1
|
Tatu AL, Nadasdy T, Arbune A, Chioncel V, Bobeica C, Niculet E, Iancu AV, Dumitru C, Popa VT, Kluger N, Clatici VG, Vasile CI, Onisor C, Nechifor A. Interrelationship and Sequencing of Interleukins4, 13, 31, and 33 - An Integrated Systematic Review: Dermatological and Multidisciplinary Perspectives. J Inflamm Res 2022; 15:5163-5184. [PMID: 36110506 PMCID: PMC9468867 DOI: 10.2147/jir.s374060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
The interrelations and sequencing of interleukins are complex (inter)actions where each interleukin can stimulate the secretion of its preceding interleukin. In this paper, we attempt to summarize the currently known roles of IL-4, IL-13, IL-31, and IL-33 from a multi-disciplinary perspective. In order to conduct a comprehensive review of the current literature, a search was conducted using PubMed, Google Scholar, Medscape, UpToDate, and Key Elsevier for keywords. The results were compiled from case reports, case series, letters, and literature review papers, and analyzed by a panel of multi-disciplinary specialist physicians for relevance. Based on 173 results, we compiled the following review of interleukin signaling and its clinical significance across a multitude of medical specialties. Interleukins are at the bed rock of a multitude of pathologies across different organ systems and understanding their role will likely lead to novel treatments and better outcomes for our patients. New interleukins are being described, and the role of this inflammatory cascade is still coming to light. We hope this multi-discipline review on the role interleukins play in current pathology assists in this scope.
Collapse
Affiliation(s)
- Alin Laurentiu Tatu
- Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, Romania.,Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Thomas Nadasdy
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Municipal Emergency Hospital, Timişoara, Romania
| | - Anca Arbune
- Neurology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Valentin Chioncel
- Neurology Department, "Bagdasar-Arseni" Emergency Clinical Hospital, Bucharest, Romania
| | - Carmen Bobeica
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Elena Niculet
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Caterina Dumitru
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Valentin Tudor Popa
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Center for the Morphologic Study of the Skin MORPHODERM, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.,Apolo Medical Center, Bucharest, Romania
| | | | - Claudiu Ionut Vasile
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Cristian Onisor
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| |
Collapse
|
2
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Chavarria-Avila E, Vazquez-Del Mercado M, Pizano-Martínez O, Roman-Lugo G, Arrona-Rios K, Perez-Vazquez F, De-La-Cruz JP, Calderon-Espinoza I, Aguilar-Vazquez A, Esesarte-Rodriguez M, Rubio-Arrellano ED, Duran-Barragan S. Going Further: Comprehensive Disease Control of Rheumatoid Arthritis, Targeting Cytokines and Chemokines. J Clin Rheumatol 2021; 27:e432-e439. [PMID: 32694349 PMCID: PMC8612915 DOI: 10.1097/rhu.0000000000001515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Mechanism of action of biological and synthetic disease-modifying antirheumatic drugs (DMARDs) includes the inhibition of specific proinflammatory cytokines. This study aimed to elucidate the cytokines and chemokines inhibited by different treatments (conventional synthetic DMARD [csDMARD], biological and targeted synthetic DMARD) in rheumatoid arthritis (RA). METHODS Fifty-nine RA patients with low disease activity or remission included in a cross-sectional study were classified by treatment in groups: abatacept, certolizumab, rituximab (RTX), tocilizumab, tofacitinib (TOF), baricitinib (BAR), and csDMARD. Cytokine and chemokine serum levels were measured by LEGENDplex Human Inflammation panel. Quantitative variables were compared using Student t or Mann-Whitney U test as appropriate, whereas qualitative variables were compared using χ2 or Fisher exact test. p < 0.05 was considered significant. RESULTS Certolizumab, RTX, tocilizumab, and TOF showed that most cytokine pathways inhibited: tumor necrosis factor α, interferon γ, interleukin 1β (IL-1β), IL-12, IL-18, and IL-23; in addition, csDMARDs showed a similar inhibition patron except for IL-23. Serum level of tumor necrosis factor α pathway was one of the most inhibited being undetectable in RTX, TOF, and BAR groups. Interleukin 6 was shown to be inhibited by abatacept, RTX, and TOF; however, higher levels were observed in 3 patients treated with tocilizumab. Abatacept, certolizumab, RTX, and TOF downregulated IL-10 in this group of patients but remained detectable in almost half of the subjects, with the highest levels in the BAR group. The active pathways that remained the most were CC chemokine ligand 2, IL-8, IL-17, and IL-33. CONCLUSIONS Understanding the cytokine chemokine pathways inhibition could help rheumatologists to prescribe a tailored therapy using the arsenal of DMARDs for individualized RA treatment in an evidence-based decision manner.
Collapse
Affiliation(s)
- Efrain Chavarria-Avila
- From the Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
- Servicio de Reumatología 004086, PNPC CONACyT, División de Medicina Interna, Hospital Civil Dr. Juan I. Menchaca
| | - Monica Vazquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
- Servicio de Reumatología 004086, PNPC CONACyT, División de Medicina Interna, Hospital Civil Dr. Juan I. Menchaca
- UDG-CA 703 inmunología y Reumatología
- Instituto de Biología Molecular y Genómica
| | - Oscar Pizano-Martínez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
- Departamento de Clínicas Médicas
| | - German Roman-Lugo
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Karla Arrona-Rios
- Servicio de Reumatología 004086, PNPC CONACyT, División de Medicina Interna, Hospital Civil Dr. Juan I. Menchaca
| | - Felipe Perez-Vazquez
- From the Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
- Servicio de Reumatología 004086, PNPC CONACyT, División de Medicina Interna, Hospital Civil Dr. Juan I. Menchaca
- Departamento de Fisiología, Instituto de Terapia Experimental y Clínica
| | - Jeniffer P. De-La-Cruz
- Servicio de Reumatología 004086, PNPC CONACyT, División de Medicina Interna, Hospital Civil Dr. Juan I. Menchaca
| | - Ivette Calderon-Espinoza
- Servicio de Reumatología 004086, PNPC CONACyT, División de Medicina Interna, Hospital Civil Dr. Juan I. Menchaca
| | - Andrea Aguilar-Vazquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
- Doctorado en Ciencias Biomédicas Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Marisol Esesarte-Rodriguez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | | | - Sergio Duran-Barragan
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
- UDG-CA 703 inmunología y Reumatología
- Departamento de Clínicas Médicas
- Clínica de Investigación en Reumatología y Obesidad, Guadalajara, Jalisco, México
| |
Collapse
|
4
|
Makuch S, Więcek K, Woźniak M. The Immunomodulatory and Anti-Inflammatory Effect of Curcumin on Immune Cell Populations, Cytokines, and In Vivo Models of Rheumatoid Arthritis. Pharmaceuticals (Basel) 2021; 14:ph14040309. [PMID: 33915757 PMCID: PMC8065689 DOI: 10.3390/ph14040309] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a widespread chronic autoimmune disorder affecting the joints, causing irreversible cartilage, synovium, and bone degradation. During the course of the disease, many immune and joint cells are activated, causing inflammation. Immune cells including macrophages, lymphocytes, neutrophils, mast cells, natural killer cells, innate lymphoid cells, as well as synovial tissue cells, like fibroblast-like synoviocytes, chondrocytes, and osteoclasts secrete different proinflammatory factors, including many cytokines, angiogenesis-stimulating molecules and others. Recent studies reveal that curcumin, a natural dietary anti-inflammatory compound, can modulate the response of the cells engaging in RA course. This review comprises detailed data about the pathogenesis and inflammation process in rheumatoid arthritis and demonstrates scientific investigations about the molecular interactions between curcumin and immune cells responsible for rheumatoid arthritis development to discuss this herbal drug’s immunoregulatory role in RA treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamil Więcek
- Department of Biotechnology, Wroclaw University, 50-383 Wroclaw, Poland;
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
5
|
Polyakova YV, Zavodovsky BV, Sivordova LE, Akhverdyan YR, Zborovskaya IA. Visfatin and Rheumatoid Arthritis: Pathogenetic Implications and Clinical Utility. Curr Rheumatol Rev 2020; 16:224-239. [DOI: 10.2174/1573397115666190409112621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Objective:
Analysis and generalization of data related to visfatin involvement in the
pathogenesis of inflammation at various stages of rheumatoid arthritis.
Data Synthesis:
Visfatin is an adipocytokine which has also been identified in non-adipose tissues.
It influences directly on the maturation of B cells, which are involved in autoantibody production
and T cell activation. Visfatin can promote inflammation via regulation of pro-inflammatory cytokines
including TNF, IL-1β and IL-6. The concentration of circulating visfatin in rheumatoid arthritis
patients is higher compared to healthy individuals. Several studies suggest that visfatin level is
associated with rheumatoid arthritis activity, and its elevation may precede clinical signs of the relapse.
In murine collagen-induced arthritis, visfatin levels were also found to be elevated both in
inflamed synovial cells and in joint vasculature. Visfatin blockers have been shown to confer fast
and long-term attenuation of pathological processes; however, most of their effects are transient.
Other factors responsible for hyperactivation of the immune system can participate in this process
at a later stage. Treatment of rheumatoid arthritis with a combination of these blockers and inhibitors
of other mediators of inflammation can potentially improve treatment outcomes compared to
current therapeutic strategies. Recent advances in the treatment of experimental arthritis in mice as
well as the application of emerging treatment strategies obtained from oncology for rheumatoid arthritis
management could be a source of novel adipokine-mediated anti-rheumatic drugs.
Conclusion:
The ongoing surge of interest in anticytokine therapy makes further study of visfatin
highly relevant as it may serve as a base for innovational RA treatment.
Collapse
Affiliation(s)
- Yulia V. Polyakova
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Boris V. Zavodovsky
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Larisa E. Sivordova
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Yuri R. Akhverdyan
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Irina A. Zborovskaya
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| |
Collapse
|
6
|
Murdaca G, Greco M, Tonacci A, Negrini S, Borro M, Puppo F, Gangemi S. IL-33/IL-31 Axis in Immune-Mediated and Allergic Diseases. Int J Mol Sci 2019; 20:E5856. [PMID: 31766607 PMCID: PMC6929191 DOI: 10.3390/ijms20235856] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 01/16/2023] Open
Abstract
Several allergic and immunologic diseases including asthma, food allergy (FA), chronic spontaneous urticaria (CSU), atopic dermatitis (AD), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), rheumatoid arthritis (RA), and Behçet's disease (BD) are characterized by the involvement of Th2 immunity. Several mediators lead to immunoglobulin (Ig)E production, thus including key cytokines such as interleukin (IL)-4, IL-5, and IL-13. Among them, IL-31 and IL-33 have been recently studied as novel biomarkers and future therapeutic targets for allergic and immunological disorders. IL-31 is a proinflammatory cytokine-it regulates cell proliferation and is involved in tissue remodeling. IL-33, acting through its receptor suppression of tumorigenity (ST2L), is an alarmin cytokine from the IL-1 family, whose expression is mediated by tissue damage. The latter has a pleiotropic effect, as it may modulate specific and innate immune cells functions. To date, several researchers have investigated the involvement of IL-31 and IL-33 in several allergic and immune-mediated diseases. Further studies are needed to understand the future applications of these molecules as novel therapeutic agents. This paper aims to give the readers a complete and updated review of IL-31 and IL-33 involvement among the most common autoimmune and allergic disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
7
|
Li Q, Hu Y, Chen Y, Lv Z, Wang J, An G, Du X, Wang H, Corrigan CJ, Wang W, Ying S. IL-33 induces production of autoantibody against autologous respiratory epithelial cells: a potential mechanism for the pathogenesis of COPD. Immunology 2019; 157:137-150. [PMID: 30801682 DOI: 10.1111/imm.13054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanisms underlying the chronic, progressive airways inflammation, remodelling and alveolar structural damage characteristic of human chronic obstructive pulmonary disease (COPD) remain unclear. In the present study, we address the hypothesis that these changes are at least in part mediated by respiratory epithelial alarmin (IL-33)-induced production of autoantibodies against airways epithelial cells. Mice immunized with homologous, syngeneic lung tissue lysate along with IL-33 administered directly to the respiratory tract or systemically produced IgG autoantibodies binding predominantly to their own alveolar type II epithelial cells, along with increased percentages of Tfh cells and B2 B-cells in their local, mediastinal lymph nodes. Consistent with its specificity for respiratory epithelial cells, this autoimmune inflammation was confined principally to the lung and not other organs such as the liver and kidney. Furthermore, the serum autoantibodies produced by the mice bound not only to murine, but also to human alveolar type II epithelial cells, suggesting specificity for common, cross-species determinants. Finally, concentrations of antibodies against both human and murine alveolar epithelial cells were significantly elevated in the serum of patients with COPD compared with those of control subjects. These data are consistent with the hypothesis that IL-33 contributes to the chronic, progressive airways obstruction, inflammation and alveolar destruction characteristic of phenotypes of COPD/emphysema through induction of autoantibodies against lung tissue, and particularly alveolar type II epithelial cells.
Collapse
Affiliation(s)
- Qin Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Gao An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huating Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Toomer KH, Malek TR. Cytokine Signaling in the Development and Homeostasis of Regulatory T cells. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028597. [PMID: 28620098 DOI: 10.1101/cshperspect.a028597] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytokine signaling is indispensable for regulatory T-cell (Treg) development in the thymus, and also influences the homeostasis, phenotypic diversity, and function of Tregs in the periphery. Because Tregs are required for establishment and maintenance of immunological self-tolerance, investigating the role of cytokines in Treg biology carries therapeutic potential in the context of autoimmune disease. This review discusses the potent and diverse influences of interleukin (IL)-2 signaling on the Treg compartment, an area of knowledge that has led to the use of low-dose IL-2 as a therapy to reregulate autoaggressive immune responses. Evidence suggesting Treg-specific impacts of the cytokines transforming growth factor β (TGF-β), IL-7, thymic stromal lymphopoietin (TSLP), IL-15, and IL-33 is also presented. Finally, we consider the technical challenges and knowledge limitations that must be overcome to bring other cytokine-based, Treg-targeted therapies into clinical use.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136
| |
Collapse
|
9
|
Abstract
The interleukin-1 (IL-1) family of cytokines and receptors is unique in immunology because the IL-1 family and Toll-like receptor (TLR) families share similar functions. More than any other cytokine family, the IL-1 family is primarily associated with innate immunity. More than 95% of living organisms use innate immune mechanisms for survival whereas less than 5% depend on T- and B-cell functions. Innate immunity is manifested by inflammation, which can function as a mechanism of host defense but when uncontrolled is detrimental to survival. Each member of the IL-1 receptor and TLR family contains the cytoplasmic Toll-IL-1-Receptor (TIR) domain. The 50 amino acid TIR domains are highly homologous with the Toll protein in Drosophila. The TIR domain is nearly the same and present in each TLR and each IL-1 receptor family. Whereas IL-1 family cytokine members trigger innate inflammation via IL-1 family of receptors, TLRs trigger inflammation via bacteria, microbial products, viruses, nucleic acids, and damage-associated molecular patterns (DAMPs). In fact, IL-1 family member IL-1a and IL-33 also function as DAMPs. Although the inflammatory properties of the IL-1 family dominate in innate immunity, IL-1 family member can play a role in acquired immunity. This overview is a condensed update of the IL-1 family of cytokines and receptors.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|