and head and neck (H&N), nasal cavity, two orbit cases, and glioblastoma multiforme (GBM) were performed and compared to a conventional 6 MV beam. Additional Monte Carlo calculations were also used for benchmarking the central axis dose. RESULTS Both beams had similar planning target volume (PTV) dose coverage for all cases. However, the 2.5 MV beam deposited 6%-19% less integral doses to the nasal cavity, orbit, and GBM cases than 6 MV photons. The mean dose to the heart in the liver plan was 10.5% lower for 2.5 MV beam. The difference between the doses to OARs of H&N for two beams was under 3%. Brain mean dose, brainstem, and optic chiasm max doses were, respectively, 7.5%-14.9%, 2.2%-8.1%, and 2.5%-19.0% lower for the 2.5 MV beam in the nasal cavity, orbit, and GBM plans. CONCLUSIONS This study demonstrates that the 2.5 MV beam can produce clinically relevant treatment plans, motivating future efforts for design of single-energy LINACs. Such a machine will be capable of producing beams at this energy beneficial for low- and middle-income countries, and investigations on dose enhancement from high-Z nanoparticles.
Collapse
Affiliation(s)
- Navid Khaledi
- Department of PhysicsFaculty of ScienceToronto Metropolitan UniversityTorontoOntarioCanada
| | - Chris Hayes
- Radiotherapy PhysicsNorthern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Louise Belshaw
- Radiotherapy PhysicsNorthern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Mark Grattan
- Radiotherapy PhysicsNorthern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Rao Khan
- Department of PhysicsFaculty of ScienceToronto Metropolitan UniversityTorontoOntarioCanada,Department of Physics and Astronomy and Department of Radiation OncologyHoward UniversityWashingtonDistrict of ColumbiaUSA
| | - James L. Gräfe
- Department of PhysicsFaculty of ScienceToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
12
|
Fabiano S, Torelli N, Papp D, Unkelbach J. A novel stochastic optimization method for handling misalignments of proton and photon doses in combined treatments. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Combined proton–photon treatments, where most fractions are delivered with photons and only a few are delivered with protons, may represent a practical approach to optimally use limited proton resources. It has been shown that, when organs at risk (OARs) are located within or near the tumor, the optimal multi-modality treatment uses protons to hypofractionate parts of the target volume and photons to achieve near-uniform fractionation in dose-limiting healthy tissues, thus exploiting the fractionation effect. These plans may be sensitive to range and setup errors, especially misalignments between proton and photon doses. Thus, we developed a novel stochastic optimization method to directly incorporate these uncertainties into the biologically effective dose (BED)-based simultaneous optimization of proton and photon plans. Approach. The method considers the expected value
E
b
and standard deviation
σ
b
of the cumulative BED
b
in every voxel of a structure. For the target, a piecewise quadratic penalty function of the form
b
min
−
E
b
−
2
σ
b
+
2
is minimized, aiming for plans in which the expected BED minus two times the standard deviation exceeds the prescribed BED
b
min
.
Analogously,
E
b
+
2
σ
b
−
b
max
+
2
is considered for OARs. Main results. Using a spinal metastasis case and a liver cancer patient, it is demonstrated that the novel stochastic optimization method yields robust combined treatment plans. Tumor coverage and a good sparing of the main OARs are maintained despite range and setup errors, and especially misalignments between proton and photon doses. This is achieved without explicitly considering all combinations of proton and photon error scenarios. Significance. Concerns about range and setup errors for safe clinical implementation of optimized proton–photon radiotherapy can be addressed through an appropriate stochastic planning method.
Collapse
|
13
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
14
|
Amstutz F, Fabiano S, Marc L, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Combined proton-photon therapy for non-small cell lung cancer. Med Phys 2022; 49:5374-5386. [PMID: 35561077 PMCID: PMC9544482 DOI: 10.1002/mp.15715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Advanced non-small cell lung cancer (NSCLC) is still a challenging indication for conventional photon radiotherapy. Proton therapy has the potential to improve outcomes, but proton treatment slots remain a limited resource despite an increasing number of proton therapy facilities. This work investigates the potential benefits of optimally combined proton-photon therapy delivered using a fixed horizontal proton beam line in combination with a photon Linac, which could increase accessibility to proton therapy for such a patient cohort. MATERIALS AND METHODS A treatment planning study has been conducted on a patient cohort of seven advanced NSCLC patients. Each patient had a planning CT and multiple repeated CTs from three different days and for different breath-holds on each day. Treatment plans for combined proton-photon therapy (CPPT) were calculated for individual patients by optimizing the combined cumulative dose on the initial planning CT only (non-adapted) as well as on each daily CT respectively (adapted). The impact of inter-fractional changes and/or breath-hold variability was then assessed on the repeat breath-hold CTs. Results were compared to plans for IMRT or IMPT alone, as well as against combined treatments assuming a proton gantry. Plan quality was assessed in terms of dosimetric, robustness and NTCP metrics. RESULTS Combined treatment plans improved plan quality compared to IMRT treatments, especially in regard to reductions of low and medium doses to organs at risk (OARs), which translated into lower NTCP estimates for three side effects. For most patients, combined treatments achieved results close to IMPT-only plans. Inter-fractional changes impact mainly the target coverage of combined and IMPT treatments, while OARs doses were less affected by these changes. With plan adaptation however, target coverage of combined treatments remained high even when taking variability between breath-holds into account. CONCLUSIONS Optimally combined proton-photon plans improve treatment plan quality compared to IMRT only, potentially reducing the risk of toxicity while also allowing to potentially increase accessibility to proton therapy for NSCLC patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Louise Marc
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
15
|
Teng C, Yang Q, Xiong Z, Ye N, Li X. Multivariate Analysis and Validation of the Prognostic Factors for Skull Base Chordoma. Front Surg 2021; 8:764329. [PMID: 34888345 PMCID: PMC8649658 DOI: 10.3389/fsurg.2021.764329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Skull base chordoma is a rare tumor with low-grade malignancy and a high recurrence rate, the factors affecting the prognosis of patients need to be further studied. For that, we investigated prognostic factors of skull base chordoma through the database of the Surveillance, Epidemiology, and End Results (SEER) program, and validated in an independent data set from the Xiangya Hospital. Methods: Six hundred and forty-three patients diagnosed with skull base chordoma were obtained from the SEER database (606 patients) and the Xiangya Hospital (37 patients). Categorical variables were selected by Chi-square test with a statistical difference. Survival curves were constructed by Kaplan–Meier analysis and compared by log-rank test. Univariate and multivariate Cox regression analyses were used to explore the prognostic factors. Propensity score matching (PSM) analysis was undertaken to reduce the substantial bias between gross total resection (GTR) and subtotal resection (STR) groups. Furthermore, clinical data of 37 patients from the Xiangya Hospital were used as validation cohorts to check the survival impacts of the extent of resection and adjuvant radiotherapy on prognosis. Results: We found that age at diagnosis, primary site, disease stage, surgical treatment, and tumor size was significantly associated with the prognosis of skull base chordoma. PSM analysis revealed that there was no significant difference in the OS between GTR and STR (p = 0.157). Independent data set from the Xiangya Hospital proved no statistical difference in OS between GTR and STR groups (p = 0.16), but the GTR group was superior to the STR group for progression-free survival (PFS) (p = 0.048). Postoperative radiotherapy does not improve OS (p = 0.28), but it can prolong PFS (p = 0.0037). Nomograms predicting 5- and 10-year OS and DSS were constructed based on statistically significant factors identified by multivariate Cox analysis. Age, primary site, tumor size, surgical treatment, and disease stage were included as prognostic predictors in the nomograms with good performance. Conclusions: We identified age, tumor size, surgery, primary site, and tumor stage as main factors affecting the prognosis of the skull base chordoma. Resection of the tumor as much as possible while ensuring safety, combined with postoperative radiotherapy may be the optimum treatment for skull base chordoma.
Collapse
Affiliation(s)
- Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ningrong Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Loizeau N, Fabiano S, Papp D, Stützer K, Jakobi A, Bandurska-Luque A, Troost EGC, Richter C, Unkelbach J. Optimal Allocation of Proton Therapy Slots in Combined Proton-Photon Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:196-207. [PMID: 33848609 DOI: 10.1016/j.ijrobp.2021.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton therapy is a limited resource that is not available to all patients who may benefit from it. We investigated combined proton-photon treatments, in which some fractions are delivered with protons and the remaining fractions with photons, as an approach to maximize the benefit of limited proton therapy resources at a population level. METHODS AND MATERIALS To quantify differences in normal-tissue complication probability (NTCP) between protons and photons, we considered a cohort of 45 patients with head and neck cancer for whom intensity modulated radiation therapy and intensity modulated proton therapy plans were previously created, in combination with NTCP models for xerostomia and dysphagia considered in the Netherlands for proton patient selection. Assuming limited availability of proton slots, we developed methods to optimally assign proton fractions in combined proton-photon treatments to minimize the average NTCP on a population level. The combined treatments were compared with patient selection strategies in which patients are assigned to single-modality proton or photon treatments. RESULTS There is a benefit of combined proton-photon treatments compared with patient selection, owing to the nonlinearity of NTCP functions; that is, the initial proton fractions are the most beneficial, whereas additional proton fractions have a decreasing benefit when a flatter part of the NTCP curve is reached. This effect was small for the patient cohort and NTCP models considered, but it may be larger if dose-response relationships are better known. In addition, when proton slots are limited, patient selection methods face a trade-off between leaving slots unused and blocking slots for future patients who may have a larger benefit. Combined proton-photon treatments with flexible proton slot assignment provide a method to make optimal use of all available resources. CONCLUSIONS Combined proton-photon treatments allow for better use of limited proton therapy resources. The benefit over patient selection schemes depends on the NTCP models and the dose differences between protons and photons.
Collapse
Affiliation(s)
- Nicolas Loizeau
- Physics Institute, University of Zürich, Zürich, Switzerland; Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland.
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Dávid Papp
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina
| | - Kristin Stützer
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Annika Jakobi
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Bandurska-Luque
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christian Richter
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Bennan ABA, Unkelbach J, Wahl N, Salome P, Bangert M. Joint Optimization of Photon-Carbon Ion Treatments for Glioblastoma. Int J Radiat Oncol Biol Phys 2021; 111:559-572. [PMID: 34058258 DOI: 10.1016/j.ijrobp.2021.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Carbon ions are radiobiologically more effective than photons and are beneficial for treating radioresistant gross tumor volumes (GTV). However, owing to a reduced fractionation effect, they may be disadvantageous for treating infiltrative tumors, in which healthy tissue inside the clinical target volume (CTV) must be protected through fractionation. This work addresses the question: What is the ideal combined photon-carbon ion fluence distribution for treating infiltrative tumors given a specific fraction allocation between photons and carbon ions? METHODS AND MATERIALS We present a method to simultaneously optimize sequentially delivered intensity modulated photon (IMRT) and carbon ion (CIRT) treatments based on cumulative biological effect, incorporating both the variable relative biological effect of carbon ions and the fractionation effect within the linear quadratic model. The method is demonstrated for 6 glioblastoma patients in comparison with the current clinical standard of independently optimized CIRT-IMRT plans. RESULTS Compared with the reference plan, joint optimization strategies yield inhomogeneous photon and carbon ion dose distributions that cumulatively deliver a homogeneous biological effect distribution. In the optimal distributions, the dose to CTV is mostly delivered by photons and carbon ions are restricted to the GTV with variations depending on tumor size and location. Improvements in conformity of high-dose regions are reflected by a mean EQD2 reduction of 3.29 ± 1.22 Gy in a dose fall-off margin around the CTV. Carbon ions may deliver higher doses to the center of the GTV, and photon contributions are increased at interfaces with CTV and critical structures. This results in a mean EQD2 reduction of 8.3 ± 2.28 Gy, in which the brain stem abuts the target volumes. CONCLUSIONS We have developed a biophysical model to optimize combined photon-carbon ion treatments. For 6 glioblastoma patient cases, we show that our approach results in a more targeted application of carbon ions that (1) reduces dose in normal tissues within the target volume, which can only be protected through fractionation; and (2) boosts central target volume regions to reduce integral dose. Joint optimization of IMRT-CIRT treatments enable the exploration of a new spectrum of plans that can better address physical and radiobiological treatment planning challenges.
Collapse
Affiliation(s)
- Amit Ben Antony Bennan
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Patrick Salome
- Medical Faculty, Heidelberg University, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ)
| | - Mark Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
18
|
Kueng R, Mueller S, Loebner HA, Frei D, Volken W, Aebersold DM, Stampanoni MFM, Fix MK, Manser P. TriB-RT: Simultaneous optimization of photon, electron and proton beams. Phys Med Biol 2021; 66:045006. [PMID: 32413883 DOI: 10.1088/1361-6560/ab936f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a novel treatment planning process (TPP) with simultaneous optimization of modulated photon, electron and proton beams for improved treatment plan quality in radiotherapy. METHODS A framework for fluence map optimization of Monte Carlo (MC) calculated beamlet dose distributions is developed to generate treatment plans consisting of photon, electron and spot scanning proton fields. Initially, in-house intensity modulated proton therapy (IMPT) plans are compared to proton plans created by a commercial treatment planning system (TPS). A triple beam radiotherapy (TriB-RT) plan is generated for an exemplary academic case and the dose contributions of the three particle types are investigated. To investigate the dosimetric potential, a TriB-RT plan is compared to an in-house IMPT plan for two clinically motivated cases. Benefits of TriB-RT for a fixed proton beam line with a single proton field are investigated. RESULTS In-house optimized IMPT are of at least equal or better quality than TPS-generated proton plans, and MC-based optimization shows dosimetric advantages for inhomogeneous situations. Concerning TriB-RT, for the academic case, the resulting plan shows substantial contribution of all particle types. For the clinically motivated case, improved sparing of organs at risk close to the target volume is achieved compared to IMPT (e.g. myelon and brainstem [Formula: see text] -37%) at cost of an increased low dose bath (healthy tissue V 10% +22%). In the scenario of a fixed proton beam line, TriB-RT plans are able to compensate the loss in degrees of freedom to substantially improve plan quality compared to a single field proton plan. CONCLUSION A novel TPP which simultaneously optimizes photon, electron and proton beams was successfully developed. TriB-RT shows the potential for improved treatment plan quality and is especially promising for cost-effective single-room proton solutions with a fixed beamline in combination with a conventional linac delivering photon and electron fields.
Collapse
Affiliation(s)
- R Kueng
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kueng R, Guyer G, Volken W, Frei D, Stabel F, Stampanoni MFM, Manser P, Fix MK. Development of an extended Macro Monte Carlo method for efficient and accurate dose calculation in magnetic fields. Med Phys 2020; 47:6519-6530. [PMID: 33075168 DOI: 10.1002/mp.14542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/06/2022] Open
Abstract
MOTIVATION Progress in the field of magnetic resonance (MR)-guided radiotherapy has triggered the need for fast and accurate dose calculation in presence of magnetic fields. The aim of this work is to satisfy this need by extending the macro Monte Carlo (MMC) method to enable dose calculation for photon, electron, and proton beams in a magnetic field. METHODS The MMC method is based on the transport of particles in macroscopic steps through an absorber by sampling the relevant physical quantities from a precalculated database containing probability distribution functions. To enable MMC particle transport in a magnetic field, a transformation accounting for the Lorentz force is applied for each macro step by rotating the sampled position and direction around the magnetic field vector. The transformed position and direction distributions on local geometries are validated against full MC for electron and proton pencil beams. To enable photon dose calculation, an in-house MC algorithm is used for photon transport and interaction. Emerging secondary charged particles are passed to MMC for transport and energy deposition. The extended MMC dose calculation accuracy and efficiency is assessed by comparison with EGSnrc (photon and electron beams) and Geant4 (proton beam) calculated dose distributions of different energies and homogeneous magnetic fields for broad beams impinging on water phantoms with bone and lung inhomogeneities. RESULTS The geometric transformation on the local geometries is able to reproduce the results of full MC for all investigated settings (difference in mean value and standard deviation <1%). Macro Monte Carlo calculated dose distributions in a homogeneous magnetic field are in agreement with EGSnrc and Geant4, respectively, with gamma passing rates >99.6% (global 2%, 2 mm and 10% threshold criteria) for all situations. MMC achieves a substantial efficiency gain of up to a factor of 21 (photon beam), 66 (electron beam), and 356 (proton beam) compared to EGSnrc or Geant4. CONCLUSION Efficient and accurate dose calculation in magnetic fields was successfully enabled by utilizing the developed extended MMC transport method for photon, electron, and proton beams.
Collapse
Affiliation(s)
- R Kueng
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - F Stabel
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M F M Stampanoni
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Schuppert C, Paul A, Nill S, Schwahofer A, Debus J, Sterzing F. A treatment planning study of combined carbon ion-beam plus photon intensity-modulated radiotherapy. Phys Imaging Radiat Oncol 2020; 15:16-22. [PMID: 33458321 PMCID: PMC7807875 DOI: 10.1016/j.phro.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Combined photon intensity-modulated radiotherapy (IMRT) and sequential dose-escalated carbon ion beam therapy (IBT) is a technically advanced treatment option for head and neck malignancies. We proposed and evaluated an integrated planning strategy as opposed to an established and largely separated planning workflow. MATERIALS AND METHODS Ten patients with representative malignancies of the head and neck region underwent combined carbon-photon radiotherapy (RT) in our facilities. Clinical plans were created according to the separated workflow with independent optimization stages for both modalities. Experimental plans incorporated the existing carbon IBT dose distribution into the optimization stage of a step-and-shoot photon IMRT (bias dose planning). RESULTS Cumulative dose distributions showed statistically significant differences between the two planning strategies and were predominantly in favor of the integrated approach. As such, target irradiation was generally maintained or even improved in a subset of metrics, while normal tissue sparing was widely enhanced; for instance, in the ipsilateral temporal lobe with median Dmean of -16% (p < 0.001). Maximum doses D1% (with adjustment for different fractionation) fell below thresholds for toxicity risk in a minority of instances, where they were previously exceeded. Integral dose did not differ significantly. CONCLUSIONS Our findings indicate that combination planning of carbon-photon RT for head and neck malignancies may benefit from a proposed bias dose method, yielding favorable dose distribution characteristics and a streamlined planning workflow with fewer plan revisions. Further research is necessary to validate these observations in terms of robustness and their potential for higher tumor control.
Collapse
Affiliation(s)
- Christopher Schuppert
- Department of Radiation Oncology and Radiation Therapy, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Angela Paul
- Department of Radiation Oncology and Radiation Therapy, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom
| | - Andrea Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiation Therapy, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology and Radiation Therapy, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Accounting for Range Uncertainties in the Optimization of Combined Proton-Photon Treatments Via Stochastic Optimization. Int J Radiat Oncol Biol Phys 2020; 108:792-801. [PMID: 32361008 DOI: 10.1016/j.ijrobp.2020.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Proton treatment slots are a limited resource. Combined proton-photon treatments, in which most fractions are delivered with photons and only a few with protons, may represent a practical solution to optimize the allocation of proton resources over the patient population. We demonstrate how a limited number of proton fractions can be optimally used in multimodality treatments and address the issue of the robustness of combined treatments against proton range uncertainties. METHODS AND MATERIALS Combined proton-photon treatments are planned by simultaneously optimizing intensity modulated radiation therapy and proton therapy plans while accounting for the fractionation effect through the biologically effective dose model. The method was investigated for different tumor sites (a spinal metastasis, a sacral chordoma, and an atypical meningioma) in which organs at risk (OARs) were located within or near the tumor. Stochastic optimization was applied to mitigate range uncertainties. RESULTS In optimal combinations, proton and photon fractions deliver similar doses to OARs overlaying the target volume to protect these dose-limiting normal tissues through fractionation. Meanwhile, parts of the tumor are hypofractionated with protons. Thus, the total dose delivered with photons is reduced compared with simple combinations in which each modality delivers the prescribed dose per fraction to the target volume. The benefit of optimal combinations persists when range errors are accounted for via stochastic optimization. CONCLUSIONS Limited proton resources are optimally used in combined treatments if parts of the tumor are hypofractionated with protons and near-uniform fractionation is maintained in serial OARs. Proton range uncertainties can be efficiently accounted for through stochastic optimization and are not an obstacle for clinical application.
Collapse
|
22
|
Combined proton-photon treatments - A new approach to proton therapy without a gantry. Radiother Oncol 2020; 145:81-87. [PMID: 31923713 DOI: 10.1016/j.radonc.2019.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Although the number of proton therapy centres is growing worldwide, proton therapy is still a limited resource. The primary reasons are gantry size and cost. Therefore, we investigate the potential of a new design for proton therapy, which may facilitate proton treatments in conventional bunkers and allow the widespread use of protons. MATERIALS AND METHODS The treatment room consists of a standard Linac for IMRT, a motorized couch for treatments in lying position, and a horizontal proton beamline equipped with pencil beam scanning. As proton beams are limited to a coronal plane, treatment plans may be suboptimal for many tumour sites. However, high-quality plans may be realized by combining protons and photons. Treatment planning is performed by simultaneously optimizing IMRT and IMPT plans based on their cumulative physical dose. We demonstrate this concept for three head&neck cancer cases. RESULTS Optimal combinations use photons to improve dose conformity while protons reduce the integral dose to normal tissues. In fact, combined treatments improve on single-modality IMRT and fixed beamline IMPT plans for quality-of-life-limiting OARs and retain most of the integral dose reduction in the healthy tissues of the pure IMPT plans. The lower doses that can be obtained with multi-modality treatments reduce the risk for side effects compared to single-modality IMRT plans. CONCLUSION Combined proton-photon treatments may play a role in developing a new solution for proton therapy without a gantry. Optimal combinations improve on IMRT plans and reduce the risk of side effects while making protons available to more patients.
Collapse
|
23
|
Gao H. Hybrid proton-photon inverse optimization with uniformity-regularized proton and photon target dose. ACTA ACUST UNITED AC 2019; 64:105003. [DOI: 10.1088/1361-6560/ab18c7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
ten Eikelder SCM, den Hertog D, Bortfeld T, Perkó Z. Optimal combined proton–photon therapy schemes based on the standard BED model. ACTA ACUST UNITED AC 2019; 64:065011. [DOI: 10.1088/1361-6560/aafe52] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Sokol O, Krämer M, Hild S, Durante M, Scifoni E. Kill painting of hypoxic tumors with multiple ion beams. Phys Med Biol 2019; 64:045008. [PMID: 30641490 DOI: 10.1088/1361-6560/aafe40] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report on a novel method for simultaneous biological optimization of treatment plans for hypoxic tumors using multiple ion species. Our previously introduced kill painting approach, where the overall cell killing is optimized on biologically heterogeneous targets, was expanded with the capability of handling different ion beams simultaneously. The current version (MIBO) of the research treatment planning system TRiP98 has now been augmented to handle 3D (voxel-by-voxel) target oxygenation data. We present a case of idealized geometries where this method can identify optimal combinations leading to an improved peak-to-entrance effective dose ratio. This is achieved by the redistribution of particle fluences, when the heavier ions are preferentially forwarded to hypoxic target areas, while the lighter ions deliver the remaining dose to its normoxic regions. Finally, we present an in silico skull base chordoma patient case study with a combination of 4He and 16O beams, demonstrating specific indications for its potential clinical application. In this particular case, the mean dose, received by the brainstem, was reduced by 3%-5% and by 10%-12% as compared to the pure 4He and 16O plans, respectively. The new method allows a full biological optimization of different ion beams, exploiting the capabilities of actively scanned ion beams of modern particle therapy centers. The possible experimental verification of the present approach at ion beam facilities disposing of fast ion switch is presented and discussed.
Collapse
Affiliation(s)
- O Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
26
|
Wolkow N, Jakobiec FA, Lee H, Sutula FC. Long-term Outcomes of Globe-Preserving Surgery With Proton Beam Radiation for Adenoid Cystic Carcinoma of the Lacrimal Gland. Am J Ophthalmol 2018; 195:43-62. [PMID: 30071211 DOI: 10.1016/j.ajo.2018.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE To describe outcomes of globe-preserving surgery combined with high-dose proton beam radiation (PBR) in treating primary adenoid cystic carcinoma (ACC) of the lacrimal gland. DESIGN Retrospective case series. METHODS Twenty-nine patients with primary ACC of the lacrimal gland were identified in the records of a single institution between 1990 and 2017. Patients with nonorbital primary tumor origins or with inadequate follow-ups were excluded. Eighteen patients met inclusion criteria. Clinical data, imaging studies, histopathology, treatment modality, local recurrences, visual outcomes, metastases, and survivals were assessed. Disease-free survivals for the current patients were measured and compared to those of other studies. RESULTS The eighteen patients (14 female, 4 male) were followed for a median of 12.9 years (range 0.6-22.3 years) after treatment completion. Their median age was 40 years. Four were children (median age 12 years). All were treated with globe-preserving tumor resection and radiation (median dose of 72 cobalt gray equivalents). Three adult patients died of metastatic disease (median of 4.2 years after treatment). Four had local recurrences. Useful vision (20/40 or better) was retained for a median 3 years (range 1-12.9 years). Radiation morbidity included brain injury, retinopathy, optic neuropathy, keratopathy, and cataract. Overall and disease-free survivals were significantly better compared to historical treatments, but did not differ statistically from other modern approaches. CONCLUSIONS Globe-preserving surgery with PBR, although imperfect, has a favorable long-term survival compared to other modern modalities, and offers a variable period of useful vision.
Collapse
Affiliation(s)
- Natalie Wolkow
- David Glendenning Cogan Ophthalmic Pathology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and the Harvard Medical School, Boston, Massachusetts, USA
| | - Frederick A Jakobiec
- David Glendenning Cogan Ophthalmic Pathology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and the Harvard Medical School, Boston, Massachusetts, USA.
| | - Hang Lee
- Biostatistics Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francis C Sutula
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and the Harvard Medical School, Boston, Massachusetts, USA; Sutula Eye Associates, Milton, Massachusetts, USA
| |
Collapse
|
27
|
Grau C, Baumann M, Weber DC. Optimizing clinical research and generating prospective high-quality data in particle therapy in Europe: Introducing the European Particle Therapy Network (EPTN). Radiother Oncol 2018; 128:1-3. [PMID: 30049367 DOI: 10.1016/j.radonc.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Cai Grau
- The Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | |
Collapse
|