1
|
Murr M, Wegener D, Böke S, Gani C, Mönnich D, Niyazi M, Schneider M, Zips D, Müller AC, Thorwarth D. Comparison of online adaptive and non-adaptive magnetic resonance image-guided radiation therapy in prostate cancer using dose accumulation. Phys Imaging Radiat Oncol 2024; 32:100662. [PMID: 39554802 PMCID: PMC11564916 DOI: 10.1016/j.phro.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Background and purpose Conventional image-guided radiotherapy (conv-IGRT) is standard in prostate cancer (PC) but does not account for inter-fraction anatomical changes. Online-adaptive magnetic resonance-guided RT (OA-MRgRT) may improve organ-at-risk (OARs) sparing and clinical target volume (CTV) coverage. The aim of this study was to analyze accumulated OAR and target doses in PC after OA-MRgRT and conv-IGRT in comparison to pre-treatment reference planning (refPlan). Material and methods Ten patients with PC, previously treated with OA-MRgRT at the 1.5 T MR-Linac (20x3Gy), were included. Accumulated OA-MRgRT doses were determined by deformably registering all fraction's MR-images. Conv-IGRT was simulated through rigid registration of the planning computed tomography with each fraction's MR-image for dose mapping/accumulation. Dose-volume parameters (DVPs), including CTV D50% and D98%, rectum, bladder, urethra, Dmax and V56Gy for OA-MRgRT, conv-IGRT and refPlan were compared using the Wilcoxon signed-rank test. Clinical relevance of accumulated dose differences was analyzed using a normal-tissue complication-probability model. Results CTV-DVPs were comparable, whereas OA-MRgRT yielded decreased median OAR-DVPs compared to conv-IGRT, except for bladder V56Gy. OA-MRgRT demonstrated significantly lower median rectum Dmax over conv-IGRT (59.1/59.9 Gy, p = 0.006) and refPlan (60.1 Gy, p = 0.012). Similarly, OA-MRgRT yielded reduced median bladder Dmax compared to conv-IGRT (60.0/60.4 Gy, p = 0.006), and refPlan (61.2 Gy, p = 0.002). Overall, accumulated dose differences were small and did not translate into clinically relevant effects. Conclusion Deformably accumulated OA-MRgRT using 20x3Gy in PC showed significant but small dosimetric differences comparted to conv-IGRT. Feasibility of a dose accumulation methodology was demonstrated, which may be relevant for evaluating future hypo-fractionated OA-MRgRT approaches.
Collapse
Affiliation(s)
- Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Alb-Fils Kliniken GmbH, Goeppingen, Germany
| | - Simon Böke
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Moritz Schneider
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology and Radiotherapy, RKH-Kliniken Ludwigsburg, Ludwigsburg, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|
2
|
Yoganathan SA, Riyas M, Sukumaran R, Hammoud R, Al-Hammadi N. Ultra-Hypofractionated Prostate Radiotherapy With Online Adaptive Technique: A Case Report. Cureus 2024; 16:e64101. [PMID: 39114185 PMCID: PMC11305654 DOI: 10.7759/cureus.64101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Ultra-hypofractionated radiotherapy (UHF RT) is revolutionizing the treatment approach for low- and intermediate-risk prostate cancer patients. This study reports the planning process of UHF RT utilizing the cone beam computed tomography (CBCT)-based online adaptive radiotherapy (OART) treatment with the Ethos system, focusing on a comparative analysis between OART and image-guided radiotherapy (IGRT) plans. We also assessed the pre-planning capabilities of the Ethos system against the CyberKnife (CK) (Accuray, Sunnyvale, CA) system. A 66-year-old patient, diagnosed with prostatic acinar adenocarcinoma confirmed via biopsy and presenting with elevated prostate-specific antigen (PSA) levels, underwent UHF OART treatment using the Ethos system. The planning encompassed delineating the gross target volume (GTV) as the prostate, while the clinical target volume (CTV) comprised the prostate and proximal seminal vesicle. The planning target volume (PTV) was derived from the CTV with a 5 mm external margin except for a 3 mm posterior margin. A simultaneous integrated boost (SIB) technique was employed, delivering 40 Gy in five fractions (8 Gy per fraction) to the gross tumor volume (GTV) and 36.25 Gy in five fractions (7.25 Gy per fraction) to the remaining part of the planning target volume (PTV), with treatments scheduled biweekly. We compared OART and IGRT plans and conducted a comparative analysis between Ethos planning and the CK system for pre-planning assessment. When comparing Ethos planning and CK plans, Ethos demonstrated slightly better target coverage and organ-at-risk (OAR) sparing. However, CK plans showed superior containment of low-dose spillage, particularly at 50% and 25% iso-doses, due to non-coplanar beam arrangements. Our results demonstrated that OART plans yielded superior target coverage and improved OAR sparing compared to IGRT plans. Notably, the entire OART process, from planning to delivery, was accomplished within 27 minutes. The Ethos OART system's ability to adapt to daily anatomical changes, efficient workflow, and superior OAR-sparing capabilities make it a promising option for prostate cancer treatment using UHF RT.
Collapse
Affiliation(s)
- S A Yoganathan
- Radiation Oncology, Hamad Medical Corporation, Doha, QAT
| | - Mohamed Riyas
- Radiation Oncology, Hamad Medical Corporation, Doha, QAT
| | | | - Rabih Hammoud
- Radiation Oncology, Hamad Medical Corporation, Doha, QAT
| | | |
Collapse
|
3
|
Murr M, Bernchou U, Bubula-Rehm E, Ruschin M, Sadeghi P, Voet P, Winter JD, Yang J, Younus E, Zachiu C, Zhao Y, Zhong H, Thorwarth D. A multi-institutional comparison of retrospective deformable dose accumulation for online adaptive magnetic resonance-guided radiotherapy. Phys Imaging Radiat Oncol 2024; 30:100588. [PMID: 38883145 PMCID: PMC11176923 DOI: 10.1016/j.phro.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background and Purpose Application of different deformable dose accumulation (DDA) solutions makes institutional comparisons after online-adaptive magnetic resonance-guided radiotherapy (OA-MRgRT) challenging. The aim of this multi-institutional study was to analyze accuracy and agreement of DDA-implementations in OA-MRgRT. Material and Methods One gold standard (GS) case deformed with a biomechanical-model and five clinical cases consisting of prostate (2x), cervix, liver, and lymph node cancer, treated with OA-MRgRT, were analyzed. Six centers conducted DDA using institutional implementations. Deformable image registration (DIR) and DDA results were compared using the contour metrics Dice Similarity Coefficient (DSC), surface-DSC, Hausdorff-distance (HD95%), and accumulated dose-volume histograms (DVHs) analyzed via intraclass correlation coefficient (ICC) and clinical dosimetric criteria (CDC). Results For the GS, median DDA errors ranged from 0.0 to 2.8 Gy across contours and implementations. DIR of clinical cases resulted in DSC > 0.8 for up to 81.3% of contours and a variability of surface-DSC values depending on the implementation. Maximum HD95%=73.3 mm was found for duodenum in the liver case. Although DVH ICC > 0.90 was found after DDA for all but two contours, relevant absolute CDC differences were observed in clinical cases: Prostate I/II showed maximum differences in bladder V28Gy (10.2/7.6%), while for cervix, liver, and lymph node the highest differences were found for rectum D2cm3 (2.8 Gy), duodenum Dmax (7.1 Gy), and rectum D0.5cm3 (4.6 Gy). Conclusion Overall, high agreement was found between the different DIR and DDA implementations. Case- and algorithm-dependent differences were observed, leading to potentially clinically relevant results. Larger studies are needed to define future DDA-guidelines.
Collapse
Affiliation(s)
- Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | - Uffe Bernchou
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Laboratory of Radiation Physics, Odense University Hospital, Denmark
| | | | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Parisa Sadeghi
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Jeff D Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jinzhong Yang
- Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eyesha Younus
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Cornel Zachiu
- University Medical Centre Utrecht, Department of Radiotherapy, 3584 CX Utrecht, the Netherlands
| | - Yao Zhao
- Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hualiang Zhong
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|
4
|
Xiong Y, Rabe M, Rippke C, Kawula M, Nierer L, Klüter S, Belka C, Niyazi M, Hörner-Rieber J, Corradini S, Landry G, Kurz C. Impact of daily plan adaptation on accumulated doses in ultra-hypofractionated magnetic resonance-guided radiation therapy of prostate cancer. Phys Imaging Radiat Oncol 2024; 29:100562. [PMID: 38463219 PMCID: PMC10924058 DOI: 10.1016/j.phro.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Background and purpose Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy (MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted dose. Materials and methods Twenty-three prostate cancer patients treated at two clinics with 0.35 T magnetic resonance-guided linear accelerator (MR-linac) following the same treatment protocol (5 × 7.5 Gy with urethral sparing and daily adaptation) were included. The fraction MR images were deformably registered to the planning MR image. Both non-adapted and adapted fraction doses were accumulated with the corresponding vector fields. Two DIR approaches were implemented. PTV* (planning target volume minus urethra+2mm) D95%, CTV* (clinical target volume minus urethra) D98%, and OARs (urethra+2mm, bladder, and rectum) D0.2cc, were evaluated. Statistical significance was inferred from a two-tailed Wilcoxon signed-rank test (p < 0.05). Results Normalized to the baseline, the accumulated PTV* D95% increased significantly by 2.7 % ([1.5, 4.3]%) through adaptation, and the CTV* D98% by 1.2 % ([0.1, 1.7]%). For the OARs after adaptation, accumulated bladder D0.2cc decreased by 0.4 % ([-1.2, 0.4]%), urethra+2mmD0.2cc by 0.8 % ([-1.6, -0.1]%), while rectum D0.2cc increased by 2.6 % ([1.2, 4.9]%). For all patients, rectum D0.2cc was still below the clinical constraint. Results of both DIR approaches differed on average by less than 0.2 %. Conclusions Online adaptation in MRgRT improved target coverage and OARs sparing at the level of accumulated dose.
Collapse
Affiliation(s)
- Yuqing Xiong
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Kawula
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lukas Nierer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, a Partnership between DKFZ and LMU University Hospital Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Pham J, Neilsen BK, Liu H, Cao M, Yang Y, Sheng K, Ma TM, Kishan AU, Ruan D. Dosimetric predictors for genitourinary toxicity in MR-guided stereotactic body radiation therapy (SBRT): Substructure with fraction-wise analysis. Med Phys 2024; 51:612-621. [PMID: 38055353 DOI: 10.1002/mp.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND MR-guided radiation therapy (MRgRT) systems provide superior soft tissue contrast than x-ray based systems and can acquire real-time cine for treatment gating. These features allow treatment planning margins to be reduced, allowing for improved critical structure sparing and reduced treatment toxicity. Despite this improvement, genitourinary (GU) toxicity continues to affect many patients. PURPOSE (1) To identify dosimetric predictors, potentially in combination with clinical parameters, of GU toxicity following SBRT by leveraging MRgRT to accurately monitor daily dose, beyond predicted dose calculated during planning. (2) Improve awareness of toxicity-sensitive bladder substructures, specifically the trigone and urethra. METHODS Sixty-nine prostate cancer patients (NCT04384770 clinical trial) were treated on a ViewRay MRIdian MRgRT system, with 40 Gy prescribed to 95% of the PTV in over five fractions. Overall, 17 (24.6%) prostate patients reported acute grade 2 GU toxicity. The CTV, PTV, bladder, bladder wall, trigone, urethra, rectum, and rectal wall were contoured on the planning and daily treatment MRIs. Planning and daily treatment DVHs (0.1 Gy increments), organ doses (min, max, mean), and organ volumes were recorded. Daily dose was estimated by transferring the planning dose distributions to the daily MRI based on the daily setup alignment. Patients were partitioned into a training (55) and testing set (14). Dose features were pre-filtered using a t-test followed by maximum relevance minimum redundancy (MRMR) algorithm. Logistic regression was investigated with regularization to select dosimetric predictors. Specifically, two approaches: time-group least absolute shrinkage and selection (LASSO), and interactive grouped greedy algorithm (IGA) were investigated. Shared features across the planning and five treatment fractions were grouped to encourage consistency and stability. The conventional flat non-temporally grouped LASSO was also evaluated to provide a solid benchmark. After feature selection, a final logistic regression model was trained. Dosimetric regression models were compared to a clinical regression model with only clinical parameters (age, baseline IPSS, prostate gland size, ADT usage, etc.) and a hybrid model, combining the best performing dosimetric features with the clinical parameters, was evaluated. Final model performance was evaluated on the testing set using accuracy, sensitivity, and specificity determined by the optimal threshold of the training set. RESULTS IGA had the best testing performance with an accuracy/sensitivity/specificity of 0.79/0.67/0.82, selecting 12 groups covering the bladder (V19.8 Gy, V20.5 Gy), bladder wall (19.7 Gy), trigone (15.9, 18.2, 43.3 Gy), urethra (V41.4 Gy, V41.7 Gy), CTV (V41.9 Gy), rectum (V8.5 Gy), and rectal wall (1.2, 44.1 Gy) dose features. Absolute bladder V19.8 Gy and V20.5 Gy were the most important features, followed by relative trigone 15.9 and 18.2 Gy. Inclusion of clinical parameters in the hybrid model with IGA did not significantly change regression performance. CONCLUSION Overall, IGA feature selection resulted in the best GU toxicity prediction performance. This exploratory study demonstrated the feasibility of identification and analysis of dosimetric toxicity predictors with awareness to sensitive substructures and daily dose to potentially provide consistent and stable dosimetric metrics to guide treatment planning. Further patient accruement is warranted to further assess dosimetric predictor and perform validation.
Collapse
Affiliation(s)
- Jonathan Pham
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, USA
- Department of Radiation Oncology, University of California, Los Angeles, USA
| | - Beth K Neilsen
- Department of Radiation Oncology, University of California, Los Angeles, USA
| | - Hengjie Liu
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, USA
- Department of Radiation Oncology, University of California, Los Angeles, USA
| | - Minsong Cao
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, USA
- Department of Radiation Oncology, University of California, Los Angeles, USA
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, USA
| | - Dan Ruan
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, USA
- Department of Radiation Oncology, University of California, Los Angeles, USA
| |
Collapse
|
6
|
de Leon J, Twentyman T, Carr M, Jameson M, Batumalai V. Optimising the MR-Linac as a standard treatment modality. J Med Radiat Sci 2023; 70:491-497. [PMID: 37540059 PMCID: PMC10715353 DOI: 10.1002/jmrs.712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
The magnetic resonance linear accelerator (MR-Linac) offers a new treatment paradigm, providing improved visualisation of targets and organs at risk while allowing for daily adaptation of treatment plans in real time. Online MR-guided adaptive treatment has reduced treatment uncertainties; however, the additional treatment time and resource requirements may be a concern. We present our experience of integrating an MR-Linac into a busy department and provide recommendations for improved clinical and resource efficiency. Furthermore, we discuss potential future technological innovations that can further optimise clinical productivity in a busy department.
Collapse
Affiliation(s)
| | | | - Madeline Carr
- GenesisCareAlexandriaNew South WalesAustralia
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | - Michael Jameson
- GenesisCareAlexandriaNew South WalesAustralia
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneySydneyNew South WalesAustralia
| | - Vikneswary Batumalai
- GenesisCareAlexandriaNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
7
|
Leeman JE, Shin KY, Chen YH, Mak RH, Nguyen PL, D'Amico AV, Martin NE. Acute toxicity comparison of magnetic resonance-guided adaptive versus fiducial or computed tomography-guided non-adaptive prostate stereotactic body radiotherapy: A systematic review and meta-analysis. Cancer 2023; 129:3044-3052. [PMID: 37485697 DOI: 10.1002/cncr.34836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) is gaining wider adoption for prostate cancer management but there remain significant toxicity risks when delivering prostate SBRT with standard techniques. Magnetic resonance-guided daily adaptive SBRT (MRg-A-SBRT) offers technological advantages in precision of radiation dose delivery, but the toxicity profile associated with MRg-A-SBRT compared to more standardly used fiducial or computed tomography-guided non-adaptive prostate SBRT (CT-SBRT) remains unknown. METHODS A meta-analysis to compare acute toxicity rates associated with MRg-A-SBRT and CT-SBRT for prostate cancer was performed in compliance with PRISMA guidelines. MEDLINE (PubMed) and Google Scholar were searched for prospective studies of prostate SBRT that were published between January 1, 2018 and August 31, 2022. Random effects and fixed effects models were used to estimate pooled toxicity rates, and meta-regression was performed to compare toxicity between MRg-A-SBRT and CT-SBRT study groups. RESULTS Twenty-nine prospective studies were identified that met the inclusion criteria and included a total of 2547 patients. The pooled estimates for acute grade 2 or higher (G2+) genitourinary (GU) and gastrointestinal (GI) toxicity for MRg-A-SBRT were 16% (95% confidence interval [CI], 10%-24%) and 4% (95% CI, 2%-7%) and for CT-SBRT they were 28% (95% CI, 23%-33%) and 9% (95% CI, 6%-12%), respectively. On meta-regression, the odds ratios for acute G2+ GU and GI toxicities comparing MRg-A-SBRT and CT-SBRT were 0.56 (95% CI, 0.33-0.97, p = .04) and 0.40 (95% CI, 0.17-0.96, p = .04), respectively. CONCLUSION MRg-A-SBRT is associated with a significantly reduced risk of acute G2+ GU or GI toxicity compared to CT-SBRT. Longer follow-up will be needed to evaluate late toxicity and disease control outcomes. PLAIN LANGUAGE SUMMARY Magnetic resonance imaging-guided daily adaptive prostate stereotactic radiation (MRg-A-SBRT) is a treatment that may allow for delivery of prostate radiation more precisely than other radiotherapy techniques, but it is unknown whether this reduces side effects compared to standardly used computed tomography-guided SBRT (CT-SBRT). In this systematic review and meta-analysis combining data from 29 clinical trials including 2547 patients, it was found that the risk of short-term urinary side effects was reduced by 44% and the risk of short-term bowel side effects was reduced by 60% with MRg-A-SBRT compared to CT-SBRT.
Collapse
Affiliation(s)
- Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kee-Young Shin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yu-Hui Chen
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Raymond H Mak
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony V D'Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil E Martin
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
van den Dobbelsteen M, Hackett SL, van Asselen B, Oolbekkink S, Wolthaus JW, de Vries JW, Raaymakers BW. Experimental validation of multi-fraction online adaptations in magnetic resonance guided radiotherapy. Phys Imaging Radiat Oncol 2023; 28:100507. [PMID: 38035206 PMCID: PMC10685304 DOI: 10.1016/j.phro.2023.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Background and purpose Radiotherapy plan verification is generally performed on the reference plan based on the pre-treatment anatomy. However, the introduction of online adaptive treatments demands a new approach, as plans are created daily on different anatomies. The aim of this study was to experimentally validate the accuracy of total doses of multi-fraction plan adaptations in magnetic resonance imaging guided radiotherapy in a phantom study, isolated from the uncertainty of deformable image registration. Materials and methods We experimentally verified the total dose, measured on external beam therapy 3 (EBT3) film, using a treatment with five online adapted fractions. Three series of experiments were performed, each focusing on a category of inter-fractional variation; translations, rotations and body modifications. Variations were introduced during each fraction and adapted plans were generated and irradiated. Single fraction doses and total doses over five online adapted fractions were investigated. Results The online adapted measurements and calculations showed a good agreement for single fractions and multi-fraction treatments for the dose profiles, gamma passing rates, dose deviations and distances to agreement. The gamma passing rate using a 2%/2 mm criterion ranged from 99.2% to 99.5% for a threshold dose of 10% of the maximum dose (Dmax) and from 96.2% to 100% for a threshold dose of 90% of Dmax, for the total translations, rotations and body modifications. Conclusions The total doses of multi-fraction treatments showed similar accuracies compared to single fraction treatments, indicating an accurate dosimetric outcome of a multi-fraction treatment in adaptive magnetic resonance imaging guided radiotherapy.
Collapse
Affiliation(s)
- Madelon van den Dobbelsteen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sara L. Hackett
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Stijn Oolbekkink
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jochem W.H. Wolthaus
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J.H. Wilfred de Vries
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
9
|
Regnery S, Leiner L, Buchele C, Hoegen P, Sandrini E, Held T, Deng M, Eichkorn T, Rippke C, Renkamp CK, König L, Lang K, Adeberg S, Debus J, Klüter S, Hörner-Rieber J. Comparison of different dose accumulation strategies to estimate organ doses after stereotactic magnetic resonance-guided adaptive radiotherapy. Radiat Oncol 2023; 18:92. [PMID: 37248504 DOI: 10.1186/s13014-023-02284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Re-irradiation is frequently performed in the era of precision oncology, but previous doses to organs-at-risk (OAR) must be assessed to avoid cumulative overdoses. Stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) enables highly precise ablation of tumors close to OAR. However, OAR doses may change considerably during adaptive treatment, which complicates potential re-irradiation. We aimed to compare the baseline plan with different dose accumulation techniques to inform re-irradiation. PATIENTS & METHODS We analyzed 18 patients who received SMART to lung or liver tumors inside prospective databases. Cumulative doses were calculated inside the planning target volumes (PTV) and OAR for the adapted plans and theoretical non-adapted plans via (1) cumulative dose volume histograms (DVH sum plan) and (2) deformable image registration (DIR)-based dose accumulation to planning images (DIR sum plan). We compared cumulative dose parameters between the baseline plan, DVH sum plan and DIR sum plan using equivalent doses in 2 Gy fractions (EQD2). RESULTS Individual patients presented relevant increases of near-maximum doses inside the proximal bronchial tree, spinal cord, heart and gastrointestinal OAR when comparing adaptive treatment to the baseline plans. The spinal cord near-maximum doses were significantly increased in the liver patients (D2% median: baseline 6.1 Gy, DIR sum 8.1 Gy, DVH sum 8.4 Gy, p = 0.04; D0.1 cm³ median: baseline 6.1 Gy, DIR sum 8.1 Gy, DVH sum 8.5 Gy, p = 0.04). Three OAR overdoses occurred during adaptive treatment (DIR sum: 1, DVH sum: 2), and four more intense OAR overdoses would have occurred during non-adaptive treatment (DIR sum: 4, DVH sum: 3). Adaptive treatment maintained similar PTV coverages to the baseline plans, while non-adaptive treatment yielded significantly worse PTV coverages in the lung (D95% median: baseline 86.4 Gy, DIR sum 82.4 Gy, DVH sum 82.2 Gy, p = 0.006) and liver patients (D95% median: baseline 87.4 Gy, DIR sum 82.1 Gy, DVH sum 81.1 Gy, p = 0.04). CONCLUSION OAR doses can increase during SMART, so that re-irradiation should be planned based on dose accumulations of the adapted plans instead of the baseline plan. Cumulative dose volume histograms represent a simple and conservative dose accumulation strategy.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Lukas Leiner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Tumor diseases (NCT), Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
10
|
Murr M, Brock KK, Fusella M, Hardcastle N, Hussein M, Jameson MG, Wahlstedt I, Yuen J, McClelland JR, Vasquez Osorio E. Applicability and usage of dose mapping/accumulation in radiotherapy. Radiother Oncol 2023; 182:109527. [PMID: 36773825 DOI: 10.1016/j.radonc.2023.109527] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Dose mapping/accumulation (DMA) is a topic in radiotherapy (RT) for years, but has not yet found its widespread way into clinical RT routine. During the ESTRO Physics workshop 2021 on "commissioning and quality assurance of deformable image registration (DIR) for current and future RT applications", we built a working group on DMA from which we present the results of our discussions in this article. Our aim in this manuscript is to shed light on the current situation of DMA in RT and to highlight the issues that hinder consciously integrating it into clinical RT routine. As a first outcome of our discussions, we present a scheme where representative RT use cases are positioned, considering expected anatomical variations and the impact of dose mapping uncertainties on patient safety, which we have named the DMA landscape (DMAL). This tool is useful for future reference when DMA applications get closer to clinical day-to-day use. Secondly, we discussed current challenges, lightly touching on first-order effects (related to the impact of DIR uncertainties in dose mapping), and focusing in detail on second-order effects often dismissed in the current literature (as resampling and interpolation, quality assurance considerations, and radiobiological issues). Finally, we developed recommendations, and guidelines for vendors and users. Our main point include: Strive for context-driven DIR (by considering their impact on clinical decisions/judgements) rather than perfect DIR; be conscious of the limitations of the implemented DIR algorithm; and consider when dose mapping (with properly quantified uncertainties) is a better alternative than no mapping.
Collapse
Affiliation(s)
- Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany.
| | - Kristy K Brock
- Department of Imaging Physics and Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, USA
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre & Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, United Kingdom
| | - Michael G Jameson
- GenesisCare New South Wales, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Australia
| | - Isak Wahlstedt
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800 Kongens Lyngby, Denmark; Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte (HGH), Borgmester Ib Juuls Vej 7, 2730 Herlev, Denmark
| | - Johnson Yuen
- St George Hospital Cancer Care Centre, Kogarah, NSW 2217, Australia; South Western Clinical School, University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Jamie R McClelland
- Centre for Medical Image Computing and Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Dept of Medical Physics and Biomedical Engineering, UCL, United Kingdom
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M20 4BX Manchester, United Kingdom
| |
Collapse
|
11
|
Forghani F, Ginn JS, Schiff JP, Zhu T, Marut L, Laugeman E, Maraghechi B, Badiyan SN, Samson PP, Kim H, Robinson CG, Hugo GD, Henke LE, Price AT. Knowledge-based adaptive planning quality assurance using dosimetric indicators for stereotactic adaptive radiotherapy for pancreatic cancer. Radiother Oncol 2023; 182:109603. [PMID: 36889595 DOI: 10.1016/j.radonc.2023.109603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
INTRODUCTION We aimed to develop knowledge-based tools for robust adaptive radiotherapy (ART) planning to determine on-table adaptive DVH metric variations or planning process errors for stereotactic pancreatic ART. We developed volume-based dosimetric identifiers to identify deviations of ART plans from simulation plans. MATERIALS AND METHODS Two patient cohorts who were treated on MR-Linac for pancreas cancer were included in this retrospective study; a training cohort and a validation cohort. All patients received 50 Gy in 5 fractions. PTV-OPT was generated by subtracting the critical organs plus a 5 mm-margin from PTV. Several metrics that potentially can identify failure-modes were calculated including PTV & PTV_OPT V95% and PTV & PTV_OPT D95%/D5%. The difference between each DVH metric in each adaptive plan with the DVH metric in simulation plan was calculated. The 95% confidence interval (CI) of the variations in each DVH metric was calculated for the patient training cohort. Variations in DVH metrics that exceeded the 95% CI for all fractions in training and validation cohort were flagged for retrospective investigation for root-cause analysis to determine their predictive power for identifying failure-modes. RESULTS The CIs for the PTV & PTV_OPT V95% and PTV & PTV_OPT D95%/D5% were ± 13%, ± 5%, ± 0.1, ± 0.03, respectively. We estimated the positive predictive value and negative predictive value of our method to be 77% and 89%, respectively, for the training cohort, and 80% for both in the validation cohort. DISCUSSION We developed dosimetric indicators for ART planning QA to identify population-based deviations or planning errors during online adaptive process for stereotactic pancreatic ART. This technology may be useful as an ART clinical trial QA tool and improve overall ART quality at an institution.
Collapse
Affiliation(s)
- Farnoush Forghani
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA.
| | - John S Ginn
- Department of Radiation Oncology, Duke University, USA
| | - Joshua P Schiff
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Tong Zhu
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Luke Marut
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Borna Maraghechi
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Pamela P Samson
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Hyun Kim
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Lauren E Henke
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA
| | - Alex T Price
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, USA.
| |
Collapse
|
12
|
Wahlstedt I, George Smith A, Andersen CE, Behrens CP, Nørring Bekke S, Boye K, van Overeem Felter M, Josipovic M, Petersen J, Risumlund SL, Tascón-Vidarte JD, van Timmeren JE, Vogelius IR. Interfractional dose accumulation for MR-guided liver SBRT: Variation among algorithms is highly patient- and fraction-dependent. Radiother Oncol 2022; 182:109448. [PMID: 36566988 DOI: 10.1016/j.radonc.2022.109448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Daily plan adaptations could take the dose delivered in previous fractions into account. Due to high dose delivered per fraction, low number of fractions, steep dose gradients, and large interfractional organ deformations, this might be particularly important for liver SBRT. This study investigates inter-algorithm variation of interfractional dose accumulation for MR-guided liver SBRT. MATERIALS AND METHODS We assessed 27 consecutive MR-guided liver SBRT treatments of 67.5 Gy in three (n = 15) or 50 Gy in five fractions (n = 12), both prescribed to the GTV. We calculated fraction doses on daily patient anatomy, warped these doses to the simulation MRI using seven different algorithms, and accumulated the warped doses. Thus, we obtained differences in planned doses and warped or accumulated doses for each algorithm. This enabled us to calculate the inter-algorithm variations in warped doses per fraction and in accumulated doses per treatment course. RESULTS The four intensity-based algorithms were more consistent with planned PTV dose than affine or contour-based algorithms. The mean (range) variation of the dose difference for PTV D95% due to dose warping by these intensity-based algorithms was 10.4 percentage points (0.3 to 43.7) between fractions and 8.6 (0.3 to 24.9) between accumulated treatment doses. As seen by these ranges, the variation was very dependent on the patient and the fraction being analyzed. Nevertheless, no correlations between patient or plan characteristics on the one hand and inter-algorithm dose warping variation on the other hand was found. CONCLUSION Inter-algorithm dose accumulation variation is highly patient- and fraction-dependent for MR-guided liver SBRT. We advise against trusting a single algorithm for dose accumulation in liver SBRT.
Collapse
Affiliation(s)
- Isak Wahlstedt
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800 Kongens Lyngby, Denmark; Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte (HGH), Borgmester Ib Juuls Vej 7, 2730 Herlev, Denmark.
| | - Abraham George Smith
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark
| | - Claus Erik Andersen
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800 Kongens Lyngby, Denmark
| | - Claus Preibisch Behrens
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800 Kongens Lyngby, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte (HGH), Borgmester Ib Juuls Vej 7, 2730 Herlev, Denmark
| | - Susanne Nørring Bekke
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte (HGH), Borgmester Ib Juuls Vej 7, 2730 Herlev, Denmark
| | - Kristian Boye
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Mette van Overeem Felter
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte (HGH), Borgmester Ib Juuls Vej 7, 2730 Herlev, Denmark
| | - Mirjana Josipovic
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jens Petersen
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark
| | - Signe Lenora Risumlund
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - José David Tascón-Vidarte
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark
| | | | - Ivan Richter Vogelius
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Song JY, Chie EK, Kang SH, Jeon YJ, Ko YA, Kim DY, Kang HC. Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiat Oncol J 2022; 40:242-250. [PMID: 36606301 PMCID: PMC9830039 DOI: 10.3857/roj.2022.00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The safety of online contouring and planning for adaptive radiotherapy is unknown. This study aimed to evaluate the dosimetric difference of the organ-at-risk (OAR) according to the extent of contouring in stereotactic magnetic resonance image-guided adaptive RT (SMART) for pancreatic cancer. MATERIALS AND METHODS We reviewed the treatment plan data used for SMART in patients with pancreatic cancer. For the online contouring and planning, OARs within 2 cm from the planning target volume (PTV) in the craniocaudal direction were re-controlled daily at the attending physician's discretion. The entire OARs were re-contoured retrospectively for data analysis. We termed the two contouring methods the Rough OAR and the Full OAR, respectively. The proportion of dose constraint violation and other dosimetric parameters was analyzed. RESULTS Nineteen patients with 94 fractions of SMART were included in the analysis. The dose constraint was violated in 10.6% and 43.6% of the fractions in Rough OAR and Full OAR methods, respectively (p = 0.075). Patients with a large tumor, a short distance from gross tumor volume (GTV) to OAR, and a tumor in the body or tail were associated with more occult dose constraint violations-large tumor (p = 0.027), short distance from GTV to OAR (p = 0.061), tumor in body or tail (p = 0.054). No dose constraint violation occurred outside 2 cm from the PTV. CONCLUSION More occult dose constraint violations can be found by the Full OAR method in patients with pancreatic cancer with some clinical factors in the online re-planning for SMART. Re-contouring all the OARs would be helpful to detect occult dose constraint violations in SMART planning. Since the dosimetric profile of SMART cannot be represented by a single fraction, patient selection for the Full OAR method should be weighted between the clinical usefulness and the time and workforce required.
Collapse
Affiliation(s)
- Jun Yeong Song
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Hee Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Yeon-Jun Jeon
- Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Ah Ko
- Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea,Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Hyun-Cheol Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea,Correspondence: Hyun-Cheol Kang Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea. Tel: +82-2-2072-2526 E-mail:
| |
Collapse
|
14
|
Leeman JE, Cagney DN, Mak RH, Huynh MA, Tanguturi SK, Singer L, Catalano P, Martin NE, D'Amico AV, Mouw KW, Nguyen PL, King MT, Han Z, Williams C, Huynh E. Magnetic Resonance-Guided Prostate Stereotactic Body Radiation Therapy With Daily Online Plan Adaptation: Results of a Prospective Phase 1 Trial and Supplemental Cohort. Adv Radiat Oncol 2022; 7:100934. [PMID: 35847547 PMCID: PMC9280019 DOI: 10.1016/j.adro.2022.100934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for prostate cancer allows for MR-based contouring, real-time MR motion management, and daily plan adaptation. The clinical and dosimetric benefits associated with prostate SMART remain largely unknown. Methods and Materials A phase 1 trial of prostate SMART was conducted with primary endpoints of safety and feasibility. An additional cohort of patients similarly treated with prostate SMART were included in the analysis. SMART was delivered to 36.25 Gy in 5 fractions to the prostate ± seminal vesicles using the MRIdian linear accelerator system (ViewRay, Inc). Rates of urinary and gastrointestinal toxic effects and patient-reported outcome measures were assessed. Dosimetric analyses were conducted to evaluate the specific benefits of daily plan adaptation. Results The cohort included 22 patients (n = 10 phase 1, n = 12 supplemental) treated in 110 fractions. Median follow-up was 7.9 months. Acute grade 2 urinary and gastrointestinal toxic effects were observed in 22.7% and 4.5%, respectively, and 4.5% and 0%, respectively, at last follow-up. No grade 3+ events were observed. Expanded Prostate Cancer Index-26 urinary obstructive scores decreased during SMART (mean, 9.3 points; P = .03) and returned to baseline by 3 months. No other significant changes in patient-reported outcome measures were observed. One-hundred percent of fractions required plan adaptation owing to exceeding organ-at-risk metrics (68%) or suboptimal target coverage (33%) resulting from anatomic changes. Minimum acceptable planning target volume, rectal, bladder, and urethra/bladder neck metrics were violated in 24%, 20%, 24%, and 33% of predicted plans, respectively; 0% of reoptimized plans violated metrics. Underlying causes for deficient dosimetry before reoptimization included changes in bladder filling, seminal vesicle position, prostate volume (median 4.7% increase by fraction 3; range, 0%-56%), and hotspots shifting into urethra/bladder neck. Conclusions Prostate SMART results in low risk of acute toxic effects with improvements in target and organ-at-risk dosimetry. The clinical benefits resulting from daily plan adaptation, including urethra/bladder neck protection, warrant further investigation.
Collapse
Affiliation(s)
- Jonathan E. Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel N. Cagney
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raymond H. Mak
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mai Anh Huynh
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shyam K. Tanguturi
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Singer
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Paul Catalano
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neil E. Martin
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony V. D'Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kent W. Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul L. Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martin T. King
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhaohui Han
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher Williams
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Huynh
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Willigenburg T, van der Velden JM, Zachiu C, Teunissen FR, Lagendijk JJW, Raaymakers BW, de Boer JCJ, van der Voort van Zyp JRN. Accumulated bladder wall dose is correlated with patient-reported acute urinary toxicity in prostate cancer patients treated with stereotactic, daily adaptive MR-guided radiotherapy. Radiother Oncol 2022; 171:182-188. [PMID: 35489444 DOI: 10.1016/j.radonc.2022.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance (MR)-guided linear accelerators (MR-Linac) enable accurate estimation of delivered doses through dose accumulation using daily MR images and treatment plans. We aimed to assess the association between the accumulated bladder (wall) dose and patient-reported acute urinary toxicity in prostate cancer (PCa) patients treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS One-hundred-and-thirty PCa patients treated on a 1.5T MR-Linac were included. Patients filled out International Prostate Symptom Scores (IPSS) questionnaires at baseline, 1 month, and 3 months post-treatment. Deformable image registration-based dose accumulation was performed to reconstruct the delivered dose. Dose parameters for both bladder and bladder wall were correlated with a clinically relevant increase in IPSS (≥10 points) and/or start of alpha-blockers within 3 months using logistic regression. RESULTS Thirty-nine patients (30%) experienced a clinically relevant IPSS increase and/or started with alpha-blockers. Bladder D5cm3, V10-35Gy (in %), and Dmean and Bladder wall V10-35Gy (cm3 and %) and Dmean were correlated with the outcome (odds ratios 1.04-1.33, p-values 0.001-0.044). Corrected for baseline characteristics, bladder V10-35Gy (in %) and Dmean and bladder wall V10-35Gy (cm3 and %) and Dmean were still correlated with the outcome (odds ratios 1.04-1.30, p-values 0.001-0.028). Bladder wall parameters generally showed larger AUC values. CONCLUSION This is the first study to assess the correlation between accumulated bladder wall dose and patient-reported urinary toxicity in PCa patients treated with MR-guided SBRT. The dose to the bladder wall is a promising parameter for prediction of patient-reported urinary toxicity and therefore warrants prospective validation and consideration in treatment planning.
Collapse
Affiliation(s)
- Thomas Willigenburg
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands.
| | - Joanne M van der Velden
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Cornel Zachiu
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Frederik R Teunissen
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Jan J W Lagendijk
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Bas W Raaymakers
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Johannes C J de Boer
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | | |
Collapse
|