1
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
2
|
Effectiveness of depuration of Pacific Oyster ( Crassostrea gigas): removal of bioaccumulated Vibrio vulnificus by UV-treatment. Food Sci Biotechnol 2021; 30:765-771. [PMID: 34025128 PMCID: PMC8123095 DOI: 10.1007/s10068-021-00912-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to evaluate the efficacy of a depuration system equipped with UV-irradiation to control Vibrio vulnificus infection such as septicemia (or sepsis) using alive oysters. After 6 h of bioaccumulation of V. vulnificus, Pacific oyster Crassostrea gigas were found to be contaminated by > 8.0 log MPN/g of V. vulnificus cells. After 60 h of depuration, the V. vulnificus cell number significantly decreased to < 4.0 log MPN/g. The present depuration process meets the standard effectiveness in reducing V. vulnificus cells by > 3.52 log and < 30 MPN/g as recommended by the National Shellfish Sanitization Procedure Molluscan Shellfish Control guidelines. Furthermore, no significant changes in pH value and glycogen content indicate that the depuration process did not affect the freshness and quality of the oyster samples. The present study could help control any potential infection associated with the consumption of raw oysters without losing their quality.
Collapse
|
3
|
Spaur M, Davis BJK, Kivitz S, DePaola A, Bowers JC, Curriero FC, Nachman KE. A systematic review of post-harvest interventions for Vibrio parahaemolyticus in raw oysters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140795. [PMID: 32731065 DOI: 10.1016/j.scitotenv.2020.140795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Non-cholera Vibrio bacteria are a major cause of foodborne illness in the United States. Raw oysters are commonly implicated in gastroenteritis caused by pathogenic Vibrio parahaemolyticus. In response to outbreaks in 1997-1998, the US Food and Drug Administration developed a nation-wide quantitative microbial risk assessment (QMRA) of V. parahaemolyticus in raw oysters in 2005. The QMRA identified information gaps that new research may address. Incidence of sporadic V. parahaemolyticus illness has recently increased and, as oyster consumption increases and sea temperatures rise, V. parahaemolyticus outbreaks may become more frequent, posing health concerns. Updated and region-specific QMRAs will improve the accuracy and precision of risk of infection estimates. OBJECTIVES We identify research to support an updated QMRA of V. parahaemolyticus from oysters harvested in Chesapeake Bay and Puget Sound, focusing on observational and experimental research on post-harvest practices (PHPs) published from 2004 to 2019. METHODS A predefined search strategy was applied to PubMed, Embase, Scopus, Science.gov, NAL Agricola, and Google Scholar. Study eligibility criteria were defined using a population, intervention, comparator, and outcome statement. Reviewers independently coded abstracts for inclusion/exclusion using predefined criteria. Data were extracted and study quality and relevance evaluated based on published guidance for food safety risk assessments. Findings were synthesized using a weight of evidence approach. RESULTS Of 12,174 articles retrieved, 93 were included for full-text review. Twenty-seven studies were found to be high quality and high relevance, including studies on cold storage, high hydrostatic pressure, depuration, and disinfectant, and other PHPs. High hydrostatic pressure consistently emerged as the most effective PHP in reducing abundance of V. parahaemolyticus. DISCUSSION Limitations of the knowledge base and review approach involve the type and quantity of data reported. Future research should focus on PHPs for which few or no high quality and high relevance studies exist, such as irradiation and relaying.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Benjamin J K Davis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Spatial Science for Public Health Center, Johns Hopkins University, Baltimore, MD, United States of America; Health Sciences Center for Chemical Regulation and Food Safety, Exponent, Inc., Washington, DC, United States of America
| | - Scott Kivitz
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Angelo DePaola
- Angelo DePaola Consulting, Coden, AL, United States of America
| | - John C Bowers
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Frank C Curriero
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Spatial Science for Public Health Center, Johns Hopkins University, Baltimore, MD, United States of America
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Johns Hopkins Risk Sciences and Public Policy Institute, Baltimore, MD, United States of America; Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, United States of America.
| |
Collapse
|
4
|
The efficacy of X-ray doses on Vibrio vulnificus in pure culture and Vibrio parahaemolyticus in pure culture and inoculated farm raised live oysters (Crassostrea virginica) with different acceleration voltages. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Montanhini MTM, Montanhini Neto R. Changes in the microbiological quality of mangrove oysters (Crassostrea brasiliana) during different storage conditions. J Food Prot 2015; 78:164-71. [PMID: 25581192 DOI: 10.4315/0362-028x.jfp-14-255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study aimed to determine the effect of temperature and period of postharvest storage on the microbiological quality and shelf life of raw mangrove oysters, Crassostrea brasiliana. A total of 150 dozen oysters were collected directly from the points of extraction or cultivation in southern Brazil, and in the laboratory, they were stored raw at 5, 10, 15, 20, and 25°C for 1, 4, 8, 11, and 15 days. On each of these days, the oysters were subjected to microbiological analyses of aerobic mesophilic count, total coliforms, enterococci, Escherichia coli, Staphylococcus aureus, and Salmonella. None of the tested samples under any storage condition showed contamination levels above those allowed by Brazilian legislation for E. coli, S. aureus, and Salmonella, and there was no change (P > 0.05) in the counts of these microorganisms due to the temperature and/or period of oyster storage. Counts of enterococci and total coliforms showed a tendency to increase (P < 0.05) among the different temperatures tested. Raw mangrove oysters remain in safe microbiological conditions for consumption up to 8 days after harvesting, regardless of temperature, and their shelf life may be extended to 15 days if they are stored at temperatures not exceeding 15°C.
Collapse
Affiliation(s)
| | - Roberto Montanhini Neto
- Veterinary Sciences, Federal University of Paraná, 80035-050, Curitiba, Paraná State, Brazil
| |
Collapse
|
7
|
Cruz-Zaragoza E, Marcazzó J, Della Monaca S, Boniglia C, Gargiulo R, Bortolin E. Thermoluminescence analysis of irradiated oyster shells. Appl Radiat Isot 2012; 71 Suppl:18-22. [PMID: 22341648 DOI: 10.1016/j.apradiso.2012.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/20/2022]
Abstract
This paper reports the thermoluminescence (TL) analysis performed on the oyster shells powder. TL response of (60)Co gamma-rays irradiated samples were studied in the range from 80 Gy to 8 kGy doses. TL signal of irradiated shell powder was higher as compared to the unirradiated control samples, which allowed to identify the irradiated oysters. Results show that the oyster shells have good TL properties and can be useful for the identification of irradiated seafood as well as for the evaluation of the treatment dose.
Collapse
Affiliation(s)
- E Cruz-Zaragoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 México DF, México.
| | | | | | | | | | | |
Collapse
|