1
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
2
|
Barcellini A, Rordorf R, Dusi V, Fontana G, Pepe A, Vai A, Schirinzi S, Vitolo V, Orlandi E, Greco A. Pilot study to assess the early cardiac safety of carbon ion radiotherapy for intra- and para-cardiac tumours. Strahlenther Onkol 2024:10.1007/s00066-024-02270-2. [PMID: 39212688 DOI: 10.1007/s00066-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Modern photon radiotherapy effectively spares cardiac structures more than previous volumetric approaches. Still, it is related to non-negligible cardiac toxicity due to the low-dose bath of surrounding normal tissues. However, the dosimetric advantages of particle radiotherapy make it a promising treatment for para- and intra-cardiac tumours. In the current short report, we evaluate the cardiac safety profile of carbon ion radiotherapy (CIRT) for radioresistant intra- and para-cardiac malignancies in a real-world setting. METHODS We retrospectively analysed serum biomarkers (TnI, CRP and NT-proBNP), echocardiographic, and both 12-lead and 24-hour Holter electrocardiogram (ECG) data of consecutive patients with radioresistant intra- and para-cardiac tumours irradiated with CIRT between June 2019 and September 2022. In the CIRT planning optimization process, to minimize the delivered doses, we contoured and gave a high priority to the cardiac substructures. Weekly re-evaluative 4D computed tomography scans were carried out throughout the treatment. RESULTS A total of 16 patients with intra- and para-cardiac localizations of radioresistant tumours were treated up to a total dose of 70.4 Gy relative biological effectiveness (RBE) and a mean heart dose of 2.41 Gy(RBE). We did not record any significant variation of the analysed serum biomarkers after CIRT nor significant changes of echocardiographic features, biventricular strain, or 12-lead and 24-hour Holter ECG parameters during 6 months of follow-up. CONCLUSION Our pilot study suggests that carbon ion radiotherapy is a promising radiation technique capable of sparing off-target side effects at the cardiac level. A larger cohort, long-term follow-up and further prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Roberto Rordorf
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
- Arrhythmia and Electrophysiology Unit, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Veronica Dusi
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10126, Torino, Italy
| | - Giulia Fontana
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Via Erminio Borloni 1, 27100, Pavia, Italy.
| | - Antonella Pepe
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
- Division of Cardiology, Cardio-Thoracic Department, San Carlo Borromeo Hospital (ASST Santi Paolo e Carlo), 20100, Milano, Italy
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Sandra Schirinzi
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy
| | - Alessandra Greco
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| |
Collapse
|
3
|
Sterpin E, Widesott L, Poels K, Hoogeman M, Korevaar EW, Lowe M, Molinelli S, Fracchiolla F. Robustness evaluation of pencil beam scanning proton therapy treatment planning: A systematic review. Radiother Oncol 2024; 197:110365. [PMID: 38830538 DOI: 10.1016/j.radonc.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Compared to conventional radiotherapy using X-rays, proton therapy, in principle, allows better conformity of the dose distribution to target volumes, at the cost of greater sensitivity to physical, anatomical, and positioning uncertainties. Robust planning, both in terms of plan optimization and evaluation, has gained high visibility in publications on the subject and is part of clinical practice in many centers. However, there is currently no consensus on the methods and parameters to be used for robust optimization or robustness evaluation. We propose to overcome this deficiency by following the modified Delphi consensus method. This method first requires a systematic review of the literature. We performed this review using the PubMed and Web Of Science databases, via two different experts. Potential conflicts were resolved by a third expert. We then explored the different methods before focusing on clinical studies that evaluate robustness on a significant number of patients. Many robustness assessment methods are proposed in the literature. Some are more successful than others and their implementation varies between centers. Moreover, they are not all statistically or mathematically equivalent. The most sophisticated and rigorous methods have seen more limited application due to the difficulty of their implementation and their lack of widespread availability.
Collapse
Affiliation(s)
- E Sterpin
- KU Leuven - Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; UCLouvain - Institution de Recherche Expérimentale et Clinique, Center of Molecular Imaging Radiotherapy and Oncology (MIRO), Brussels, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium.
| | - L Widesott
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - K Poels
- Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium; UZ Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - M Hoogeman
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - M Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - S Molinelli
- Fondazione CNAO - Medical Physics Unit, Pavia, Italy
| | - F Fracchiolla
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
4
|
Wei W, Li Z, Xiao Q, Wang G, He H, Luo D, Chen L, Li J, Zhang X, Qin T, Song Y, Li G, Bai S. Quantifying dose uncertainties resulting from cardiorespiratory motion in intensity-modulated proton therapy for cardiac stereotactic body radiotherapy. Front Oncol 2024; 14:1399589. [PMID: 39040445 PMCID: PMC11260676 DOI: 10.3389/fonc.2024.1399589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Background Cardiac stereotactic body radiotherapy (CSBRT) with photons efficaciously and safely treats cardiovascular arrhythmias. Proton therapy, with its unique physical and radiobiological properties, can offer advantages over traditional photon-based therapies in certain clinical scenarios, particularly pediatric tumors and those in anatomically challenging areas. However, dose uncertainties induced by cardiorespiratory motion are unknown. Objective This study investigated the effect of cardiorespiratory motion on intensity-modulated proton therapy (IMPT) and the effectiveness of motion-encompassing methods. Methods We retrospectively included 12 patients with refractory arrhythmia who underwent CSBRT with four-dimensional computed tomography (4DCT) and 4D cardiac CT (4DcCT). Proton plans were simulated using an IBA accelerator based on the 4D average CT. The prescription was 25 Gy in a single fraction, with all plans normalized to ensure that 95% of the target volume received the prescribed dose. 4D dose reconstruction was performed to generate 4D accumulated and dynamic doses. Furthermore, dose uncertainties due to the interplay effect of the substrate target and organs at risk (OARs) were assessed. The differences between internal organs at risk volume (IRV) and OARreal (manually contoured on average CT) were compared. In 4D dynamic dose, meeting prescription requirements entails V25 and D95 reaching 95% and 25 Gy, respectively. Results The 4D dynamic dose significantly differed from the 3D static dose. The mean V25 and D95 were 89.23% and 24.69 Gy, respectively, in 4DCT and 94.35% and 24.99 Gy, respectively, in 4DcCT. Eleven patients in 4DCT and six in 4DcCT failed to meet the prescription requirements. Critical organs showed varying dose increases. All metrics, except for Dmean and D50, significantly changed in 4DCT; in 4DcCT, only D50 remained unchanged with regards to the target dose uncertainties induced by the interplay effect. The interplay effect was only significant for the Dmax values of several OARs. Generally, respiratory motion caused a more pronounced interplay effect than cardiac pulsation. Neither IRV nor OARreal effectively evaluated the dose discrepancies of the OARs. Conclusions Complex cardiorespiratory motion can introduce dose uncertainties during IMPT. Motion-encompassing techniques may mitigate but cannot entirely compensate for the dose discrepancies. Individualized 4D dose assessments are recommended to verify the effectiveness and safety of CSBRT.
Collapse
Affiliation(s)
- Weige Wei
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibin Li
- Department of Radiotherapy & Oncology, The First Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haiping He
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dashuang Luo
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Taolin Qin
- Department of Medical Physics, Brown University, Providence, RI, United States
| | - Ying Song
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangjun Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Tominaga Y, Suga M, Takeda M, Yamamoto Y, Akagi T, Kato T, Tokumaru S, Yamamoto M, Oita M. Dose-volume comparisons of proton therapy for pencil beam scanning with and without multi-leaf collimator and passive scattering in patients with lung cancer. Med Dosim 2023; 49:13-18. [PMID: 37940436 DOI: 10.1016/j.meddos.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
This study evaluated the dose distributions of proton pencil beam scanning (PBS) with/without a multileaf collimator (MLC) compared to passive scattering (PS) for stage I/II lung cancers. Collimated/uncollimated (PBS+/PBS-) and PS plans were created for 20 patients. Internal-clinical-target-volumes (ICTVs) and planning-target-volumes (PTVs) with a 5 mm margin were defined on the gated CTs. Organs-at-risk (OARs) are defined as the normal lungs, spinal cord, esophagus, and heart. The prescribed dose was 66 Gy relative-biological-effectiveness (RBE) in 10 fractions at the isocenter and 50% volume of the ICTVs for the PS and PBS, respectively. We compared the target and OAR dose statistics from the dose volume histograms. The PBS+ group had a significantly better mean PTV conformity index than the PBS- and PS groups. The mean dose sparing for PBS+ was better than those for PBS- and PS. Only the normal lung doses of PBS- were worse than those of PS. The overall performance of the OAR sparing was in the order of PBS+, PBS-, and PS. The PBS+ plan showed significantly better target homogeneity and OAR sparing than the PBS- and PS plans. PBS requires collimating systems to treat lung cancers with the most OAR sparing while maintaining the target coverage.
Collapse
Affiliation(s)
- Yuki Tominaga
- Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, Konohana-ku, Osaka 554-0022, Japan.
| | - Masaki Suga
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Mikuni Takeda
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Yuki Yamamoto
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Takashi Akagi
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Takahiro Kato
- Depertment of Radiological Sciences, School of Health Sciences, Fukushima, Medical University, Fukushima 960-1295, Japan; Depertment of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Koriyama, Fukushima 963-8052, Japan
| | - Sunao Tokumaru
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Michinori Yamamoto
- Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, Konohana-ku, Osaka 554-0022, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Spautz S, Haase L, Tschiche M, Makocki S, Richter C, Troost EG, Stützer K. Comparison of 3D and 4D robustly optimized proton treatment plans for non-small cell lung cancer patients with tumour motion amplitudes larger than 5 mm. Phys Imaging Radiat Oncol 2023; 27:100465. [PMID: 37449022 PMCID: PMC10338142 DOI: 10.1016/j.phro.2023.100465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Background and purpose There is no consensus about an ideal robust optimization (RO) strategy for proton therapy of targets with large intrafractional motion. We investigated the plan robustness of 3D and different 4D RO strategies. Materials and methods For eight non-small cell lung cancer patients with clinical target volume (CTV) motion >5 mm, different RO approaches were investigated: 3DRO considering the average CT (AvgCT) with a target density override, 4DRO considering three/all 4DCT phases, and 4DRO considering the AvgCT and three/all 4DCT phases. Robustness against setup/range errors, interplay effects based on breathing and machine log file data for deliveries with/without rescanning, and interfractional anatomical changes were analyzed for target coverage and OAR sparing. Results All nominal plans fulfilled the clinical requirements with individual CTV coverage differences <2pp; 4DRO without AvgCT generated the most conformal dose distributions. Robustness against setup/range errors was best for 4DRO with AvgCT (18% more passed error scenarios than 3DRO). Interplay effects caused fraction-wise median CTV coverage loss of 3pp and missed maximum dose constraints for heart and esophagus in 18% of scenarios. CTV coverage and OAR sparing fulfilled requirements in all cases when accumulating four interplay scenarios. Interfractional changes caused less target misses for RO with AvgCT compared to 4DRO without AvgCT (≤42%/33% vs. ≥56%/44% failed single/accumulated scenarios). Conclusions All RO strategies provided acceptable plans with equally low robustness against interplay effects demanding other mitigation than rescanning to ensure fraction-wise target coverage. 4DRO considering three phases and the AvgCT provided best compromise on planning effort and robustness.
Collapse
Affiliation(s)
- Saskia Spautz
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
| | - Leon Haase
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
| | - Maria Tschiche
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
| | - Sebastian Makocki
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Bautzner Landstraße 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Esther G.C. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Bautzner Landstraße 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
7
|
Steinsberger T, Donetti M, Lis M, Volz L, Wolf M, Durante M, Graeff C. Experimental Validation of a Real-Time Adaptive 4D-Optimized Particle Radiotherapy Approach to Treat Irregularly Moving Tumors. Int J Radiat Oncol Biol Phys 2023; 115:1257-1268. [PMID: 36462690 DOI: 10.1016/j.ijrobp.2022.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Treatment of locally advanced lung cancer is limited by toxicity and insufficient local control. Particle therapy could enable more conformal treatment than intensity modulated photon therapy but is challenged by irregular tumor motion, associated range changes, and tumor deformations. We propose a new strategy for robust, online adaptive particle therapy, synergizing 4-dimensional optimization with real-time adaptive beam tracking. The strategy was tested and the required motion monitoring precision was determined. METHODS AND MATERIALS In multiphase 4-dimensional dose delivery (MP4D), a dedicated quasistatic treatment plan is delivered to each motion phase of periodic 4-dimensional computed tomography (4DCT). In the new extension, "MP4D with residual tracking" (MP4DRT), lateral beam tracking compensates for the displacement of the tumor center-of-mass relative to the current phase in the planning 4DCT. We implemented this method in the dose delivery system of a clinical carbon facility and tested it experimentally for a lung cancer plan based on a periodic subset of a virtual lung 4DCT (planned motion amplitude 20 mm). Treatments were delivered in a quality assurance-like setting to a moving ionization chamber array. We considered variable motion amplitudes and baseline drifts. The required motion monitoring precision was evaluated by adding noise to the motion signal. Log-file-based dose reconstructions were performed in silico on the entire 4DCT phantom data set capable of simulating nonperiodic motion. MP4DRT was compared with MP4D, rescanned beam tracking, and internal target volume plans. Treatment quality was assessed in terms of target coverage (D95), dose homogeneity (D5-D95), conformity number, and dose to heart and lung. RESULTS For all considered motion scenarios and metrics, MP4DRT produced the most favorable metrics among the tested motion mitigation strategies and delivered high-quality treatments. The conformity was similar to static treatments. The motion monitoring precision required for D95 >95% was 1.9 mm. CONCLUSIONS With clinically feasible motion monitoring, MP4DRT can deliver highly conformal dose distributions to irregularly moving targets.
Collapse
Affiliation(s)
- Timo Steinsberger
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Institute for Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Marco Donetti
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Michelle Lis
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Physics Research, Leo Cancer Care, Middleton, Wisconsin; Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana
| | - Lennart Volz
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Moritz Wolf
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Institute for Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Graeff
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Department of Electrical Engineering and Information Technology, Technical University, Darmstadt, Germany.
| |
Collapse
|
8
|
Molinelli S, Vai A, Russo S, Loap P, Meschini G, Paganelli C, Barcellini A, Vitolo V, Orlandi E, Ciocca M. The role of multiple anatomical scenarios in plan optimization for carbon ion radiotherapy of pancreatic cancer. Radiother Oncol 2022; 176:1-8. [PMID: 36113776 DOI: 10.1016/j.radonc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE /OBJECTIVE To quantify benefits of robust optimization on multiple 4DCT acquisitions combined with off-line treatment adaptation for neoadjuvant carbon ion therapy (CIRT) of pancreatic cancer. MATERIAL/METHODS For 10 previously treated patients, 4DCTs were acquired around -15 (CTPlan), -5 (RE1), -1 (RE2) and +6 (RE3) days from RT start. Treatment plans were newly optimized to a dose prescription of 38.4 Gy(RBE) (8 fractions) with a constraint of 38 Gy(RBE) to 1% of the gastrointestinal organs at risk volume (D1%). Three strategies were tested: (A) robust optimization on CTPlan maximum exhale (0Ex) with 3 mm set-up, 3% range uncertainty, including 30%-inhale; (B) addition of the RE1-0Ex scenario; (C) plan recalculation at each REi and adaptation (RPi) according to deviation thresholds from clinical goals. The cumulative variation of target coverage and GI-OARs doses was evaluated. Duodenum contours of all 4DCTs of each patient were registered on CTPlan-0Ex. The capacity of pre-RT acquisitions to predict duodenum position was investigated by computing the intersection of contours at CTplan, RE1, or their union, with respect to subsequent 4DCTs and the CTV, coupled with increasing margin. RESULTS (A) No recalculation exceeded the D1% constraint. (B) The inclusion of RE1-0Ex in the optimization problem improved inter-fraction robustness on a patient-specific basis, but was non-significant on average. (C) Half of the plans would be re-optimized to recover target coverage and/or minimize duodenum dose, at least once. A significant difference was observed between pre-RT duodenum contours when intersecting subsequent contours, either with a margin expansion. CONCLUSION Anatomical variations highlighted at multiple REi proved that a fast and efficient online adaptation is essential to optimize treatment quality of CIRT for pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Pierre Loap
- Institut Curie, Department of Radiation Oncology, Paris, France
| | - Giorgia Meschini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | | | | | | | - Mario Ciocca
- Dipartimento Clinico, Fondazione CNAO, Pavia, Italy
| |
Collapse
|
9
|
Meschini G, Vai A, Barcellini A, Fontana G, Molinelli S, Mastella E, Pella A, Vitolo V, Imparato S, Orlandi E, Ciocca M, Baroni G, Paganelli C. Time-resolved MRI for off-line treatment robustness evaluation in carbon-ion radiotherapy of pancreatic cancer. Med Phys 2022; 49:2386-2395. [PMID: 35124811 PMCID: PMC9306947 DOI: 10.1002/mp.15510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/28/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In this study, we investigate the use of magnetic resonance imaging (MRI) for the clinical evaluation of gating treatment robustness in carbon-ion radiotherapy (CIRT) of pancreatic cancer. Indeed, MRI allows radiation-free repeated scans and fast dynamic sequences for time-resolved (TR) imaging (cine-MRI), providing information on inter- and intra-fraction cycle-to-cycle variations of respiratory motion. MRI can therefore support treatment planning and verification, overcoming the limitations of the current clinical standard, that is, four-dimensional computed tomography (4DCT), which describes an "average" breathing cycle neglecting breathing motion variability. METHODS We integrated a technique to generate a virtual CT (vCT) from 3D MRI with a method for 3D reconstruction from 2D cine-MRI, to produce TR vCTs for dose recalculations. For eight patients, the method allowed evaluating inter-fraction variations at end-exhale and intra-fraction cycle-to-cycle variability within the gating window in terms of tumor displacement and dose to the target and organs at risk. RESULTS The median inter-fraction tumor motion was in the range 3.33-12.16 mm, but the target coverage was robust (-0.4% median D95% variation). Concerning cycle-to-cycle variations, the gating technique was effective in limiting tumor displacement (1.35 mm median gating motion) and corresponding dose variations (-3.9% median D95% variation). The larger exposure of organs at risk (duodenum and stomach) was caused by inter-fraction motion, whereas intra-fraction cycle-to-cycle dose variations were limited. CONCLUSIONS This study proposed a method for the generation of TR vCTs from MRI, which enabled an off-line evaluation of gating treatment robustness and suggested its feasibility to support treatment planning of pancreatic tumors in CIRT.
Collapse
Affiliation(s)
- Giorgia Meschini
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
| | - Alessandro Vai
- Medical Physics UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Amelia Barcellini
- Clinical DepartmentNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Giulia Fontana
- Clinical Bioengineering UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Silvia Molinelli
- Medical Physics UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Edoardo Mastella
- Medical Physics UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Andrea Pella
- Clinical Bioengineering UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Viviana Vitolo
- Clinical DepartmentNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Sara Imparato
- Radiology UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Ester Orlandi
- Clinical DepartmentNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Mario Ciocca
- Medical Physics UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Guido Baroni
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
- Clinical Bioengineering UnitNational Center for Oncological Hadrontherapy (Fondazione CNAO)PaviaItaly
| | - Chiara Paganelli
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
| |
Collapse
|
10
|
Pakela JM, Knopf A, Dong L, Rucinski A, Zou W. Management of Motion and Anatomical Variations in Charged Particle Therapy: Past, Present, and Into the Future. Front Oncol 2022; 12:806153. [PMID: 35356213 PMCID: PMC8959592 DOI: 10.3389/fonc.2022.806153] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.
Collapse
Affiliation(s)
- Julia M. Pakela
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department I of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antoni Rucinski
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Knopf AC, Czerska K, Fracchiolla F, Graeff C, Molinelli S, Rinaldi I, Rucincki A, Sterpin E, Stützer K, Trnkova P, Zhang Y, Chang JY, Giap H, Liu W, Schild SE, Simone CB, Lomax AJ, Meijers A. Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – a comprehensive review. Radiother Oncol 2022; 169:77-85. [DOI: 10.1016/j.radonc.2022.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
|
12
|
Loap P, Vitolo V, Barcellini A, De Marzi L, Mirandola A, Fiore MR, Vischioni B, Jereczek-Fossa BA, Girard N, Kirova Y, Orlandi E. Hadrontherapy for Thymic Epithelial Tumors: Implementation in Clinical Practice. Front Oncol 2021; 11:738320. [PMID: 34707989 PMCID: PMC8543015 DOI: 10.3389/fonc.2021.738320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Radiation therapy is part of recommendations in the adjuvant settings for advanced stage or as exclusive treatment in unresectable thymic epithelial tumors (TETs). However, first-generation techniques delivered substantial radiation doses to critical organs at risk (OARs), such as the heart or the lungs, resulting in noticeable radiation-induced toxicity. Treatment techniques have significantly evolved for TET irradiation, and modern techniques efficiently spare normal surrounding tissues without negative impact on tumor coverage and consequently local control or patient survival. Considering its dosimetric advantages, hadrontherapy (which includes proton therapy and carbon ion therapy) has proved to be worthwhile for TET irradiation in particular for challenging clinical situations such as cardiac tumoral involvement. However, clinical experience for hadrontherapy is still limited and mainly relies on small-size proton therapy studies. This critical review aims to analyze the current status of hadrontherapy for TET irradiation to implement it at a larger scale.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France.,Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Institut Curie, Paris Sciences & Lettres (PSL) Research University, University Paris Saclay, laboratoire d'Imagerie Translationnelle en Oncologie, Institut National de la Santé et de la Recherche Médicale (INSERM LITO), Orsay, France
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Division of Radiotherapy, Istituto Europeo di Oncologia (IEO) European Institute of Oncology Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,University Paris Saint-Quentin, Versailles, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
13
|
Development and Implementation of Proton Therapy for Hodgkin Lymphoma: Challenges and Perspectives. Cancers (Basel) 2021; 13:cancers13153744. [PMID: 34359644 PMCID: PMC8345082 DOI: 10.3390/cancers13153744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a highly curable disease; proton therapy for mediastinal HL irradiation might theoretically reduce late toxicities compared with classical radiotherapy techniques. However, optimal patient selection for this technique is subject to debate. While implementation at a larger scale of proton therapy for HL may face organizational, political, and societal challenges, new highly effective systematic drugs are being widely evaluated for this disease. Abstract Consolidative radiation therapy for early-stage Hodgkin lymphoma (HL) improves progression-free survival. Unfortunately, first-generation techniques, relying on large irradiation fields, were associated with an increased risk of secondary cancers, and of cardiac and lung toxicity. Fortunately, the use of smaller target volumes combined with technological advances in treatment techniques currently allows efficient organs-at-risk sparing without altering tumoral control. Recently, proton therapy has been evaluated for mediastinal HL treatment due to its potential to significantly reduce the dose to organs-at-risk, such as cardiac substructures. This is expected to limit late radiation-induced toxicity and possibly, second-neoplasm risk, compared with last-generation intensity-modulated radiation therapy. However, the democratization of this new technique faces multiple issues. Determination of which patient may benefit the most from proton therapy is subject to intense debate. The development of new effective systemic chemotherapy and organizational, societal, and political considerations might represent impediments to the larger-scale implementation of HL proton therapy. Based on the current literature, this critical review aims to discuss current challenges and controversies that may impede the larger-scale implementation of mediastinal HL proton therapy.
Collapse
|
14
|
Loap P, Goudjil F, Dendale R, Kirova Y. Clinical and technical considerations for mediastinal Hodgkin lymphoma protontherapy based on a single-center early experience. Cancer Radiother 2021; 25:779-785. [PMID: 34275748 DOI: 10.1016/j.canrad.2021.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Protontherapy for mediastinal Hodgkin lymphoma reduces cardiac, lung and breast exposure, which may limit radiation-induced adverse events. While this technique is already widely implemented in the United-States, clinical experience is still limited in France. This study analyses the practice of mediastinal Hodgkin lymphoma protontherapy at the Institut Curie to implement this technique at a larger scale. MATERIALS AND METHODS Data from all mediastinal Hodgkin lymphoma patients from the hematology department of the Institut Curie who were subsequently evaluated at the Protontherapy Center of Orsay (CPO) of Institut Curie for adjuvant protontherapy were retrieved. We analyzed why these patients were ultimately treated with protontherapy or not. RESULTS Between January 2018 and January 2021, twenty mediastinal Hodgkin lymphoma patients from the hematology department of the Institut Curie have been screened for protontherapy at the CPO. Four of them (20%) were ultimately treated with proton beams. Treatment was well tolerated without grade 3-4 adverse events. With a median follow-up of two years, none of these patients relapsed. The others sixteen patients were not treated with protontherapy due to multiple reasons including: lack of treatment room disponibility, accessibility difficulties, psychiatric disorder, and anatomic or dosimetric considerations. CONCLUSION Despite notable dosimetric superiority over photon radiotherapy and excellent clinical tolerance, lack of availability of protontherapy facilities limit implementation of mediastinal Hodgkin lymphoma protontherapy. Additionally, strict selection criteria must be defined.
Collapse
Affiliation(s)
- P Loap
- Institut Curie, Department of Radiation Oncology, 75005 Paris, France
| | - F Goudjil
- Institut Curie, Department of Radiation Oncology, 75005 Paris, France
| | - R Dendale
- Institut Curie, Department of Radiation Oncology, 75005 Paris, France
| | - Y Kirova
- Institut Curie, Department of Radiation Oncology, 75005 Paris, France.
| |
Collapse
|
15
|
Magro G, Mein S, Kopp B, Mastella E, Pella A, Ciocca M, Mairani A. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung. Phys Med 2021; 86:66-74. [PMID: 34058719 DOI: 10.1016/j.ejmp.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To benchmark and evaluate the clinical viability of novel analytical GPU-accelerated and CPU-based Monte Carlo (MC) dose-engines for spot-scanning intensity-modulated-proton-therapy (IMPT) towards the improvement of lung cancer treatment. METHODS Nine patient cases were collected from the CNAO clinical experience and The Cancer Imaging Archive-4D-Lung-Database for in-silico study. All plans were optimized with 2 orthogonal beams in RayStation (RS) v.8. Forward calculations were performed with FRoG, an independent dose calculation system using a fast robust approach to the pencil beam algorithm (PBA), RS-MC (CPU for v.8) and general-purpose MC (gp-MC). Dosimetric benchmarks were acquired via irradiation of a lung-like phantom and ionization chambers for both a single-field-uniform-dose (SFUD) and IMPT plans. Dose-volume-histograms, dose-difference and γ-analyses were conducted. RESULTS With respect to reference gp-MC, the average dose to the GTV was 1.8% and 2.3% larger for FRoG and the RS-MC treatment planning system (TPS). FRoG and RS-MC showed a local γ-passing rate of ~96% and ~93%. Phantom measurements confirmed FRoG's high accuracywith a deviation < 0.1%. CONCLUSIONS Dose calculation performance using the GPU-accelerated analytical PBA, MC-TPS and gp-MC code were well within clinical tolerances. FRoG predictions were in good agreement with both the full gp-MC and experimental data for proton beams optimized for thoracic dose calculations. GPU-accelerated dose-engines like FRoG may alleviate current issues related to deficiencies in current commercial analytical proton beam models. The novel approach to the PBA implemented in FRoG is suitable for either clinical TPS or as an auxiliary dose-engine to support clinical activity for lung patients.
Collapse
Affiliation(s)
- Giuseppe Magro
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Edoardo Mastella
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Andrea Pella
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Mario Ciocca
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Andrea Mairani
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy; Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
16
|
Mastella E, Mirandola A, Russo S, Vai A, Magro G, Molinelli S, Barcellini A, Vitolo V, Orlandi E, Ciocca M. High-dose hypofractionated pencil beam scanning carbon ion radiotherapy for lung tumors: Dosimetric impact of different spot sizes and robustness to interfractional uncertainties. Phys Med 2021; 85:79-86. [PMID: 33984821 DOI: 10.1016/j.ejmp.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The robustness against setup and motion uncertainties of gated four-dimensional restricted robust optimization (4DRRO) was investigated for hypofractionated carbon ion radiotherapy (CIRT) of lung tumors. METHODS CIRT plans of 9 patients were optimized using 4DRRO strategy with 3 mm setup errors, 3% density errors and 3 breathing phases related to the gate window. The prescription was 60 Gy(RBE) in 4 fractions. Standard spots (SS) were compared to big spots (BS). Plans were recalculated on multiple 4DCTs acquired within 3 weeks from treatment simulation and rigidly registered with planning images using bone matching. Warped dose distributions were generated using deformable image registration and accumulated on the planning 4DCTs. Target coverage (D98%, D95% and V95%) and dose to lung were evaluated in the recalculated and accumulated dose distributions. RESULTS Comparable target coverage was obtained with both spot sizes (p = 0.53 for D95%). The mean lung dose increased of 0.6 Gy(RBE) with BS (p = 0.0078), still respecting the dose constraint of a 4-fraction stereotactic treatment for the risk of radiation pneumonitis. Statistically significant differences were found in the recalculated and accumulated D95% (p = 0.048 and p = 0.024), with BS showing to be more robust. Using BS, the average degradations of the D98%, D95% and V95% in the accumulated doses were -2.7%, -1.6% and -1.5%. CONCLUSIONS Gated 4DRRO was highly robust against setup and motion uncertainties. BS increased the dose to healthy tissues but were more robust than SS. The selected optimization settings guaranteed adequate target coverage during the simulated treatment course with acceptable risk of toxicity.
Collapse
Affiliation(s)
- Edoardo Mastella
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy.
| | - Alfredo Mirandola
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Stefania Russo
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Alessandro Vai
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Giuseppe Magro
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Silvia Molinelli
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Amelia Barcellini
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Viviana Vitolo
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Ester Orlandi
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Mario Ciocca
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| |
Collapse
|
17
|
Rana S, Rosenfeld AB. Investigating volumetric repainting to mitigate interplay effect on 4D robustly optimized lung cancer plans in pencil beam scanning proton therapy. J Appl Clin Med Phys 2021; 22:107-118. [PMID: 33599391 PMCID: PMC7984493 DOI: 10.1002/acm2.13183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The interplay effect between dynamic pencil proton beams and motion of the lung tumor presents a challenge in treating lung cancer patients in pencil beam scanning (PBS) proton therapy. The main purpose of the current study was to investigate the interplay effect on the volumetric repainting lung plans with beam delivery in alternating order (“down” and “up” directions), and explore the number of volumetric repaintings needed to achieve acceptable lung cancer PBS proton plan. Method The current retrospective study included ten lung cancer patients. The total dose prescription to the clinical target volume (CTV) was 70 Gy(RBE) with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized on all ten phases in the 4DCT data set. The Monte Carlo algorithm was used for the 4D robust optimization, as well as for the final dose calculation. The interplay effect was evaluated for both the nominal (i.e., without repainting) as well as volumetric repainting plans. The interplay evaluation was carried out for each of the ten different phases as the starting phases. Several dosimetric metrics were included to evaluate the worst‐case scenario (WCS) and bandwidth based on the results obtained from treatment delivery starting in ten different breathing phases. Results The number of repaintings needed to meet the criteria 1 (CR1) of target coverage (D95% ≥ 98% and D99% ≥ 97%) ranged from 2 to 10. The number of repaintings needed to meet the CR1 of maximum dose (ΔD1% < 1.5%) ranged from 2 to 7. Similarly, the number of repaintings needed to meet CR1 of homogeneity index (ΔHI < 0.03) ranged from 3 to 10. For the target coverage region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 3 to 10, whereas for the high‐dose region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 1 to 7. Based on the overall plan evaluation criteria proposed in the current study, acceptable plans were achieved for nine patients, whereas one patient had acceptable plan with a minor deviation. Conclusion The number of repaintings required to mitigate the interplay effect in PBS lung cancer (tumor motion < 15 mm) was found to be highly patient dependent. For the volumetric repainting with an alternating order, a patient‐specific interplay evaluation strategy must be adopted. Determining the optimal number of repaintings based on the bandwidth and WCS approach could mitigate the interplay effect in PBS lung cancer treatment.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical PhysicsThe Oklahoma Proton CenterOklahoma CityOklahomaUSA
- Department of Radiation OncologyMiami Cancer InstituteBaptist Health South FloridaMiamiFLUSA
- Department of Radiation OncologyHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| |
Collapse
|
18
|
Czerska K, Emert F, Kopec R, Langen K, McClelland JR, Meijers A, Miyamoto N, Riboldi M, Shimizu S, Terunuma T, Zou W, Knopf A, Rucinski A. Clinical practice vs. state-of-the-art research and future visions: Report on the 4D treatment planning workshop for particle therapy - Edition 2018 and 2019. Phys Med 2021; 82:54-63. [PMID: 33588228 DOI: 10.1016/j.ejmp.2020.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.
Collapse
Affiliation(s)
- Katarzyna Czerska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Frank Emert
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Katja Langen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Germany
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, Japan; Proton Medical Research Center, University of Tsukuba Hospital, Japan
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|