1
|
Karlsson J, Wetterö J, Weiner M, Rönnelid J, Fernandez-Botran R, Sjöwall C. Associations of C-reactive protein isoforms with systemic lupus erythematosus phenotypes and disease activity. Arthritis Res Ther 2022; 24:139. [PMID: 35690780 PMCID: PMC9188243 DOI: 10.1186/s13075-022-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/02/2022] [Indexed: 01/08/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a large production of autoantibodies and deficient clearance of cellular waste. The disease typically oscillates between episodes of elevated disease activity and quiescent disease. C-reactive protein (CRP) is a pentameric acute-phase protein usually reflecting inflammation and tissue damage. However, despite increased inflammation and elevated interleukin-6, the levels of CRP typically remain low or only slightly raised in SLE. Under certain conditions, pentameric CRP (pCRP) can dissociate into its monomeric isoform (mCRP), which mainly has been ascribed pro-inflammatory properties. The present study aims to investigate the potential relationship between pCRP and mCRP, respectively, with disease activity and clinical features of SLE. Methods The levels of pCRP and mCRP were measured, by turbidimetry (high-sensitive) and sandwich enzyme-linked immunosorbent assay (ELISA) respectively, in serum samples from 160 patients with SLE and 30 patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Twenty-two of the SLE cases were selected for analysis at two time-points; quiescent disease and active disease. The two CRP isoforms were evaluated in relation to disease activity and clinical features in the two diseases. Results Levels of pCRP and mCRP were significantly lower in SLE than AAV (p < 0.001) and the ratio of mCRP/pCRP was higher in SLE compared to AAV. The mCRP/pCRP ratio was higher for patients in remission and able to significantly separate between active/quiescent disease in paired, but not in non-paired, samples from patients with SLE. Significant correlations were observed with SLICC/ACR damage index for pCRP levels as well as inversely with the mCRP/pCRP ratio. Lower mCRP levels associated with malar rash. Conclusion As the interrelationship between the two isoforms appear to (a) discriminate between quiescent and active SLE and (b) differ between SLE and AAV, our data indicates that the two CRP isoforms could exert contrasting immunological effects and/or reflect different milieus. Given the biological effects of mCRP, it is possible that altered levels may indicate increased opsonization of immune complexes and apoptotic debris, and thereby prevent their deposition outside the reticuloendothelial system and manifestations such as lupus nephritis and lupus-related skin disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02831-9.
Collapse
Affiliation(s)
- Jesper Karlsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Campus US, 581 85, Linköping, Sweden.
| | - Jonas Wetterö
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Campus US, 581 85, Linköping, Sweden
| | - Maria Weiner
- Department of Nephrology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Campus US, 581 85, Linköping, Sweden
| |
Collapse
|
2
|
Jorge AM, Lao T, Kim R, Licciardi S, El Khoury J, Luster AD, Means TK, Ramirez-Ortiz ZG. SCARF1-Induced Efferocytosis Plays an Immunomodulatory Role in Humans, and Autoantibodies Targeting SCARF1 Are Produced in Patients with Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:955-967. [PMID: 35082161 PMCID: PMC8852219 DOI: 10.4049/jimmunol.2100532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
Deficiency in the clearance of cellular debris is a major pathogenic factor in the emergence of autoimmune diseases. We previously demonstrated that mice deficient for scavenger receptor class F member 1 (SCARF1) develop a lupus-like autoimmune disease with symptoms similar to human systemic lupus erythematosus (SLE), including a pronounced accumulation of apoptotic cells (ACs). Therefore, we hypothesized that SCARF1 will be important for clearance of ACs and maintenance of self-tolerance in humans, and that dysregulation of this process could contribute to SLE. In this article, we show that SCARF1 is highly expressed on phagocytic cells, where it functions as an efferocytosis receptor. In healthy individuals, we discovered that engagement of SCARF1 by ACs on BDCA1+ dendritic cells initiates an IL-10 anti-inflammatory response mediated by the phosphorylation of STAT1 and STAT3. Unexpectedly, there was no significant difference in SCARF1 expression in samples of patients with SLE compared with healthy donor samples. However, we detected anti-SCARF1 autoantibodies in 26% of patients with SLE, which was associated with dsDNA Ab positivity. Furthermore, our data show a direct correlation of the levels of anti-SCARF1 in the serum and defects in the removal of ACs. Depletion of Ig restores efferocytosis in SLE serum, suggesting that defects in the removal of ACs are partially mediated by SCARF1 pathogenic autoantibodies. Our data demonstrate that human SCARF1 is an AC receptor in dendritic cells and plays a role in maintaining tolerance and homeostasis.
Collapse
Affiliation(s)
- April M Jorge
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Rachel Kim
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Samantha Licciardi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
- Autoimmunity Cluster, Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA
| | - Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA;
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and
| |
Collapse
|
3
|
Wang W, Cao L, Wang X, Fan Y. Radix Paeoniae Rubra Ameliorates Lupus Nephritis in Lupus-Like Symptoms of Mrl Mice by Reducing Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Platelet Endothelial Cell Adhesion Molecule-1 Expression. Comb Chem High Throughput Screen 2021; 23:675-683. [PMID: 32416674 DOI: 10.2174/1386207323666200517114802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Vasculitis is the basic pathological change of systemic lupus erythematosus (SLE). Radix Paeoniae Rubra (RPR), a traditional Chinese herb with the function of reducing blood stasis, has anti-inflammatory and immunoregulatory properties. This study explored the effects of RPR on the kidneys of lupus-like symptoms of mrl (MRL/lpr) mice from the perspective of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1). METHODS Eighteen MRL/lpr lupus model mice were randomly divided into three groups, the model control group, prednisone-treated group, and RPR-treated group, and 6 C57BL/ 6 mice were classified as a control group. After the mice had been treated for 12 weeks, the expression of ICAM-1, VCAM-1 and PECAM-1in the kidney was determined by immunohistochemistry and Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS After 12 weeks, there were significant differences in body weight in the model, prednisone and RPR groups compared with the normal group (P <0.05). Pathological observation: Compared with the model group, the proliferation of inflammatory cells infiltrated glomeruli and interstitial cells in prednisone and RPR groups were reduced, and renal pathological damage was reduced. Compared with the model group, urine protein level of prednisone and RPR groups were reduced with no significance (P> 0.05). The mRNA expression levels of ICAM-1 and VCAM-1 were significantly reduced in the prednisone group and RPR group compared with the model group (P <0.05 or P <0.01). Meanwhile, the immunohistochemistry expressions of ICAM-1 and VCAM- 1 expressed in the kidney were significantly reduced in the prednisone group and RPR group (P <0.01 or P <0.05). However, The mRNA expression level and the immunohistochemistry expressions of PECAM-1 expressed in the kidney were reduced in each treatment group (prednisone group and RPR group), but these differences were not significant (P>0.05). CONCLUSIONS ICAM-1, VCAM-1 and PECAM-1 expression in the model group was found to be significantly increased. In addition, RPR could reduce the expression of ICAM-1, VCAM-1 and PECAM-1 in MRL/lpr lupus mice as effectively as prednisone, which may result in the dosage reduction of prednisone, thus decreasing the toxicity and improving the efficacy of prednisone - based treatment of SLE.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Lingyong Cao
- The College of Basical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
4
|
Skiljevic D, Bonaci-Nikolic B, Brasanac D, Nikolic M. Apoptosis of keratinocytes and serum DNase I activity in patients with cutaneous lupus erythematosus: relationship with clinical and immunoserological parameters. J Eur Acad Dermatol Venereol 2016; 31:523-529. [DOI: 10.1111/jdv.13943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
Affiliation(s)
- D. Skiljevic
- Department of Dermatovenereology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - B. Bonaci-Nikolic
- Department of Allergy and Clinical Immunology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - D. Brasanac
- Department of Pathology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - M. Nikolic
- Department of Dermatovenereology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| |
Collapse
|
5
|
Singh N, Kumar B, Aluri V, Lenert P. Interfering with baffled B cells at the lupus tollway: Promises, successes, and failed expectations. J Allergy Clin Immunol 2016; 137:1325-33. [PMID: 26953155 DOI: 10.1016/j.jaci.2015.12.1326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022]
Abstract
B cells play an important role in systemic lupus erythematosus by acting not only as precursors of autoantibody-producing cells but also as antigen-presenting, cytokine-secreting, and regulatory cells. Unopposed activation of B cells through their B-cell receptor for antigen, as seen in B cells lacking Lyn kinase, results in systemic autoimmunity. The B-cell activating factor of the TNF family (BAFF), nucleic acid-sensing Toll-like receptors (TLRs), and type I interferon can affect B-cell survival and decrease their threshold for activation. Herein we discuss both direct and indirect strategies aimed at targeting B cells in patients with lupus by blocking BAFF, type I interferon, or TLR7 to TLR9. Although BAFF-depleting therapy with belimumab achieved approval for lupus, other BAFF inhibitors were much less beneficial in clinical trials. Inhibitors of the B-cell receptor for antigen signaling and antibodies against type I interferon are in the pipeline. The TLR7 to TLR9 blocker hydroxychloroquine has been in use in patients with lupus for more than 50 years, but oligonucleotide-based inhibitors of TLR7 to TLR9, despite showing promise in animal models of lupus, have not reached the primary end point in a recent phase 1 trial. These data point toward possible redundancies in B-cell signaling/survival pathways, which must be better understood before future clinical trials are executed.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Bharat Kumar
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Vijay Aluri
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Petar Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
6
|
Discovering Molecules That Regulate Efferocytosis Using Primary Human Macrophages and High Content Imaging. PLoS One 2015; 10:e0145078. [PMID: 26674639 PMCID: PMC4686065 DOI: 10.1371/journal.pone.0145078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/28/2015] [Indexed: 12/20/2022] Open
Abstract
Defective clearance of apoptotic cells can result in sustained inflammation and subsequent autoimmunity. Macrophages, the “professional phagocyte” of the body, are responsible for efficient, non-phlogistic, apoptotic cell clearance. Controlling phagocytosis of apoptotic cells by macrophages is an attractive therapeutic opportunity to ameliorate inflammation. Using high content imaging, we have developed a system for evaluating the effects of antibody treatment on apoptotic cell uptake in primary human macrophages by comparing the Phagocytic Index (PI) for each antibody. Herein we demonstrate the feasibility of evaluating a panel of antibodies of unknown specificities obtained by immunization of mice with primary human macrophages and show that they can be distinguished based on individual PI measurements. In this study ~50% of antibodies obtained enhance phagocytosis of apoptotic cells while approximately 5% of the antibodies in the panel exhibit some inhibition. Though the specificities of the majority of antibodies are unknown, two of the antibodies that improved apoptotic cell uptake recognize recombinant MerTK; a receptor known to function in this capacity in vivo. The agonistic impact of these antibodies on efferocytosis could be demonstrated without addition of either of the MerTK ligands, Gas6 or ProS. These results validate applying the mechanism of this fundamental biological process as a means for identification of modulators that could potentially serve as therapeutics. This strategy for interrogating macrophages to discover molecules regulating apoptotic cell uptake is not limited by access to purified protein thereby increasing the possibility of finding novel apoptotic cell uptake pathways.
Collapse
|
7
|
Biermann M, Maueröder C, Brauner JM, Chaurio R, Janko C, Herrmann M, Muñoz LE. Surface code--biophysical signals for apoptotic cell clearance. Phys Biol 2013; 10:065007. [PMID: 24305041 DOI: 10.1088/1478-3975/10/6/065007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called 'find-me', 'eat me' and 'tolerate me' signals. Mononuclear phagocytes are attracted by various 'find-me' signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via 'stay away' signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main 'eat me' signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as 'tolerate me' signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.
Collapse
Affiliation(s)
- Mona Biermann
- Friedrich-Alexander Universität, Department of Internal Medicine 3-Rheumatology and Immunology, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Matesic D, Lenert A, Lenert P. Modulating toll-like receptor 7 and 9 responses as therapy for allergy and autoimmunity. Curr Allergy Asthma Rep 2013; 12:8-17. [PMID: 22086297 DOI: 10.1007/s11882-011-0233-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type I allergic diseases, such as allergic rhinitis and asthma, depend on allergen-induced T-helper type 2 (Th2) cells and IgE-secreting plasma cells. Fortunately, this harmful immune response can be modified by engaging Toll-like receptor (TLR)7 and TLR9, offering hopes to allergy sufferers. While clinical trials employing synthetic ligands for TLR7 or TLR9 are under way, one can wonder whether TLR7 or TLR9 engagements may trigger inadvertent autoreactivity and/or Th1-/Th17-mediated tissue pathology. To neutralize such danger, we have pioneered the development of potent TLR9 pathway antagonists, inhibitory oligonucleotides (INH-ODNs), which work in a sequence-specific manner. Interestingly, INH-ODNs also have TLR7-inhibitory properties; however, these effects appear to be sequence independent and phosphorothioate backbone dependent. In B cells, co-engagement of the B-cell receptor for antigen and TLR7 or TLR9 may influence how INH-ODNs impose their regulatory effects. INH-ODNs block TLR9 activation by competitively antagonizing ligand binding to proteolytically cleaved C-terminal TLR9 fragment. One may envision future use of INH-ODNs in systemic autoimmune diseases, DNA-mediated sepsis, or other situations in which chronic inflammation results from abnormal TLR7- and/or TLR9-mediated immune activation.
Collapse
Affiliation(s)
- Damir Matesic
- Indiana Institute of Immunology, Allergy, and Asthma, Kokomo, IN 46902, USA.
| | | | | |
Collapse
|
9
|
Lu MM, Ye QL, Feng CC, Yang J, Zhang T, Li J, Leng RX, Pan HF, Yuan H, Ye DQ. Association of FAS gene polymorphisms with systemic lupus erythematosus: A case-control study and meta-analysis. Exp Ther Med 2012. [PMID: 23181125 PMCID: PMC3503889 DOI: 10.3892/etm.2012.625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The association of functional polymorphisms in the promoter of the apoptosis gene FAS with systemic lupus erythematosus (SLE) susceptibility has been a controversial subject. We conducted a case-control study to investigate this association in a Chinese population and performed a meta-analysis in different populations. The single nucleotide polymorphisms (SNPs) rs2234767 (-1377G>A) and rs1800682 (-670A>G) were genotyped by TaqMan allelic discrimination assays in 552 Chinese SLE patients and 718 healthy controls. In our case-control study, we observed allelic association between the promoter SNP rs2234767 [P=0.033, odds ratio (OR)=0.836, 95% confidence interval (CI), 0.709-0.986] and SLE but not the SNP rs1800682. Haplotype analysis revealed that one haplotype of GA was significantly associated with the disease (P=0.039, OR=1.184, 95% CI, 1.009-1.391). In the meta-analysis available studies, including our data, were combined using the STATA software package v.7.0. The meta-analysis revealed a significant association between FAS polymorphisms and SLE (rs2234767 A vs. G allele; P=0.004, OR=0.819, 95% CI, 0.715-0.938, rs1800682 G vs. A allele: P=0.034, OR=0.791, 95% CI, 0.637-0.983). In conclusion, FAS gene polymorphisms may contribute to SLE susceptibility in the Chinese population, and the meta-analysis shows that FAS polymorphisms may be associated with SLE susceptibility in different populations.
Collapse
Affiliation(s)
- Man-Man Lu
- Department of Epidemiology and Biostatistics, School of Public Health, and ; Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Anhui Medical University, Hefei, Anhui 230032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
We report a young woman with sudden and severe retroorbital headache, neck pain, and a large sellar mass extending to the suprasellar cistern. A presumptive diagnosis of non-secreting pituitary macroadenoma undergoing apoplexy was made and transphenoidal surgery performed. Histopathology revealed mononuclear infiltration and marked non-hemorrhagic necrosis of the anterior pituitary consistent with a diagnosis of necrotizing infundibulo-hypophysitis. The possible pathogenesis of this rare variant of hypophysitis is discussed.
Collapse
Affiliation(s)
- Angelika Gutenberg
- Department of Neurosurgery, University Medical Center, Georg August University, 37099, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis 2010; 15:1098-113. [PMID: 20198437 DOI: 10.1007/s10495-010-0478-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex disease resulting from inflammatory responses of the immune system against several autoantigens. Inflammation is conditioned by the continuous presence of autoantibodies and leaked autoantigens, e.g. from not properly cleared dying and dead cells. Various soluble molecules and biophysical properties of the surface of apoptotic cells play significant roles in the appropriate recognition and further processing of dying and dead cells. We exemplarily discuss how Milk fat globule epidermal growth factor 8 (MFG-E8), biophysical membrane alterations, High mobility group box 1 (HMGB1), C-reactive protein (CRP), and anti-nuclear autoantibodies may contribute to the etiopathogenesis of the disease. Up to date knowledge about these key elements may provide new insights that lead to the development of new treatment strategies of the disease.
Collapse
|
12
|
Abstract
Systemic lupus erythematosus (SLE) persists as a chronic inflammatory autoimmune disease and is characterized by the production of autoantibodies and immune complexes that affect multiple organs. The underlying mechanism that triggers and sustains disease are complex and involve certain susceptibility genes and environmental factors. There have been several immune mediators linked to SLE including cytokines and chemokines that have been reviewed elsewhere [ 1-3 ]. A number of articles have reviewed the role of B cells and T cells in SLE [ 4-10 ]. Here, we focus on the role of dendritic cells (DC) and innate immune factors that may regulate autoreactive B cells.
Collapse
Affiliation(s)
- Heather M Seitz
- Johnson County Community College, Science Division, Overland Park, Kansas, USA
| | | |
Collapse
|
13
|
Kis-Toth K, Tsokos GC. Dendritic cell function in lupus: Independent contributors or victims of aberrant immune regulation. Autoimmunity 2010; 43:121-30. [PMID: 20102311 DOI: 10.3109/08916930903214041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dendritic cells (DCs) represent an important component of the immune system connecting the innate and adaptive immune responses. They are able to trigger strong immunity as well as tolerance against certain antigens, and therefore it is obvious that they have a central role in the expression of immunological diseases. However, because DCs are sparse, heterogeneous and plastic, their exact role in complex autoimmune diseases, such as systemic lupus erythematosus (SLE) remains not well defined. In this review, we make an attempt to summarize critically recent knowledge on the role of conventional DCs in the expression of autoimmunity and pathology in SLE.
Collapse
Affiliation(s)
- Katalin Kis-Toth
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Lenert P. Nucleic acid sensing receptors in systemic lupus erythematosus: development of novel DNA- and/or RNA-like analogues for treating lupus. Clin Exp Immunol 2010; 161:208-22. [PMID: 20456414 DOI: 10.1111/j.1365-2249.2010.04176.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Double-stranded (ds) DNA, DNA- or RNA-associated nucleoproteins are the primary autoimmune targets in SLE, yet their relative inability to trigger similar autoimmune responses in experimental animals has fascinated scientists for decades. While many cellular proteins bind non-specifically negatively charged nucleic acids, it was discovered only recently that several intracellular proteins are involved directly in innate recognition of exogenous DNA or RNA, or cytosol-residing DNA or RNA viruses. Thus, endosomal Toll-like receptors (TLR) mediate responses to double-stranded RNA (TLR-3), single-stranded RNA (TLR-7/8) or unmethylated bacterial cytosine (phosphodiester) guanine (CpG)-DNA (TLR-9), while DNA-dependent activator of IRFs/Z-DNA binding protein 1 (DAI/ZBP1), haematopoietic IFN-inducible nuclear protein-200 (p202), absent in melanoma 2 (AIM2), RNA polymerase III, retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) mediate responses to cytosolic dsDNA or dsRNA, respectively. TLR-induced responses are more robust than those induced by cytosolic DNA- or RNA- sensors, the later usually being limited to interferon regulatory factor 3 (IRF3)-dependent type I interferon (IFN) induction and nuclear factor (NF)-kappaB activation. Interestingly, AIM2 is not capable of inducing type I IFN, but rather plays a role in caspase I activation. DNA- or RNA-like synthetic inhibitory oligonucleotides (INH-ODN) have been developed that antagonize TLR-7- and/or TLR-9-induced activation in autoimmune B cells and in type I IFN-producing dendritic cells at low nanomolar concentrations. It is not known whether these INH-ODNs have any agonistic or antagonistic effects on cytosolic DNA or RNA sensors. While this remains to be determined in the future, in vivo studies have already shown their potential for preventing spontaneous lupus in various animal models of lupus. Several groups are exploring the possibility of translating these INH-ODNs into human therapeutics for treating SLE and bacterial DNA-induced sepsis.
Collapse
Affiliation(s)
- P Lenert
- Department of Internal Medicine, Division of Rheumatology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Richez C, Yasuda K, Bonegio RG, Watkins AA, Aprahamian T, Busto P, Richards RJ, Liu CL, Cheung R, Utz PJ, Marshak-Rothstein A, Rifkin IR. IFN regulatory factor 5 is required for disease development in the FcgammaRIIB-/-Yaa and FcgammaRIIB-/- mouse models of systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:796-806. [PMID: 20007534 PMCID: PMC2858062 DOI: 10.4049/jimmunol.0901748] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are strongly associated in human genetic studies with an increased risk of developing the autoimmune disease systemic lupus erythematosus. However, the biological role of IRF5 in lupus pathogenesis has not previously been tested in an animal model. In this study, we show that IRF5 is absolutely required for disease development in the FcgammaRIIB(-/-)Yaa and FcgammaRIIB(-/-) lupus models. In contrast to IRF5-sufficient FcgammaRIIB(-/-)Yaa mice, IRF5-deficient FcgammaRIIB(-/-)Yaa mice do not develop lupus manifestations and have a phenotype comparable to wild-type mice. Strikingly, full expression of IRF5 is required for the development of autoimmunity, as IRF5 heterozygotes had dramatically reduced disease. One effect of IRF5 is to induce the production of the type I IFN, IFN-alpha, a cytokine implicated in lupus pathogenesis. To address the mechanism by which IRF5 promotes disease, we evaluated FcgammaRIIB(-/-)Yaa mice lacking the type I IFN receptor subunit 1. Unlike the IRF5-deficient and IRF5-heterozygous FcgammaRIIB(-/-)Yaa mice, type I IFN receptor subunit 1-deficient FcgammaRIIB(-/-)Yaa mice maintained a substantial level of residual disease. Furthermore, in FcgammaRIIB(-/-) mice lacking Yaa, IRF5-deficiency also markedly reduced disease manifestations, indicating that the beneficial effects of IRF5 deficiency in FcgammaRIIB(-/-)Yaa mice are not due only to inhibition of the enhanced TLR7 signaling associated with the Yaa mutation. Overall, we demonstrate that IRF5 plays an essential role in lupus pathogenesis in murine models and that this is mediated through pathways beyond that of type I IFN production.
Collapse
Affiliation(s)
- Christophe Richez
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Suber T, Rosen A. Apoptotic cell blebs: repositories of autoantigens and contributors to immune context. ACTA ACUST UNITED AC 2009; 60:2216-9. [PMID: 19644864 DOI: 10.1002/art.24715] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Yasuda K, Richez C, Uccellini MB, Richards RJ, Bonegio RG, Akira S, Monestier M, Corley RB, Viglianti GA, Marshak-Rothstein A, Rifkin IR. Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. THE JOURNAL OF IMMUNOLOGY 2009; 183:3109-17. [PMID: 19648272 DOI: 10.4049/jimmunol.0900399] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although TLR9 was originally thought to specifically recognize microbial DNA, it is now evident that mammalian DNA can be an effective TLR9 ligand. However, the DNA sequence required for TLR9 activation is controversial, as studies have shown conflicting results depending on the nature of the DNA backbone, the route of DNA uptake, and the cell type being studied. In systemic lupus erythematosus, a major route whereby DNA gains access to intracellular TLR9, and thereby activates dendritic cells (DCs), is through uptake as a DNA-containing immune complex. In this report, we used defined dsDNA fragments with a natural (phosphodiester) backbone and show that unmethylated CpG dinucleotides within dsDNA are required for murine DC TLR9 activation induced by a DNA-containing immune complex. The strongest activation is seen with dsDNA fragments containing optimal CpG motifs (purine-purine-CpG-pyrimidine-pyrimidine) that are common in microbial DNA but rare in mammalian DNA. Importantly, however, activation can also be induced by CpG-rich DNA fragments that lack these optimal CpG motifs and that we show are plentiful in CpG islands within mammalian DNA. No activation is induced by DNA fragments lacking CpG dinucleotides, although this CpG-free DNA can induce DC activation if internalized by liposomal transfection instead of as an immune complex. Overall, the data suggest that the release of CpG-rich DNA from mammalian DNA may contribute to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus and psoriasis in which activation of TLR9 in DCs by self DNA has been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Kei Yasuda
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aprahamian T, Bonegio RG, Richez C, Yasuda K, Chiang LK, Sato K, Walsh K, Rifkin IR. The peroxisome proliferator-activated receptor gamma agonist rosiglitazone ameliorates murine lupus by induction of adiponectin. THE JOURNAL OF IMMUNOLOGY 2009; 182:340-6. [PMID: 19109165 DOI: 10.4049/jimmunol.182.1.340] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease for which current therapy is suboptimal. SLE is characterized by autoantibody production, with renal disease and premature atherosclerosis being common and severe manifestations causing appreciable morbidity and mortality. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are widely used in the treatment of diabetes mellitus for their insulin-sensitizing properties, but also have immunomodulatory effects. In this report, we show that the PPARgamma agonist rosiglitazone reduces autoantibody production, renal disease, and atherosclerosis in mouse models of SLE. The beneficial effect of rosiglitazone on SLE manifestations depends on the induction of adiponectin, because rosiglitazone has no effect on autoantibody production or renal disease in lupus mice that lack adiponectin. In addition, lupus mice that lack adiponectin develop more severe disease than adiponectin-sufficient lupus mice, indicating that endogenous adiponectin is involved in regulating disease activity. Furthermore, administration of exogenous adiponectin ameliorates disease. These experiments suggest that PPARgamma agonists may be useful agents for the treatment of SLE. They also demonstrate that induction of adiponectin is a major mechanism underlying the immunomodulatory effects of PPARgamma agonists.
Collapse
Affiliation(s)
- Tamar Aprahamian
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang D, Wang H, Ni B, He Y, Li J, Tang Y, Fu X, Wang Q, Xu G, Li K, Yang Z, Wu Y. Mutual activation of CD4+ T cells and monocytes mediated by NKG2D-MIC interaction requires IFN-gamma production in systemic lupus erythematosus. Mol Immunol 2009; 46:1432-42. [PMID: 19200602 DOI: 10.1016/j.molimm.2008.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 01/30/2023]
Abstract
The activating receptor NKG2D is mainly expressed by human CD8(+) T cells and NK cells but normally absent on CD4(+) T cells. However, a subset of autoreactive NKG2D(+)CD4(+) T cells has been found to exist in some autoimmune disease such as rheumatoid arthritis (RA) and to participate in the imbalance of immune response and inflammation. Up to date this observation has been extended to some autoimmune diseases such as RA and Crohn's disease and the mechanism underlying the presence of this type of NKG2D(+)CD4(+) T cells has not been delineated yet. In this study, we found that a substantial proportion of CD4(+) T cells expressed NKG2D in the PBMC of SLE patients. We also found that monocytes in SLE aberrantly expressed the NKG2D ligand of MHC class I chain-related (MIC) molecules and membrane-bound IL-15 (mIL-15) at the cell surface. When cultured with the sera from SLE patients, the monocytes from healthy volunteers could be induced to express MIC and mIL-15. However, this induced expression of MIC and mIL-15 could be blocked with anti-IFN-gamma receptor (anti-IFN-gammaR) antibody. We further demonstrated that NKG2D could be induced on normal CD4(+) T cells either cocultured with monocytes from patients with SLE, or monocytes from healthy volunteers but pretreated with IFN-gamma. Moreover, Th1 cytokines were found to be produced by NKG2D(+)CD4(+) T cells in the coculture system. By transwell assay, we found that both NKG2D expression and Th1 cytokines production depended on the cell-cell contact. These results indicate that the elevated sera IFN-gamma may be responsible for MIC and mIL-15 induction on monocytes in SLE; mIL-15 on monocytes contribute to NKG2D receptor induction on a subset of CD4(+) T cells. Moreover, CD14(+) monocytes promote NKG2D(+)CD4(+) T cells activation through the NKG2D-MIC engagement in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Di Yang
- The Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Turi M, D’urbano M, Celletti E, Alessandri C, Valesini G, Paganelli R. SERUM sFas/sFasL RATIO IN SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) IS A FUNCTION OF AGE. Arch Gerontol Geriatr 2009; 49 Suppl 1:221-6. [DOI: 10.1016/j.archger.2009.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Fas expression on peripheral blood lymphocytes in systemic lupus erythematosus: relation to the organ damage and lymphocytes apoptosis. Mol Biol Rep 2008; 36:2047-52. [DOI: 10.1007/s11033-008-9415-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/29/2008] [Indexed: 12/19/2022]
|
22
|
Hutcheson J, Scatizzi JC, Siddiqui AM, Haines GK, Wu T, Li QZ, Davis LS, Mohan C, Perlman H. Combined Deficiency of Proapoptotic Regulators Bim and Fas Results in the Early Onset of Systemic Autoimmunity. Immunity 2008; 28:206-17. [DOI: 10.1016/j.immuni.2007.12.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/11/2007] [Accepted: 12/14/2007] [Indexed: 01/02/2023]
|
23
|
Dieker J, Cisterna B, Monneaux F, Decossas M, van der Vlag J, Biggiogera M, Muller S. Apoptosis-linked changes in the phosphorylation status and subcellular localization of the spliceosomal autoantigen U1-70K. Cell Death Differ 2008; 15:793-804. [PMID: 18202700 DOI: 10.1038/sj.cdd.4402312] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Apoptosis consists of highly regulated pathways involving post-translational modifications and cleavage of proteins leading to sequential inactivation of the main cellular processes. Here, we focused on the apoptotic processing of one of the essential components of the mRNA splicing machinery, the U1-70K snRNP protein. We found that at an early stage of apoptosis, before the cleavage of the C-terminal part of the protein by caspase-3, the basal phosphorylation of the Ser140 residue located within the RNA recognition motif, increases very significantly. A caspase-dependent, PP1-mediated dephosphorylation of other serine residues takes place in a subset of U1-70K proteins. The U1-70K protein phosphorylated at Ser140 is clustered in heterogeneous ectopic RNP-derived structures, which are finally extruded in apoptotic bodies. The elaborate processing of the spliceosomal U1-70K protein we identified might play an important role in the regulated breakdown of the mRNA splicing machinery during early apoptosis. In addition, these specific changes in the phosphorylation/dephosphorylation balance and the subcellular localization of the U1-70K protein might explain why the region encompassing the Ser140 residue becomes a central autoantigen during the autoimmune disease systemic lupus erythematosus.
Collapse
Affiliation(s)
- J Dieker
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Monrad S, Kaplan MJ. Dendritic cells and the immunopathogenesis of systemic lupus erythematosus. Immunol Res 2007; 37:135-45. [PMID: 17695248 DOI: 10.1007/bf02685895] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, the role of dendritic cells (DCs) in the immunopathogenesis of systemic lupus erythematosus (SLE) has become apparent. As unique mediators of both tolerance and immunity, aberrant myeloid and plasmacytoid DC function can promote autoimmune responses via a number of mechanisms and proinflammatory pathways. This review provides an overview of DC function, the potential role of DCs in promoting autoimmune responses in SLE, and how other abnormalities in lupus can lead to an enhanced engagement of DCs in immune responses. How medications used to treat SLE and other autoimmune conditions may exert effects on DCs is also explored.
Collapse
Affiliation(s)
- Seetha Monrad
- Division of Rheumatology, University of Michigan, 5520 MSRBI, Box 0680, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
26
|
Trouw LA, Bengtsson AA, Gelderman KA, Dahlbäck B, Sturfelt G, Blom AM. C4b-binding Protein and Factor H Compensate for the Loss of Membrane-bound Complement Inhibitors to Protect Apoptotic Cells against Excessive Complement Attack. J Biol Chem 2007; 282:28540-28548. [PMID: 17699521 DOI: 10.1074/jbc.m704354200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Apoptotic cells have been reported to down-regulate membrane-bound complement regulatory proteins (m-C-Reg) and to activate complement. Nonetheless, most apoptotic cells do not undergo complement-mediated lysis. Therefore, we hypothesized that fluid phase complement inhibitors would bind to apoptotic cells and compensate functionally for the loss of m-C-Reg. We observed that m-C-Reg are down-regulated rapidly upon apoptosis but that complement activation follows only after a gap of several hours. Coinciding with, but independent from, complement activation, fluid phase complement inhibitors C4b-binding protein (C4BP) and factor H (fH) bind to the cells. C4BP and fH do not entirely prevent complement activation but strongly limit C3 and C9 deposition. Late apoptotic cells, present in blood of healthy controls and systemic lupus erythematosus patients, are also positive for C4BP and fH. Upon culture, the percentage of late apoptotic cells increases, paralleled by increased C4BP binding. C4BP binds to dead cells mainly via phosphatidylserine, whereas fH binds via multiple interactions with CRP playing no major role for binding of C4BP or fH. In conclusion, during late apoptosis, cells acquire fluid phase complement inhibitors that compensate for the down-regulation of m-C-Reg and protect against excessive complement activation and lysis.
Collapse
Affiliation(s)
- Leendert A Trouw
- Department of Laboratory Medicine, University Hospital Malmö, 5-20502 Malmö, Sweden
| | - Anders A Bengtsson
- Department of Clinical Science, Rheumatology, Lund University, 5-22184 Lund, Sweden
| | - Kyra A Gelderman
- Unit for Medical Inflammation Research, Lund University, 5-22184 Lund, Sweden
| | - Björn Dahlbäck
- Department of Laboratory Medicine, University Hospital Malmö, 5-20502 Malmö, Sweden
| | - Gunnar Sturfelt
- Department of Clinical Science, Rheumatology, Lund University, 5-22184 Lund, Sweden
| | - Anna M Blom
- Department of Laboratory Medicine, University Hospital Malmö, 5-20502 Malmö, Sweden.
| |
Collapse
|
27
|
Vogt B, Führnrohr B, Müller R, Sheriff A. CRP and the disposal of dying cells: consequences for systemic lupus erythematosus and rheumatoid arthritis. Autoimmunity 2007; 40:295-8. [PMID: 17516213 DOI: 10.1080/08916930701358925] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
C reactive protein (CRP) levels directly correlate with the disease activity of many inflammatory diseases, e.g. sepsis, infection, and various autoimmunopathies such as rheumatoid arthritis (RA). In contrast, insufficient CRP levels are implicated in the development of systemic lupus erythematosus (SLE). This article reports on the level-depended effects of CRP in various diseases. In detail we show that increased and decreased levels of CRP, as demonstrated in patients with RA and SLE, respectively can contribute to disease progression.
Collapse
Affiliation(s)
- Birgit Vogt
- Department of Biotechnology, University of Applied Science, Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Gaipl US, Munoz LE, Rödel F, Pausch F, Frey B, Brachvogel B, von der Mark K, Pöschl E. Modulation of the immune system by dying cells and the phosphatidylserine-ligand annexin A5. Autoimmunity 2007; 40:254-9. [PMID: 17516206 DOI: 10.1080/08916930701357331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptotic cell death and the efficient clearance of dying cells are essential mechanisms to control tissue homeostasis and to eliminate potential autoantigens. Numerous alterations on the surfaces of dying cells define a highly characteristic membrane signature and enable an unequivocal distinction from vital cells. This way, phagocytosis is initiated and signalling events induced which minimize inflammatory reactions. Therefore, the use of proteins interfering with the clearance process may open up new vistas to improve immunization strategies and may help to understand the mechanisms of autoimmune diseases.
Collapse
Affiliation(s)
- Udo S Gaipl
- Department of Internal Medicine 3, University Hospital Erlangen, Erlangen. Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pisetsky DS, Fairhurst AM. The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity 2007; 40:281-4. [PMID: 17516210 DOI: 10.1080/08916930701358826] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA is a nuclear molecule that has both an intracellular and extracellular role. Inside the cell, it is the essential molecule of heredity while outside the cell it can have immunological activity, both alone and in the context of immune complexes. Furthermore, extracellular DNA has information content that can be mined by genomic techniques. Because of the association of extracellular DNA with clinical conditions marked by cell death, dead and dying cells have been considered the origin of this material. To investigate this process, in vitro and in vivo systems have been used to determine the release of DNA from cells, using Jurkat T cells as a model. Thus, in vitro, apoptotic Jurkat cells release DNA whereas necrotic cells do not. The presence of macrophages in these cultures, however, modifies the release process, causing release from necrotic cells as well. In in vivo experiments in which Jurkat cells are administered to normal mice, both apoptotic and necrotic cells give rise to DNA in the blood in a process that requires macrophages and can be modified by glucocorticoids. In this model, female and male mice differ in the extent of DNA release from the administered Jurkat cells. Together, these results indicate that, while apoptosis and necrosis can lead to a blood DNA response, this process requires macrophages and may be hormonally mediated.
Collapse
Affiliation(s)
- David S Pisetsky
- Durham VA Medical Center, Duke University, Durham, NC 27705, USA.
| | | |
Collapse
|
30
|
Grossmayer GE, Munoz LE, Gaipl US, Franz S, Sheriff A, Voll RE, Kalden JR, Herrmann M. Removal of dying cells and systemic lupus erythematosus. Mod Rheumatol 2007; 15:383-90. [PMID: 17029100 DOI: 10.1007/s10165-005-0430-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a very heterogeneous systemic autoimmune disease, in which autoantibody synthesis against nuclear constituents is the main immunological characteristic. These autoantibodies underwent affinity maturation and isotype switching. Additionally, T-cell tolerance against nuclear autoantigens should be affected in these autoimmune patients. Nuclear material derived from apoptotic and/or necrotic cells may serve as an important source of autoantigens. However, dead and dying cells as well as cellular debris are rapidly removed from tissues by phagocytes without eliciting inflammation or immune responses under healthy conditions. During apoptosis nuclear components are strongly modified through enzymatic reactions. If these cells are not timely cleared, those autoantigens may be released, taken up, and presented by dendritic cells in tissues or presented by follicular dendritic cells in lymph nodes to T and B cells, respectively. This could be a mechanism for breaking the peripheral self-tolerance. In this article we focus on the deficient clearance of apoptotic cells in SLE patients and its importance in development of this autoimmune disease.
Collapse
Affiliation(s)
- Gerhard E Grossmayer
- Institute for Clinical Immunology, Department of Medicine 3, Friedrich-Alexander University of Erlangen-Nuremberg, Glückstrasse 4a, 91054, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Allina J, Hu B, Sullivan DM, Fiel MI, Thung SN, Bronk SF, Huebert RC, van de Water J, LaRusso NF, Gershwin ME, Gores GJ, Odin JA. T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 2007; 27:232-41. [PMID: 17222534 PMCID: PMC6200357 DOI: 10.1016/j.jaut.2006.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 11/22/2006] [Accepted: 11/23/2006] [Indexed: 12/21/2022]
Abstract
Primary biliary cirrhosis (PBC) is characterized by loss of tolerance against ubiquitously expressed mitochondrial autoantigens followed by biliary and salivary gland epithelial cell (BEC and SGEC) destruction by autoreactive T cells. It is unclear why BECs and SGECs are targeted. Previous work demonstrated that the reduced form of the major PBC autoantigen predominated in apoptotic BECs and SGECs as opposed to an oxidized form in other apoptotic cells. This led to the hypothesis that presentation of novel self-peptides from phagocytosed apoptotic BECs might contribute to BEC targeting by autoreactive T cells. The effect of autoantigen redox status on self-peptide formation was examined along with the phagocytic ability of BECs. Oxidation of PBC autoantigens first was shown to be due to protein S-glutathionylation of lipoyllysine residues. Absence of protein S-glutathionylation generated novel self-peptides and affected T cell recognition of a lipoyllysine containing peptide. Liver biopsy staining revealed BEC phagocytosis of apoptotic BECs (3.74+/-2.90% of BEC) was present in PBC (7 of 7 cases) but not in normal livers (0 of 3). BECs have the ability to present novel mitochondrial self-peptides derived from phagocytosed apoptotic BECs. Apoptotic cell phagocytosis by non-professional phagocytes may influence the tissue specificity of autoimmune diseases.
Collapse
Affiliation(s)
- Jorge Allina
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| | - Bin Hu
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| | | | - Maria Isabel Fiel
- Department of Pathology, The Mount Sinai School of Medicine, New York, NY, USA
| | - Swan N. Thung
- Department of Pathology, The Mount Sinai School of Medicine, New York, NY, USA
| | - Steven F. Bronk
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert C. Huebert
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Judy van de Water
- Department of Internal Medicine, School of Medicine of the University of California, Davis, CA, USA
| | | | - M. E. Gershwin
- Department of Internal Medicine, School of Medicine of the University of California, Davis, CA, USA
| | - Gregory J. Gores
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Joseph A. Odin
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
|
34
|
Valencia-Pacheco G, Layseca-Espinosa E, Niño-Moreno P, Portales-Pérez DP, Baranda L, Rosenstein Y, Abud-Mendoza C, González-Amaro R. Expression and function of IL-10R in mononuclear cells from patients with systemic lupus erythematosus. Scand J Rheumatol 2006; 35:368-78. [PMID: 17062437 DOI: 10.1080/03009740600709840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To assess the expression and function of the receptor for interleukin-10 (IL-10R) in immune cells from patients with systemic lupus erythematosus (SLE). METHODS We assessed the expression and function of IL-10R in peripheral blood mononuclear cells (PBMCs) from 19 SLE patients and 15 healthy controls. The expression of IL-10R was assessed by flow cytometry, and the function of this receptor was determined by analysing both the activation of Jak-1, Tyk-2, Stat-1, and Stat-3 (Western blot) and the induction of gene expression (cDNA array test of 242 genes of cytokines, apoptosis and intracellular signalling) upon stimulation with IL-10. RESULTS We found similar levels of IL-10R expression in SLE patients and controls. In addition, variable levels of Jak-1, Tyk-2, Stat-1, and Stat-3 activation were induced by IL-10 in PBMCs from SLE patients and controls, with no significant differences in protein phosphorylation or kinetics of activation. However, clear-cut differences in the gene expression induced through IL-10R were observed in SLE patients and controls, mainly in the genes involved in apoptosis and those encoding for cytokines and their receptors. CONCLUSIONS Our data suggest that despite normal levels of IL-10R expression, and an apparent lack of abnormalities in the intracellular signals induced through this receptor, immune cells from SLE patients exhibit an aberrant pattern of gene expression induced through the IL-10R.
Collapse
Affiliation(s)
- G Valencia-Pacheco
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
DNA is a large macromolecule that plays a central role in the pathogenesis of systemic lupus erythematosus (SLE), serving as a target antigen of autoantibodies as well as a major component of immune complexes. These complexes can both promote immune disturbances as well as deposit in the kidney to incite inflammation. While the origin of anti-DNA autoantibodies in SLE has received intense investigation, the mechanisms by which DNA exits cells to form immune complexes in the circulation is not well understood. To determine the origin of DNA circulating in the blood in SLE, our laboratory has been using a murine model system to track the in vivo fate of DNA from Jurkat T cells that have been made apoptotic or necrotic in vitro and then administered to mice. Results of these studies indicate that DNA from apoptotic and necrotic cells appears in the blood in a time- and dose-dependent manner. Irrespective of origin, this DNA has properties of nucleosomes as shown by its molecular weight. The process of release requires the presence of macrophages and can be modified by glucocorticoids as well as inflammation. In addition, sex may play a role in the generation of extracellular DNA from dead cells as male and female mice differ in their responses in this model. Together, these studies clarify the origin of extracellular DNA circulating in the blood in SLE and suggest steps in this process that can be interdicted by novel therapy.
Collapse
Affiliation(s)
- D S Pisetsky
- Medical Research Service, Division of Rheumatology and Immunology, Duke University Medical Center, Durham VA Hospital, 508 Fulton Street, Durham, NC 27705, USA.
| | | |
Collapse
|
36
|
Rovere-Querini P, Manfredi AA, Sabbadini MG. Environmental adjuvants, apoptosis and the censorship over autoimmunity. Autoimmun Rev 2006; 4:555-60. [PMID: 16214095 DOI: 10.1016/j.autrev.2005.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.
Collapse
Affiliation(s)
- Patrizia Rovere-Querini
- H San Raffaele Scientific Institute and Vita-Salute San Raffaele University, DIBIT 3A1, Via Olgettina 58, 20132 Milano, Italy.
| | | | | |
Collapse
|
37
|
Fürnrohr BG, Sheriff A, Munoz L, von Briesen H, Urbonaviciute V, Neubert K, Kalden JR, Herrmann M, Voll RE. Signals, receptors, and cytokines involved in the immunomodulatory and anti-inflammatory properties of apoptotic cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200500071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Baranda L, de la Fuente H, Layseca-Espinosa E, Portales-Pérez D, Niño-Moreno P, Valencia-Pacheco G, Abud-Mendoza C, Alcocer-Varela J, González-Amaro R. IL-15 and IL-15R in leucocytes from patients with systemic lupus erythematosus. Rheumatology (Oxford) 2005; 44:1507-13. [PMID: 16251219 DOI: 10.1093/rheumatology/kei083] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To assess the functional status of the IL-15/IL-15Ralpha cytokine system in different leucocyte subsets from patients with systemic lupus erythematosus (SLE). METHODS Eighteen patients with SLE (10 with inactive and eight with active disease) and 14 healthy individuals were studied. Serum levels and in vitro production of IL-15 were determined. In addition, the expression of IL-15 receptor alpha (IL-15Ralpha) and membrane-bound IL-15 was assessed and the in vitro effects of IL-15 on CD69 and CD64 expression, interferon-gamma and TNF-alpha synthesis, respiratory burst induction and apoptosis were studied. RESULTS Serum levels of IL-15 were significantly increased in inactive and active patients with SLE. Accordingly, the in vitro synthesis and release of IL-15 by monocytes in response to IFN-gamma+lipopolysaccharide was significantly enhanced in SLE patients with active disease, as was the percentage of membrane-bound IL-15+ monocytes. On the other hand, enhanced basal expression of IL-15Ralpha was detected in leucocytes from SLE patients, with defective induction upon stimulation with phytohaemagglutinin or phorbol myristate acetate/ionomycin. Furthermore, diminished induction of CD69 expression and interferon-gamma and TNF-alpha synthesis by recombinant human IL-15 was detected in peripheral blood mononuclear cells from SLE, and there was defective induction of CD64 and priming for respiratory burst in neutrophils. The anti-apoptotic effect of IL-15 was diminished in leucocytes from SLE patients. CONCLUSION Our data indicate that there is enhanced synthesis of IL-15 by immune cells from SLE patients, with a poor response to this cytokine by different leucocyte subsets. This abnormal function of IL-15/IL-15Ralpha may contribute significantly to the pathogenesis of SLE.
Collapse
Affiliation(s)
- L Baranda
- Departamento de Inmunología, Facultad de Medicina, UASLP, San Luis Potosí, SLP, México
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Maderna P, Godson C. Taking insult from injury: lipoxins and lipoxin receptor agonists and phagocytosis of apoptotic cells. Prostaglandins Leukot Essent Fatty Acids 2005; 73:179-87. [PMID: 15978792 DOI: 10.1016/j.plefa.2005.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phagocytic clearance of apoptotic cells plays a pivotal role in the resolution of inflammation. Recent evidence has shown that such processes can be regulated by endogenous mediators, suggesting that specific mimetics may have therapeutic potential in chronic inflammation and autoimmune disorders. Here we review the mechanisms underlying recognition and engulfment of apoptotic cells and regulation of these processes by lipoxins and lipoxin receptor agonists.
Collapse
Affiliation(s)
- Paola Maderna
- Department of Medicine and Therapeutics, The Conway Institute of Biomolecular and Biomedical Research and The Dublin Molecular Medicine Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
40
|
Munoz LE, Gaipl US, Franz S, Sheriff A, Voll RE, Kalden JR, Herrmann M. SLE—a disease of clearance deficiency? Rheumatology (Oxford) 2005; 44:1101-7. [PMID: 15928001 DOI: 10.1093/rheumatology/keh693] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial disease and its pathogenesis and precise aetiology remain unknown. Under physiological conditions, neither apoptotic nor necrotic cell material is easily found in tissues because of its quick removal by a highly efficient scavenger system. Autoantigens are found in apoptotic and necrotic material and they are recognized by autoimmune sera from SLE patients. The clearance of dying cells is finely regulated by a highly redundant system of receptors on phagocytic cells and bridging molecules, which detect molecules specific for dying cells. Changes on apoptotic and necrotic cell surfaces are extremely important for their recognition and further disposal. Some SLE patients seem to have an impaired ability to clear such apoptotic material from tissues, and this could cause the breakdown of central and peripheral mechanisms of tolerance against self-antigens. In this article, we address the cells, receptors and molecules involved in the clearance process and show how deficiencies in this process may contribute to the aetiopathogenesis of SLE.
Collapse
Affiliation(s)
- L E Munoz
- Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Gaipl US, Franz S, Voll RE, Sheriff A, Kalden JR, Herrmann M. Defects in the disposal of dying cells lead to autoimmunity. Curr Rheumatol Rep 2005; 6:401-7. [PMID: 15527698 DOI: 10.1007/s11926-004-0016-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fast and efficient uptake of dying cells is of main importance to prevent contact of the immune system with intracellular autoantigens. Insufficient clearance of the latter is discussed to drive the humoral autoimmune response in systemic lupus erythematosus. Many adaptor molecules and receptors are involved in the recognition of dying cells. In this paper we focus on the involvement of phosphatidylserine, glycoproteins, and complement and DNaseI in the clearance of apoptotic and necrotic cells, respectively. Furthermore, extracellular danger signals released from necrotic cells are discussed and the uptake process of primary necrotic cells is investigated in detail. Last but not least, the character and origin of clearance defects observed in some systemic lupus erythematosus patients is presented.
Collapse
Affiliation(s)
- Udo S Gaipl
- Institute for Clinical Immunology, Friedrich-Alexander-University of Erlangen-Nuremberg, Glückstrasse 4a, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Pacheco FJ, Servin J, Dang D, Kim J, Molinaro C, Daniels T, Brown-Bryan TA, Imoto-Egami M, Casiano CA. Involvement of lysosomal cathepsins in the cleavage of DNA topoisomerase I during necrotic cell death. ACTA ACUST UNITED AC 2005; 52:2133-45. [PMID: 15986368 DOI: 10.1002/art.21147] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Autoantibodies to DNA topoisomerase I (topo I) are associated with diffuse systemic sclerosis (SSc), appear to be antigen driven, and may be triggered by cryptic epitopes exposed during in vivo topo I fragmentation. These autoantibodies recognize topo I and fragments of this autoantigen generated during apoptosis and necrosis. We undertook this study to determine whether lysosomal cathepsins are involved in topo I fragmentation during necrosis. METHODS Topo I cleavage during necrosis was assessed by immunoblotting of lysates from L929 fibroblasts exposed to tumor necrosis factor alpha (TNFalpha) and the broad caspase inhibitor Z-VAD-FMK, and by immunoblotting of lysates from endothelial cells treated with HgCl2. Purified topo I and L929 nuclei were incubated with cathepsins B, D, G, H, and L, and topo I cleavage was detected by immunoblotting. The intracellular localization of cathepsin L activity and topo I in necrotic cells was examined using fluorescence microscopy. RESULTS Treatment of L929 cells with TNFalpha and Z-VAD-FMK induced caspase-independent cell death with necrotic morphology. This cell death involved topo I cleavage into fragments of approximately 70 kd and 45 kd. This cleavage profile was reproduced in vitro by cathepsins L and H and was inhibited by the cathepsin L inhibitor Z-FY-CHO. During necrosis, cathepsin L activity diffused from lysosomes into the cytoplasm and nucleus, whereas topo I partially relocalized to the cytoplasm. Z-FY-CHO delayed necrosis and partially blocked topo I cleavage. The topo I cleavage fragments were also detected in necrotic endothelial cells and recognized by SSc sera containing anti-topo I antibodies. CONCLUSION These results implicate cathepsins, particularly cathepsin L, in the cleavage of topo I during necrosis. This cleavage may generate potentially immunogenic fragments that could trigger anti-topo I immune responses in SSc.
Collapse
Affiliation(s)
- Fabio J Pacheco
- Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | | | | | | | |
Collapse
|