1
|
Motavallian A, Zamani E, Bouzari S, Rezaeyan F, Karimian P, Evazalipour M. Anti-inflammatory effect of pregabalin on acetic acid-induced colitis in the rats. Res Pharm Sci 2021; 17:35-42. [PMID: 34909042 PMCID: PMC8621841 DOI: 10.4103/1735-5362.329924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/08/2021] [Accepted: 10/23/2021] [Indexed: 12/01/2022] Open
Abstract
Background and purpose: Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease characterized by the inflammation of the intestine. The available medicinal treatments for IBD are not efficacious enough since they exert various adverse effects. Therefore, the search for new therapeutic agents should be continued. The present study aimed to assess the anti-inflammatory effects of pregabalin on acetic acid-induced colitis in rats. Experimental approach: Using 2 mL of 3% acetic acid solution, colitis was intra-rectally induced in rats. Animals were randomly divided into 6 groups including the normal group, colitis control group, pregabalin treatment groups (30, 50, and 100 mg/kg; i.p., respectively), and dexamethasone treatment group (1 mg/kg; i.p.). Macroscopic, microscopic, and biochemical (myeloperoxidase, tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta) examinations were used to evaluate the efficacy of pregabalin in the inflamed colon. Findings/Results: All the applied doses of pregabalin significantly decreased the severity of macroscopic and microscopic colonic damages including ulcer severity, ulcer area, percentage of necrosis, and total colitis index compared to the colitis control group. These results were confirmed by the reduced colonic concentration of tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and myeloperoxidase activity. Conclusion and implications: Results of this study indicated that pregabalin administration has beneficial effects upon the treatment of experimental colitis, which might be partly due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Azadeh Motavallian
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran.,Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Saba Bouzari
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Farzam Rezaeyan
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Paridokht Karimian
- Department of Pathology and Histology, School of Medicine, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| |
Collapse
|
2
|
Oshodi TO, Ben-Azu B, Ishola IO, Ajayi AM, Emokpae O, Umukoro S. Molecular mechanisms involved in the prevention and reversal of ketamine-induced schizophrenia-like behavior by rutin: the role of glutamic acid decarboxylase isoform-67, cholinergic, Nox-2-oxidative stress pathways in mice. Mol Biol Rep 2021; 48:2335-2350. [PMID: 33811574 DOI: 10.1007/s11033-021-06264-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/03/2021] [Indexed: 12/28/2022]
Abstract
Mounting evidences have shown that nicotinamide adenine dinucleotide phosphate oxidase-2 (Nox-2) pathway modifies glutamic-acid decarboxylase-67 (GAD67) (GABAergic enzyme) and cholinergic systems via oxidative-nitrergic mechanisms in schizophrenia pathology. Rutin, a neuroactive antioxidant compound, with proven neuroprotective property has been shown to reduce schizophrenic-like behavior in mice. This study sought to investigate the mechanisms of action of the psychopharmacological activity of rutin in the preventive and reversal effects of ketamine-induced schizophrenic-like behavior, oxidative-nitrergic stress, cholinergic and GABAergic derangements in mice. In the preventive treatment, male mice were given rutin (0.1, 0.2 and 0.4 mg/kg) or risperidone (0.5 mg/kg) orally for 14 days prior to ketamine (20 mg/kg, i.p.) treatment from the 8 to 14th day. However, in the reversal treatment, ketamine was given for 14 days prior to rutin and risperidone. Behavioral (open-field, social-interaction and Y-maze tests), biochemical (oxidative/nitrergic stress markers, acetylcholinesterase activity), immunohistochemical (GAD67, Nox-2) and neuronal cell deaths in the striatum, prefrontal cortex, and hippocampus were evaluated. Ketamine-induced behavioral impairments were prevented and reversed by rutin. Exposure of mice to ketamine increased malondialdehyde, nitrite contents, acetylcholinesterase activity, neuronal cell death and Nox-2 expressions in the striatum, prefrontal cortex and hippocampus. Conversely, these derangements were prevented and reversed by rutin. The decreased glutathione levels due to ketamine were marked increased by rutin. Rutin only prevented ketamine-induced decrease in GAD67 expression in the striatal-hippocampal region. Altogether, the study showed that the prevention and reversal treatments of mice with rutin attenuated ketamine-induced schizophrenic-like behaviors via reduction of Nox-2 expression, oxidative/nitrergic stresses, acetylcholinesterase activity, and increased GAD67 enzyme.
Collapse
Affiliation(s)
- Tolulope Olabode Oshodi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria. .,Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria.
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Osagie Emokpae
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
3
|
Ben-Azu B, Aderibigbe AO, Omogbiya IA, Ajayi AM, Owoeye O, Olonode ET, Iwalewa EO. Probable mechanisms involved in the antipsychotic-like activity of morin in mice. Biomed Pharmacother 2018; 105:1079-1090. [PMID: 30021344 DOI: 10.1016/j.biopha.2018.06.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Evidence derived from preliminary studies suggests that morin, a neuroactive flavonoid with proven antioxidant and antiinflammatory properties possess antipsychotic-like activity. The present study was designed to evaluate the probable mechanisms involve in the antipsychotic-like activity of morin in ketamine model of schizophrenia. The effects of morin, haloperidol and risperidone on neurobehavioral and anti-schizophrenia-like effects were evaluated in mice (n = 7) following intraperitoneal (i.p.) administration of morin (25-100 mg/kg), haloperidol (1 mg/kg) and risperidone (0.5 mg/kg) alone or in combination with ketamine (20 mg/kg, i.p.) for 10 days. Neurobehavioral and schizophrenia-like activities consisting of open-field (positive symptoms), Y-maze, novel-object recognition (cognitive symptoms), social interaction (negative symptoms) tests were assessed. Also, wood-block catalepsy and rota-rod tests were employed to evaluate extrapyramidal side effects of morin. Thereafter, brain levels of biomarkers of oxidative, nitrergic and acetylcholinesterase alterations as well as histomorphological changes in the striatum and prefrontal-cortex were determined. Administration of morin and risperidone alone but not haloperidol significantly (p > 0.05) prevented ketamine-induced hyperlocomotion, social withdrawal and cognitive impairments relative to controls, and were devoid of extrapyramidal side effects. Morin alone or in combination with ketamine significantly increased glutathione concentration, superoxide dismutase and catalase activities compared with saline- or ketamine-treated mice. Moreover, morin alone or in combination with ketamine also significantly decreased malondialdehyde, nitrite and acetylcholinesterase alterations in mice brains. Furthermore, morin prevented ketamine-induced brain neuronal alterations in the striatum and prefrontal-cortex. Together, our findings suggest that morin may demonstrate antipsychotic-like therapeutic effect via modulation of oxidative/nitrergic, cholinergic actions and neuroprotection.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Itivere Adrian Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olatunde Owoeye
- Neurotrauma & Neuroregeneration Unit, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Elizabeth Toyin Olonode
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| | - Ezekiel O Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
4
|
Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AEO, Umukoro S, Iwalewa EO. Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 2018; 139:292-306. [PMID: 29548911 DOI: 10.1016/j.brainresbull.2018.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/26/2022]
Abstract
GABAergic (Gamma-aminobutyric acid) and neurotrophic derangements have important implication in schizophrenia, a neuropsychiatric disease. Previous studies have shown that nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) alters GABAergic and neurotrophic activities via inflammatory and oxidative pathways. Thus, it has been proposed that agents with anti-oxidant and anti-inflammatory properties might be beneficial for the treatment of the disease. Morin is neuroactive bioflavonoid compound, which has been reported to demonstrate antipsychotic and anti-oxidant/anti-inflammatory activities. In this study, we further evaluated its effects on the brain markers of GABAergic, neurotrophic and oxidative alterations in the preventive and reversal of schizophrenia-like behavior induced by ketamine (KET). In the prevention protocol, adult mice were treated intraperitoneally with morin (100 mg/kg/day), haloperidol (1 mg/kg/day), risperidone (0.5 mg/kg/day), or saline (10 mL/kg/day) for 14 consecutive days. In addition, the animals were administered KET (20 mg/kg/day) from the 8th to the 14th day. In the reversal protocol, the animals received KET or saline for 14 days. From 8th to 14th days mice were additionally treated with morin, haloperidol, risperidone or saline. Schizophrenic-like behaviors consisting of positive (stereotypy test), negative (behavioral despair in forced swim test) and cognitive (novel-object recognition test) symptoms were evaluated. Afterwards, brain levels of biomarkers of GABAergic (Glutamic acid decarboxylase-67, GAD67), neurotrophic (Brain-derived neurotrophic factor, BDNF) and oxidative [NADPH-oxidase, superoxide dismutase, (SOD) and catalase (CAT)] alterations were determined in the striatum, prefrontal cortex (PFC) and hippocampus, respectively. Morin significantly (p < 0.05) prevented and reversed KET-induced increased stereotypy, behavioral despair and deficit in cognitive functions when compared with KET-treated mice respectively. Also, morin and risperidone but not haloperidol, significantly (p < 0.05) prevented and reversed the decreases in expressions of GAD67 and BDNF immunoreactivity in the striatum, PFC and hippocampus caused by KET. Moreover, morin and risperidone significantly (p < 0.05) decreased regional brain expressions of NADPH-oxidase immunopositive cells and increased endogenous anti-oxidant enzymes (SOD and CAT) in the striatum, PFC and hippocampus relative to KET controls respectively. Taken together, these findings further suggest that the antipsychotic-like activity of morin may be mediated via mechanisms related to enhancement of GABAergic neurotransmission and neurotrophic factor, and suppression of NADPH-oxidase induced oxidative damage in mice.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
5
|
Zink M, Correll CU. Glutamatergic agents for schizophrenia: current evidence and perspectives. Expert Rev Clin Pharmacol 2015; 8:335-52. [PMID: 25916667 DOI: 10.1586/17512433.2015.1040393] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Suboptimal outcomes in schizophrenia are a consequence of lacking insight into the etiology, biomarkers and treatment-relevant subgroups, the therapeutic restriction to dopaminergic-modulating antipsychotics that fail to significantly improve negative and cognitive symptoms, non-adherence, and, in the case of treatment-resistance, the underutilization of clozapine. Evidence suggests additional, extra-dopaminergic abnormalities in amino acid neurotransmission, particularly the glutamatergic system. Antidopaminergic antipsychotics modulate this system on several levels, as do mood stabilizers, including lamotrigine, topiramate and pregabaline. Recently, agonists at metabotropic glutamate receptors and glycine uptake inhibitors failed in large placebo-controlled trials for schizophrenia. Problems to overcome for successfully leveraging glutamatergic agents for schizophrenia are patient selection, focus on positive symptoms and late disease stages, and dose-response relationships. Because glutamate guides processes of brain development and maturation, clinical research should focus on the at-risk mental state or first-episode psychosis, address cognition and negative symptoms and use monotherapy designs in parallel to augmentation strategies.
Collapse
Affiliation(s)
- Mathias Zink
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
6
|
Maia-de-Oliveira JP, Lobão-Soares B, Ramalho T, Gavioli EC, Soares VP, Teixeira L, Baker GB, Dursun SM, Hallak JEC. Nitroprusside single-dose prevents the psychosis-like behavior induced by ketamine in rats for up to one week. Schizophr Res 2015; 162:211-5. [PMID: 25586741 DOI: 10.1016/j.schres.2014.12.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Recently, we found a rapid and long-lasting improvement of symptoms in schizophrenic patients on antipsychotics after a single four-hour infusion of sodium nitroprusside (SNP), a nitric oxide (NO) donor with a short half-life. This improvement persisted for up to 4weeks. Because these patients remained on antipsychotics after infusion of SNP was finished, the question arises about whether this improvement was due to SNP itself. We have now investigated whether SNP, alone, can produce preventive antipsychotic effects in rats treated with ketamine (KET). 56 adult rats divided into 7 groups were infused with SNP 4mg/kg, KET 25mg/kg, or saline as follows: group1 - saline, group2 - SNP, group3 - KET, group4 - KET 12h after SNP, group5 - KET 1day after SNP, group6 - KET 2days after SNP, and group7 - KET 1week after SNP. The animals were filmed in an open field arena for 30min and the videos were later analyzed by ANY-Maze software to measure activity and stereotypy. SNP significantly prevented the emergence of hyperactivity induced by KET when it was administered for up to 1week before KET, and prevented the emergence of stereotypies when it was administered for up to 1day before KET. These findings in rats, which have an even faster metabolic rate than humans, suggest that the long-lasting effects observed in our clinical trial with SNP in humans could have been due to SNP itself, and indicate for the first time that SNP may present preventive antipsychotic effects.
Collapse
Affiliation(s)
- Joao Paulo Maia-de-Oliveira
- Department of Neuroscience and Behavioral Science, University of Sao Paulo (USP) - Ribeirao Preto, SP CEP 14048-900, Brazil; Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, RN CEP 59012420, Brazil.
| | - Bruno Lobão-Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, CEP 59012420, Brazil
| | - Thais Ramalho
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, CEP 59012420, Brazil
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, CEP 59012420, Brazil
| | - Vanessa Paula Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, CEP 59012420, Brazil
| | - Leslie Teixeira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, CEP 59012420, Brazil
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 12-105B CSB, Edmonton, AB T6G 2G3, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 12-105B CSB, Edmonton, AB T6G 2G3, Canada
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Science, University of Sao Paulo (USP) - Ribeirao Preto, SP CEP 14048-900, Brazil
| |
Collapse
|
7
|
Abstract
Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability.
Collapse
|