2
|
Takács E, Wang J, Chu L, Tóth T, Kovács K, Bezsenyi A, Szabó L, Homlok R, Wojnárovits L. Elimination of oxacillin, its toxicity and antibacterial activity by using ionizing radiation. CHEMOSPHERE 2022; 286:131467. [PMID: 34346325 DOI: 10.1016/j.chemosphere.2021.131467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The chemical changes caused by electron beam and γ irradiations and the biochemical characteristics of degradation products of a frequently used antibiotic oxacillin were investigated and compared with those of cloxacillin by applying pulse radiolysis, chemical and biochemical oxygen demand, total organic carbon content, oxygen uptake rate, toxicity and antibacterial activity measurements. Oxacillin was found to be non-toxic, but poorly biodegradable by the mixed microbial population of the activated sludge of a wastewater treatment plant. Therefore, it can significantly contribute to the spread of β-lactam antibiotic resistant bacteria. However, the products formed by γ-irradiation were more easily biodegradable as they were utilized as nutrient source by the microbes of the activated sludge and the products did not show antibacterial activity. During irradiation treatment of aerated aqueous solutions mainly hydroxyl radicals induce the elimination of antimicrobial activity by making alterations at the bicyclic β-lactam part of these antibiotics. Since the β-lactam part is the same in oxacillin and cloxacillin, the biochemical characteristics of products of the two antibiotics are similar. The attack of hydrated electron takes place on the carbonyl groups. When the irradiation is made under anoxic conditions these reactions may also contribute considerably to alterations at the β-lactam part and thereby to the loss of antibacterial activity.
Collapse
Affiliation(s)
- Erzsébet Takács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary.
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Libing Chu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Tünde Tóth
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Szent Gellért Tér 4, Budapest, Hungary
| | - Krisztina Kovács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Anikó Bezsenyi
- Budapest Sewage Works Pte Ltd, H-1087, Asztalos Sándor út 4, Budapest, Hungary; Óbuda University, H-1034, Bécsi út 96b, Budapest, Hungary
| | - László Szabó
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Renáta Homlok
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - László Wojnárovits
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| |
Collapse
|
3
|
Bezsenyi A, Sági G, Makó M, Wojnárovits L, Takács E. The effect of hydrogen peroxide on the biochemical oxygen demand (BOD) values measured during ionizing radiation treatment of wastewater. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Tegze A, Sági G, Kovács K, Tóth T, Takács E, Wojnárovits L. Radiation induced degradation of ciprofloxacin and norfloxacin: Kinetics and product analysis. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Sági G, Bezsenyi A, Kovács K, Klátyik S, Darvas B, Székács A, Wojnárovits L, Takács E. The impact of H 2 O 2 and the role of mineralization in biodegradation or ecotoxicity assessment of advanced oxidation processes. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|