1
|
Das R, Kumar A, Singh C, Kayastha AM. Innovative synthesis approaches and health implications of organic-inorganic Nanohybrids for food industry applications. Food Chem 2025; 464:141905. [PMID: 39504907 DOI: 10.1016/j.foodchem.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Recent advancements in nanomaterials have significantly impacted various sectors, including medicine, energy, and manufacturing. Among these, organic/inorganic nanohybrids have emerged as transformative tools in the food industry. This review focuses on the innovative applications of these nanohybrids in food packaging, enzyme immobilization, and contamination detection. By combining organic and inorganic components, nanohybrids enable the customization of properties such as barrier performance, mechanical strength, and antimicrobial activity. Organic-inorganic nanohybrids offer promising solutions for the food industry, enhancing safety, quality, and processing efficiency. Examples include gold nanoparticles (AuNPs) used in biosensors for rapid detection of foodborne pathogens, graphene oxide (GO) nanosheets in advanced filtration membranes, and nanocellulose as a fat replacer in low-fat yogurt to improve texture and taste. Quantum dots (QDs) also aid in food traceability by detecting product authenticity. While these technologies showcase transformative potential, challenges like scalability, regulatory compliance, environmental impact, and potential toxicity must be addressed to ensure safe and sustainable adoption. However, to fully harness their benefits, it is crucial to thoroughly assess their toxicological profiles to mitigate potential adverse health effects. This necessitates comprehensive studies on their interactions with biological systems, dose-response relationships, and long-term impacts. Establishing standardized safety protocols and regulatory guidelines is essential to ensure that the utilization of these nanomaterials does not compromise human health while maximizing their advantages.
Collapse
Affiliation(s)
- Ranjana Das
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Avinash Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chandan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Petroni S, Orsini SF, Bugnotti D, Callone E, Dirè S, Zoia L, Bongiovanni R, Dalle Vacche S, Vitale A, Raimondo L, Sassella A, Mariani P, D'Arienzo M, Cipolla L. Photocrosslinkable starch cinnamyl ethers as bioinspired bio-based polymers. J Mater Chem B 2025; 13:943-954. [PMID: 39652159 DOI: 10.1039/d4tb01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A novel starch-based ether bearing cinnamyl functionalities, conferring photo-crosslinking properties, is synthesised by reaction with cinnamyl chloride in the presence of sodium hydroxide. Natural yuca was selected as a sustainable source of starch. Three different molar equivalents of reagents are used, affording starch-cinnamyl ethers with different degrees of substitution, ranging from 0.09 to 1.24, as determined by liquid phase nuclear magnetic resonance (NMR). The double bonds in the cinnamyl moieties show reactivity towards photodimerization upon irradiation at 254 nm, affording a novel cross-linked bio-inspired polymer. The formation of the covalent ether linkage and the [2+2] cycloaddition of the cinnamyl units are confirmed by a combination of spectroscopic techniques, including solid state NMR. The materials are further characterized by gel permeation chromatography (GPC), thermogravimetric analysis (TGA), and X-ray diffraction analysis (XRD). Starch-cinnamyl ethers with a DS of 0.09 are water soluble, and suitable for the preparation of transparent films potentially exploitable for biodegradable packaging materials.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.za della Scienza 2, 20126 Milano, Italy.
| | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Daniele Bugnotti
- "Klaus Müller" Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Emanuela Callone
- "Klaus Müller" Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Sandra Dirè
- "Klaus Müller" Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- Department Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Zoia
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Building U01, Piazza della Scienza 1, 20126 Milan, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy
| | - Sara Dalle Vacche
- Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy
| | - Alessandra Vitale
- Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy
| | - Luisa Raimondo
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Adele Sassella
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Pietro Mariani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.za della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
3
|
Velazquez G, Mendez-Montealvo G, Morales-Sanchez E, Sifuentes-Nieves I, Velazquez-Castillo R, Soler A. Autoclaved Starch: Structure and Functionality Relationship in a Matrix With the Same Contribution of Amylose and Amylopectin. Biopolymers 2025; 116:e23624. [PMID: 39257344 DOI: 10.1002/bip.23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
The rational use of autoclaved starches in food applications is difficult because there is a lack of information on their structure-functionality relationship. The novelty of this research relies on disclosing such an association. Hylon V starch was autoclaved at 105, 120, and 135°C to investigate its crystalline and double-helical features and its relationship with functionality. In autoclaved Hylon V starch, interactions of amylopectin and amylose improved while the crystalline regions decreased. The degree of double helices (DD) decreased after autoclaving at 105°C and the degree of order (DO) increased after treatment at 120 and 135°C. The water solubility index (WSI) (4.63-6.38%) and swelling power (SP) (4.39-7.1 g/g) increased when the temperature increased. On the other hand, water (103.49-225.01%) and oil (61.91-94.53%) holding capacity (WHC and OHC, respectively) increased after autoclaving treatment, although the values decreased with the treatment intensity. The functional properties were affected when the structure changed as a function of the treatment temperatures. PCA analysis showed that WSI and SP of autoclaved Hylon V starch were associated with a high DD, with better compaction, and with stronger amylopectin-amylose interactions. WHC and OHC were associated with better crystallinity, stronger interactions of amylopectin and amylose, and heterogeneous double-helical crystallites. These findings are useful for understanding the structure-functionality relationship of autoclaved Hylon V starch and pave the way for future research regarding the effects of its incorporation on the properties of food matrices such as bread, yogurt, cakes, and pudding.
Collapse
Affiliation(s)
- Gonzalo Velazquez
- Instituto Politécnico Nacional, CICATA-IPN Querétaro, Santiago de Querétaro, Mexico
| | | | | | | | - Rodrigo Velazquez-Castillo
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Adrian Soler
- Instituto Politécnico Nacional, CICATA-IPN Querétaro, Santiago de Querétaro, Mexico
| |
Collapse
|
4
|
Karmakar B, Sarkar S, Chakraborty R, Saha SP, Thirugnanam A, Roy PK, Roy S. Starch-based biodegradable films amended with nano-starch and tannic acid-coated nano-starch exhibit enhanced mechanical and functional attributes with antimicrobial activity. Carbohydr Polym 2024; 341:122321. [PMID: 38876723 DOI: 10.1016/j.carbpol.2024.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.
Collapse
Affiliation(s)
- Biswanath Karmakar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Sayani Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Govt. College, Himachal Vihar, Matigara, Dist. Darjeeling, West Bengal, India.
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Arunachalam Thirugnanam
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Pranab Kumar Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
5
|
Yang B, Fang X, Chen L, Du M, Din ZU, Wang Y, Zhuang K, Shen Q, Ding W. Ozone modification of waxy rice starch nanocrystals: Effects on the multi-scale structural and surface properties. Int J Biol Macromol 2024; 278:134500. [PMID: 39128765 DOI: 10.1016/j.ijbiomac.2024.134500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The rich active hydroxyl groups on starch nanocrystals (SNC) surface limits its dispersion and stability in the aqueous phase. To address this issue, ozone modification for 0 (SNC), 0.5 (SNC-1), 1 (SNC-2), 1.5 (SNC-3), and 2 h (SNC-4) as compared to conventionally chemical methods was applied to functionally modify the SNC. The impact of ozone treatment on the structural and surface characteristics of waxy rice starch nanocrystals. The findings revealed that longer ozone treatment durations favored the formation of carbonyl groups in starch molecules. Initially, ozone oxidized the hydroxyl group of the macromolecule. Once the carbonyl groups formed, the cross-linking reaction occurred among starch nanocrystals through condensation reactions, leading to the increasing molecular orderliness. X-ray photoelectron spectroscopy, X-ray diffraction and Small-angle X-ray scattering analyses of SNC-2 supported this finding with a reduced O/C ratio, and implied that surface oxidation did not alter the crystal type but rather enhanced molecular hydration in an aqueous system, leading to increased interfacial thickness and fractal dimension. Additionally, ozone oxidation improved surface properties such as charge and hydrophobicity. Oxidized SNC also exhibited altered gelatinization properties due to surface degradation. This study offers a promising strategy for enhancing SNC surface properties, crucial for food science applications.
Collapse
Affiliation(s)
- Bingjin Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiao Fang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| | - Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Microbiology and Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Kun Zhuang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Qian Shen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| |
Collapse
|
6
|
Zhang Y, Huang C, Xiong R. Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 160:100821. [DOI: 10.1016/j.mser.2024.100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Bahrami M, Amiri MJ, Busquets R, Nematollahi MJ. Cross-Linked Starch as Media for Crystal Violet Elimination from Water: Modeling Batch Adsorption with Fuzzy Regression. Molecules 2024; 29:3894. [PMID: 39202973 PMCID: PMC11357277 DOI: 10.3390/molecules29163894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
A scalable and cost-effective solution for removing pollutants from water is to use biodegradable and eco-friendly sorbents that are readily available such as starch. The current research explored the removal of crystal violet (CV) dye from water using chemically modified potato starch. The adsorbent was prepared by cross-linking potato starch with sodium trimetaphosphate (STMP). The impact of various operating factors including pH, temperature, contact time, initial CV concentration, and adsorbent dosage on the removal of CV were investigated using batch experiments. The adsorption data were analyzed using a fuzzy regression approach, which provided a range-based representation of the model's output. The cross-linked starch adsorbent was mesoporous, with a mean pore diameter of 9.8 nm and a specific surface area of 2.7 m2/g. The adsorption of CV by the STMP cross-linked potato starch was primarily influenced by the adsorbent dosage, followed by the solution pH, temperature, initial CV concentration, and contact time. The fuzzy regression model accurately predicted the independent experimental data of CV removal with an R2 of 0.985, demonstrating its value as a tool for the continuous monitoring of CV removal as well as optimizing water treatment conditions.
Collapse
Affiliation(s)
- Mehdi Bahrami
- Department of Water Science and Engineering, Faculty of Agriculture, Fasa University, Fasa 74616-86131, Iran
- Research Institute of Water Resources Management in Arid Region, Fasa University, Fasa 74616-86131, Iran
| | - Mohammad Javad Amiri
- Department of Water Science and Engineering, Faculty of Agriculture, Fasa University, Fasa 74616-86131, Iran
- Research Institute of Water Resources Management in Arid Region, Fasa University, Fasa 74616-86131, Iran
| | - Rosa Busquets
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St., Bloomsbury, London WC1E 6BT, UK;
- Faculty of Health, Science, Social Care and Education, School of Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | | |
Collapse
|
8
|
Singh GP, Bangar SP, Aayush K, Yang T, Verma R, Kuca K, Kumar D, Phimolsiripol Y. Value addition of mango kernel for development and characterization of starch with starch nanoparticles for packaging applications. Int J Biol Macromol 2024; 274:133185. [PMID: 38880462 DOI: 10.1016/j.ijbiomac.2024.133185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present research was conducted to explore the potential of mango kernel starch from the Chaunsa variety to develop starch and starch nanoparticles (SNPs) based films. The investigation included starch isolation from mango kernel followed by the preparation of SNPs by acid hydrolysis and a thorough examination of various physicochemical properties for film formation. The properties of SNPs were found to be distinctly different from those of native starch. SNPs exhibited an aggregated form with an irregular surface, whereas native starch had an oval and elongated shape with a smooth surface. X-ray diffraction (XRD) analysis confirmed that the starch type in SNPs was of the A-type. Additionally, the pasting properties of SNPs were minimal due to the acid hydrolysis process. SNP-based composite film was developed with (5 %) SNP concentration added. This successful incorporation of SNPs enhanced biodegradability, with complete degradation occurring within three weeks. Moreover, the composite films displayed increased burst strength, measuring 1303.51 ± 73.7 g, and lower water vapor transmission rates (WVTR) at (7.40 ± 0.50) × 10-3 g per square meter per second and reduced water solubility at 35.32 ± 3.0 %. This development represents a significant advancement in the field of eco-friendly packaging materials.
Collapse
Affiliation(s)
- Gurvendra Pal Singh
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson 29634, USA; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Krishna Aayush
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rachna Verma
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Dinesh Kumar
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India.
| | | |
Collapse
|
9
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
10
|
Mojo-Quisani A, Licona-Pacco K, Choque-Quispe D, Calla-Florez M, Ligarda-Samanez CA, Pumacahua-Ramos A, Huamaní-Meléndez VJ. Characterization of Nano- and Microstructures of Native Potato Starch as Affected by Physical, Chemical, and Biological Treatments. Foods 2024; 13:2001. [PMID: 38998507 PMCID: PMC11240970 DOI: 10.3390/foods13132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Modifying starch allows for improvements in its properties to enable improved uses in food matrices, bioplastics, and encapsulating agents. In this research, four varieties of native potato starch were modified by acid treatment, enzymatic treatment, and ethanol precipitation, and their physicochemical, structural, thermal, and techno-functional characteristics were analyzed. According to FT-IR analysis, no influence of the modified starches on the chemical groups was observed, and by scanning electron microscopy (SEM), spherical and oval shapes were observed in the acid and enzymatic treatments, with particle sizes between 27 and 36 μm. In particular, the ethanolic precipitation treatment yielded a different morphology with a particle size between 10.9 and 476.3 nm, resulting in a significant decrease in gelatinization temperature (DSC) and more pronounced crystallites (XRD). On the other hand, the enzymatic treatment showed higher values for z-potential (ζ), and the acid treatment showed lower mass loss (TGA). Acid and ethanolic treatments affected the dough properties compared to native starches. The techno-functional properties showed a decrease in the water absorption index, an increase in the water solubility index, and varied swelling power behaviors. In conclusion, the modification of potato starches through acid, enzymatic, and ethanolic precipitation treatments alters their physicochemical properties, such as swelling capacity, viscosity, and thermal stability. This in turn affects their molecular structure, modifying morphology and the ability to form gels, which expands their applications in the food industry to improve textures, stabilize emulsions, and thicken products. Furthermore, these modifications also open new opportunities for the development of bioplastics by improving the biodegradability and mechanical properties of starch-based plastic materials.
Collapse
Affiliation(s)
- Antonieta Mojo-Quisani
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Katiuska Licona-Pacco
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - David Choque-Quispe
- Agroindustrial Engineering, José María Arguedas National University, Andahuaylas 03701, Peru
| | - Miriam Calla-Florez
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | | | - Augusto Pumacahua-Ramos
- Department of Food Engineering, Universidad Nacional Intercultural de Quillabamba, Cusco 08741, Peru
| | - Víctor J Huamaní-Meléndez
- Department of Food Engineering and Technology, São Paulo State University (UNESP), Campus of São José do Rio Preto, São Paulo 15385-000, Brazil
| |
Collapse
|
11
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
12
|
Sessini V, Salaris V, Oliver-Cuenca V, Tercjak A, Fiori S, López D, Kenny JM, Peponi L. Thermally-Activated Shape Memory Behavior of Biodegradable Blends Based on Plasticized PLA and Thermoplastic Starch. Polymers (Basel) 2024; 16:1107. [PMID: 38675026 PMCID: PMC11054922 DOI: 10.3390/polym16081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Biodegradable blends based on plasticized poly(lactic acid) PLA and thermoplastic starch (TPS) have been obtained. The influence of the PLA plasticizer as a compatibility agent has been studied by using two different plasticizers such as neat oligomeric lactic acid (OLA) and functionalized with maleic acid (mOLA). In particular, the morphological, thermal, and mechanical properties have been studied as well as the shape memory ability of the melt-processed materials. Therefore, the influence of the interaction between different plasticizers and the PLA matrix as well as the compatibility between the two polymeric phases on the thermally-activated shape memory properties have been studied. It is very interesting to use the same additive able to act as both plasticizer and compatibilizer, decreasing the glass transition temperature of PLA to a temperature close to the physiological one, obtaining a material suitable for potential biomedical applications. In particular, we obtain that OLA-plasticized blend (oPLA/TPS) show very good thermally-activated capability at 45 °C and 50% deformation, while the blend obtained by using maleic OLA (moPLA/TPS) did not show shape memory behavior at 45 °C and 50% deformation. This fact is due to their morphological changes and the loss of two well-distinguished phases, one acting as fixed phase and the other one acting as switching phase to typically obtain shape memory response. Therefore, the thermally-activated shape memory results show that it is very important to make a balance between plasticizer and compatibilizer, considering the need of two well-established phases to obtain shape memory response.
Collapse
Affiliation(s)
- Valentina Sessini
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Alcalá University, 28871 Alcalá de Henares, Spain
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Victor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Agnieszka Tercjak
- Group Materials + Technologies (GMT), Department of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - José M. Kenny
- Department of Civil and Environmental Engineering, University of Perugia, 05100 Terni, Italy
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
13
|
Lei W, Qi M, Tan P, Yang S, Fan L, Li H, Gao Z. Impact of polyphenol-loaded edible starch nanomaterials on antioxidant capacity and gut microbiota. Int J Biol Macromol 2024; 265:130979. [PMID: 38508552 DOI: 10.1016/j.ijbiomac.2024.130979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Starch nanoparticles (SNPs) have the capability to adsorb polyphenol components from apple pomace efficiently, forming bound polyphenols (P-SNPs). These bound polyphenols may have potential bioactivities to affect human health positively. Therefore, in-depth in vivo observation of the antioxidant activity and evaluation of its gut microbiota regulatory function are essential. The results revealed that P-SNPs indicated significant scavenging abilities against DPPH, ABTS, and hydroxyl radicals. Furthermore, the nanomaterials exhibited non-toxic properties, devoid of hepatorenal and intestinal damage, while concurrently stimulating the production of short-chain fatty acids (SCFAs) within the gastrointestinal tract. Notably, P-SNPs significantly enhanced antioxidant capacity in serum, liver, and kidney tissues, fostering the proliferation of beneficial bacteria (Lactobacillus, Bacillus, norank_f__Muribaculaceae) while suppressing pathogenic bacterial growth (Helicobacter, Odoribacter). This study proposes a novel research concept for the scientific use of polyphenols in promoting gut health.
Collapse
Affiliation(s)
- Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Maodong Qi
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Pei Tan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siqi Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Lingjia Fan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Kim YJ, So YS, Baik MY, Kim YR, Yoo SH, Seo DH, Park CS. Enzymatic Synthesis of α-Glucan Microparticles Using Amylosucrases from Bifidobacterium Species and Its Physicochemical Properties. Biomacromolecules 2024; 25:2024-2032. [PMID: 38393758 DOI: 10.1021/acs.biomac.3c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
α-Glucan microparticles (GMPs) have significant potential as high-value biomaterials in various industries. This study proposes a bottom-up approach for producing GMPs using four amylosucrases from Bifidobacterium sp. (BASs). The physicochemical characteristics of these GMPs were analyzed, and the results showed that the properties of the GMPs varied depending on the type of enzymes used in their synthesis. As common properties, all GMPs exhibited typical B-type crystal patterns and poor colloidal dispersion stability. Interestingly, differences in the physicochemical properties of GMPs were generated depending on the synthesis rate of linear α-glucan by the enzymes and the degree of polymerization (DP) distribution. Consequently, we found differences in the properties of GMPs depending on the DP distribution of linear glucans prepared with four BASs. Furthermore, we suggest that precise control of the type and characteristics of the enzymes provides the possibility of producing GMPs with tailored physicochemical properties for various industrial applications.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yun-Sang So
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young-Rok Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
15
|
Liu M, Guo X, Ma X, Xie Z, Wu Y, Ouyang J. Physicochemical properties of a novel chestnut porous starch nanoparticle. Int J Biol Macromol 2024; 261:129920. [PMID: 38311128 DOI: 10.1016/j.ijbiomac.2024.129920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
A novel chestnut porous starch nanoparticle (PSNP) was successfully synthesized, combining the properties of starch nanoparticle (SNP) and porous starch. The SNP obtained through ultrasonic and acid hydrolysis, exhibited a smaller particle size (173.9 nm) and a higher specific surface area (SSA) compared to native starch. After the synergistic hydrolysis by α-amylase and glucoamylase, the porous structure appeared on the surface of SNP. The prepared PSNP had a size of 286.3 nm and the highest SSA. In the adsorption experiments, PSNP showed higher capacities for adsorbing water, oil and methylene blue (MB) compared to other samples. The acid and enzymatic treatments resulted in a decrease in the levels of total starch content and amylose ratio. Furthermore, the treatments increased the levels of relative crystallinity (RC) and solubility, while decreasing the short-range ordered structure and swelling ratio at high temperatures. It was observed that the SSA of starch granules positively correlated with the MB and water adsorption capacity (WAC), solubility, and RC. These findings highlight the potential of the novel PSNP as an efficient adsorbent for bioactive substances and dyes.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxiao Guo
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Xinyu Ma
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zirun Xie
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Mohammadi A, Kashi PA, Ulbrich M. A smart thermoresponsive macroporous 4D structure by 4D printing of Pickering-high internal phase emulsions stabilized by plasma-functionalized starch nanomaterials for a possible delivery system. Curr Res Food Sci 2024; 8:100686. [PMID: 38380133 PMCID: PMC10878850 DOI: 10.1016/j.crfs.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Hierarchically porous structures combine microporosity, mesoporosity, and microporosity to enhance pore accessibility and transport, which are crucial to develop high performance materials for biofabrication, food, and pharmaceutical applications. This work aimed to develop a 4D-printed smart hierarchical macroporous structure through 3D printing of Pickering-type high internal phase emulsions (Pickering-HIPEs). The key was the utilization of surface-active (hydroxybutylated) starch nanomaterials, including starch nanocrystals (SNCs) (from waxy maize starch through acid hydrolysis) or starch nanoparticles (SNPs) (obtained through an ultrasound treatment). An innovative procedure to fabricate the functionalized starch nanomaterials was accomplished by grafting 1,2-butene oxide using a cold plasma technique to enhance their surface hydrophobicity, improving their aggregation, and thus attaining a colloidally stabilized Pickering-HIPEs with a low concentration of each surface-active starch nanomaterial. A flocculation of droplets in Pickering-HIPEs was developed after the addition of modified SNCs or SNPs, leading to the formation of a gel-like structure. The 3D printing of these Pickering-HIPEs developed a highly interconnected large pore structure, possessing a self-assembly property with thermoresponsive behavior. As a potential drug delivery system, this thermoresponsive macroporous 3D structure offered a lower critical solution temperature (LCST)-type phase transition at body temperature, which can be used in the field of smart releasing of bioactive compounds.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Adeleh Mohammadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4913815739, Iran
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources, Tehran University, 31587-77871, Karaj, Iran
| | - Marco Ulbrich
- Department of Food Technology and Food Chem., Chair of Food Process Engineering, Technische Universität Berlin, OfficeTK1, Ackerstraße 76, 13355, Berlin, Germany
| |
Collapse
|
17
|
Yan X, Liu R, Bai J, Wang Y, Fu J. Preparation of starch-palmitic acid complex nanoparticles and their effect on properties of the starch composite film. Int J Biol Macromol 2023; 251:126154. [PMID: 37544565 DOI: 10.1016/j.ijbiomac.2023.126154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The corn starch-palmitic acid complex nanoparticles and amylose-palmitic acid complex nanoparticles were prepared through complex and nanoprecipitation. Their mean size values were 138.2 nm and 654.7 nm, respectively, while the two kinds of complex nanoparticles were mainly showed V-type crystalline structure, the crystallinity of these complex nanoparticles was 20.86 % and 46.81 %. Then the starch composite films were prepared using the corn starch-palmitic acid complex nanoparticles and amylose-palmitic acid complex nanoparticles as reinforcement phases. The starch composite film reinforced with amylose-palmitic acid complex nanoparticles had the higher tensile strength and a better wettability with the water contact angle of 86.51°. Though the crystalline properties of starch composite films had no significant difference, the thermal stability improved when the amylose-palmitic acid complex nanoparticles used as reinforcement phase, the maximum thermal degradation temperature was 313 °C. This study provides a new type of reinforcement phase to improve the properties of starch composite films.
Collapse
Affiliation(s)
- Xiaoxia Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Rui Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jinlin Bai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yingxin Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jun Fu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
18
|
Al-Jaber HA, Arsad A, Bandyopadhyay S, Jaafar MZ, Tahir M, Nuhma MJ, Abdulmunem AR, Abdulfatah MY, Alias H. Relation between Conventional and Starch-Assisted ASP Injection and Impact of Crystallinity on Flood Formation. Molecules 2023; 28:6685. [PMID: 37764461 PMCID: PMC10535427 DOI: 10.3390/molecules28186685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Alkaline-surfactant-polymer (ASP) flooding, a recognized method for oil recovery, encounters limited use due to its expense. In addition, ASP's best composition and injection sequence still remains uncertain today. This study explores conventional ASP flooding using PT SPR Langgak's special surfactants, simulating Langgak oilfield conditions in Sumatra, Indonesia. By comparing the outcomes of this flooding technique with that of starch-assisted ASP performed in another study, the benefits of adding starch nanoparticles to flooding are evident. Nano-starch ASP increased oil recovery by 18.37%, 10.76%, and 10.37% for the three configurations investigated in this study. Water flooding preceded ASP flooding, and flooding operations were carried out at 60 °C. This study employed sodium hydroxide (NaOH), sodium carbonate (Na2CO3), and specialized surfactants from PT SPR. The adopted polymer is solely hydrolyzed polyacrylamide (HPAM) at 2000 ppm. Starch nanoparticles underwent comprehensive characterization and focused more on charge stability. Purple yam nanoparticles (PYNPs) exhibited remarkable stability at -36.33 mV, unlike cassava starch nanoparticles (CSNPs') at -10.68 mV and HPAM's at -27.13 mV. Surface properties affect interactions with fluids and rocks. Crystallinity, a crucial characterization, was assessed using Origin software 2019b. CSNPs showed 24.15% crystallinity, surpassing PYNPs' 20.68%. Higher crystallinity benefits CSNPs' thermal stability. The amorphous behavior found in PYNPs makes them less suitable if applied in harsh reservoirs. This research correlated with prior findings, reinforcing starch nanoparticles' role in enhancing oil recovery. In summary, this study highlighted conventional ASP flooding using HPAM as the sole polymer and compared it with three formations that used two starch nanoparticles included with HPAM, assessing their impact on charge stability, crystallinity, and recovery rate to emphasize their importance in the oil recovery industry. Starch nanoparticles' benefits and limitations guided further investigation in this study.
Collapse
Affiliation(s)
- Hasanain A. Al-Jaber
- UTM-MPRC Institute for Oil and Gas, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Skudai 81310, Johor, Malaysia
- Department of Chemical Industries Technologies, Southern Technical University, Zubair, Basrah 61006, Iraq
| | - Agus Arsad
- UTM-MPRC Institute for Oil and Gas, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Skudai 81310, Johor, Malaysia
| | - Sulalit Bandyopadhyay
- Department of Chemical Engineering, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Mohd Zaidi Jaafar
- Department of Chemical Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Mustafa Jawad Nuhma
- Chemical Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Diwaniyah P.O. Box 88, Iraq
| | | | | | - Hajar Alias
- Department of Chemical Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
19
|
Hessel V, Escribà-Gelonch M, Schmidt S, Tran NN, Davey K, Al-Ani LA, Muhd Julkapli N, Abdul Wahab Y, Khalil I, Woo MW, Gras S. Nanofood Process Technology: Insights on How Sustainability Informs Process Design. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11437-11458. [PMID: 37564955 PMCID: PMC10410668 DOI: 10.1021/acssuschemeng.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Nanostructured products are an actively growing area for food research, but there is little information on the sustainability of processes used to make these products. In this Review, we advocate for selection of sustainable process technologies during initial stages of laboratory-scale developments of nanofoods. We show that selection is assisted by predictive sustainability assessment(s) based on conventional technologies, including exploratory ex ante and "anticipatory" life-cycle assessment. We demonstrate that sustainability assessments for conventional food process technologies can be leveraged to design nanofood process concepts and technologies. We critically review emerging nanostructured food products including encapsulated bioactive molecules and processes used to structure these foods at laboratory, pilot, and industrial scales. We apply a rational method via learning lessons from sustainability of unit operations in conventional food processing and critically apportioned lessons between emerging and conventional approaches. We conclude that this method provides a quantitative means to incorporate sustainability during process design for nanostructured foods. Findings will be of interest and benefit to a range of food researchers, engineers, and manufacturers of process equipment.
Collapse
Affiliation(s)
- Volker Hessel
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | | | - Svenja Schmidt
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Nam Nghiep Tran
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Kenneth Davey
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Lina A. Al-Ani
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ibrahim Khalil
- Healthcare
Pharmaceuticals Limited, Rajendrapur, Gazipur 1741, Bangladesh
| | - Meng Wai Woo
- Department
of Chemical & Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Sally Gras
- Department
of Chemical Engineering and Bio21 Molecular Science and Biotechnology
Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
20
|
Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers (Basel) 2023; 15:2972. [PMID: 37447617 DOI: 10.3390/polym15132972] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The research of starch as a matrix material for manufacturing biodegradable films has been gaining popularity in recent years, indicating its potential and possible limitations. To compete with conventional petroleum-based plastics, an enhancement of their low resistance to water and limited mechanical properties is essential. This review aims to discuss the various types of nanofillers and additives that have been used in plasticized starch films including nanoclays (montmorillonite, halloysite, kaolinite, etc.), poly-saccharide nanofillers (cellulose, starch, chitin, and chitosan nanomaterials), metal oxides (titanium dioxide, zinc oxide, zirconium oxide, etc.), and essential oils (carvacrol, eugenol, cinnamic acid). These reinforcements are frequently used to enhance several physical characteristics including mechanical properties, thermal stability, moisture resistance, oxygen barrier capabilities, and biodegradation rate, providing antimicrobial and antioxidant properties. This paper will provide an overview of the development of starch-based nanocomposite films and coatings applied in food packaging systems through the application of reinforcements and additives.
Collapse
Affiliation(s)
| | - Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
21
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
22
|
Formation mechanism of starch nanocrystals from waxy rice starch and their separation by differential centrifugation. Food Chem 2023; 412:135536. [PMID: 36708668 DOI: 10.1016/j.foodchem.2023.135536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Starch nanocrystals (SNCs) were prepared from waxy rice starch via sulfuric acid hydrolysis. The objective focused on the following: i) the hydrolysis kinetics and structural properties of SNCs; ii) the effects of differential centrifugation on the yield and size distribution of SNCs. The hydrolysis was divided into a rapid hydrolysis stage in the initial two days and a slow hydrolysis stage after two days. During the two-day hydrolysis, the average diameter of SNCs reached 244 nm. After two days of hydrolysis, the degree of crystallinity, crystallite size, and melting temperature and enthalpy increased. The proportion of A-branched chains decreased, whereas the proportion of B1-branched chains and molecular weight did not change considerably. Thus, the reaction in the slow hydrolysis stage could be considered as the surface modification and gradual release of SNCs. Furthermore, SNCs with a small size and high charge density could be used for differential centrifugation.
Collapse
|
23
|
Al-Jaber HA, Arsad A, Tahir M, Nuhma MJ, Bandyopadhyay S, Abdulmunem AR, Abdul Rahman AF, Harun ZB, Agi A. Enhancing Oil Recovery by Polymeric Flooding with Purple Yam and Cassava Nanoparticles. Molecules 2023; 28:4614. [PMID: 37375169 DOI: 10.3390/molecules28124614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Significant amounts of oil remain in the reservoir after primary and secondary operations, and to recover the remaining oil, enhanced oil recovery (EOR) can be applied as one of the feasible options remaining nowadays. In this study, new nano-polymeric materials have been prepared from purple yam and cassava starches. The yield of purple yam nanoparticles (PYNPs) was 85%, and that of cassava nanoparticles (CSNPs) was 90.53%. Synthesized materials were characterized through particle size distribution (PSA), Zeta potential distribution, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The performance of PYNPs in recovering oil was better than CSNPs, as found from the recovery experiments. Zeta potential distribution results confirmed the stability of PYNPs over CSNPs (-36.3 mV for PYNPs and -10.7 mV for CSNPs). The optimum concentration for these nanoparticles has been found from interfacial tension measurements and rheological properties, and it was 0.60 wt.% for PYNPs and 0.80 wt.% for CSNPs. A more incremental recovery (33.46%) was achieved for the polymer that contained PYNPs in comparison to the other nano-polymer (31.3%). This paves the way for a new technology for polymer flooding that may replace the conventional method, which depends on partially hydrolyzed polyacrylamide (HPAM).
Collapse
Affiliation(s)
- Hasanain A Al-Jaber
- Institute for Oil and Gas, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
- Department of Chemical Industries Technologies, Southern Technical University, Basrah 61006, Iraq
| | - Agus Arsad
- UTM-MPRC Institute for Oil and Gas, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Mustafa Jawad Nuhma
- Chemical Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Diwaniyah City P.O. Box 88, Iraq
| | - Sulalit Bandyopadhyay
- Department of Chemical Engineering, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Abdulmunem R Abdulmunem
- Electromechanical Engineering Department, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Anis Farhana Abdul Rahman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Zakiah Binti Harun
- Institute for Oil and Gas, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Augustine Agi
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
- Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| |
Collapse
|
24
|
Wu J, Liu Y, Hua S, Meng F, Ma Q, Song S, Che Y. Dynamic Cross-Linking Network Construction of Carboxymethyl Starch Enabling Temperature and Strain Bimodal Film Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17293-17300. [PMID: 36951487 DOI: 10.1021/acsami.3c01918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Building stimulus-responsive units in the hydrogel coatings remains challenging for film sensors consisting of alternated layers of inert substrates and hydrogel coatings. An interesting film sensor with a carboxymethyl starch-based hydrogel coating was developed here. The cross-linking networks of carboxymethyl starch play the roles of structure-constructing units and stimulus-controlling units simultaneously, endowing the coatings with thermal sensing and strain sensing capabilities. The dynamic cross-links formed via the boronic ester bonds are temperature-sensitive, releasing or consuming additional acid ions with temperature alteration, and also as primary networks give the hydrogel strength and stretchability with the assistance of semi-penetrated polyacrylamide chains. Therefore, as-prepared flexible film sensors can be used to detect the periodic changes of human temperature and small-scale motion with multiple working modes, discriminating the physical states related to human health. Moreover, this kind of starch-based coating is degradable in a strongly alkaline solution and the inert substrate layer can protect the skin from erosion caused by direct hydrogel-skin contact, and thereby the film sensor is human- and environmentally friendly. This work also proposes a strategy of building temperature-sensitive units in the film sensor via regulating the chemical networks, instead of tuning physical structures.
Collapse
Affiliation(s)
- Jianzhen Wu
- Marine College, Shandong University (Weihai), Wenhua West Road, Weihai, Shandong Province 264209, P. R. China
| | - Yijie Liu
- Marine College, Shandong University (Weihai), Wenhua West Road, Weihai, Shandong Province 264209, P. R. China
| | - Shengming Hua
- Marine College, Shandong University (Weihai), Wenhua West Road, Weihai, Shandong Province 264209, P. R. China
| | - Fanjun Meng
- Marine College, Shandong University (Weihai), Wenhua West Road, Weihai, Shandong Province 264209, P. R. China
| | - Qinglin Ma
- Marine College, Shandong University (Weihai), Wenhua West Road, Weihai, Shandong Province 264209, P. R. China
| | - Shuliang Song
- Marine College, Shandong University (Weihai), Wenhua West Road, Weihai, Shandong Province 264209, P. R. China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Road, Weihai, Shandong Province 264209, P. R. China
| |
Collapse
|
25
|
Apostolidis E, Stoforos GN, Mandala I. Starch physical treatment, emulsion formation, stability, and their applications. Carbohydr Polym 2023; 305:120554. [PMID: 36737219 DOI: 10.1016/j.carbpol.2023.120554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Pickering emulsions are increasingly preferred over typical surfactant-based emulsions due to several advantages, such as lower emulsifier usage, simplicity, biocompatibility, and safety. These types of emulsions are stabilized using solid particles, which produce a thick layer at the oil-water interface preventing droplets from aggregating. Starch nano-particles (SNPs) have received considerable attention as natural alternatives to synthetic stabilizers due to their unique properties. Physical formulation processes are currently preferred for SNP production since they are environmentally friendly procedures that do not require the use of chemical reagents. This review provides a thorough overview in a critical perspective of the physical processes to produce starch nano-particles used as Pickering emulsion stabilizers, fabricated by a 2-step process. Specifically, the reviewed physical approaches for nano-starch preparation include high hydrostatic pressure, high pressure homogenization, ultrasonication, milling and antisolvent precipitation. All the essential parameters used to evaluate the effectiveness of particles in stabilizing these systems are also presented in detail, including the hydrophobicity, size, and content of starch particles. Finally, this review provides the basis for future research focusing on physical nano-starch production, to ensure the widespread use of these natural stabilizers in the ever-evolving field of food technology.
Collapse
Affiliation(s)
- Eftychios Apostolidis
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - George N Stoforos
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - Ioanna Mandala
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| |
Collapse
|
26
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
27
|
Gautam G, Talukdar D, Mahanta CL. Sonochemical effect on the degree of substitution of octenyl-succinic anhydride into waxy rice starch nanoparticles and study of gastro-intestinal hydrolysis using INFOGEST in vitro digestion method. Food Res Int 2023; 165:112348. [PMID: 36869444 DOI: 10.1016/j.foodres.2022.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Octenyl succinylation of starch nanoparticles has been proven to be effective in a variety of food industry applications such as fat replacement, thickening agents, emulsion formation, and delivery of bioactive compounds. In this study, waxy rice starch was debranched with pullulanase to obtain short glucans, which were then modified with octenyl succinic anhydride (OSA) to obtain amphiphilic short glucans (ASG) using high (400 W) and low (200 W) ultrasonic power intensity at 30 and 60 cycles. Developed ASG were characterized by nanoparticle size (ca. < 50 nm), surface hydrophobicity and gastro-intestinal stability. Ultrasonic intervention progressively increased the degree of substitution (DS) of OSA into hydrolysed starch. A significant molecular exchange between starch and OSA was confirmed with shoulder peak at 1.07 ppm by 1H NMR, and 1560 and 1727 cm-1 peaks in FTIR spectral image, and broad band at 1260 cm-1 by Raman spectroscopy. The XRD analysis confirmed the change in crystalline structure, and the emergence of new peaks at 2θ angles of around 5.81° which represent the development of B-type structure following pullulanasehydrolysis, and minor peaks at 13.92° and 19.83°, which imply the production of Vh type structures in ASG. Gastro-intestinal hydrolysis of starch after modification was analyzed in a sequential digestion process using INFOGEST method. The gastro-kinetic studies unveiled the reduction in the digestibility constant in the oral-gastric phase, with significantly enhanced value of kinetic constants in the intestinal phase, proving a sustained gastro-intestinal stability. The OSA-modified starches with greater DS havemore rigid and compact surface structure, which provides superior protection against biochemical conditions in the stomach fluid.
Collapse
Affiliation(s)
- Gitanjali Gautam
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India
| | - Dhrubajyoti Talukdar
- Department of Chemical Sciences, School of Sciences, Tezpur University, 784028, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India.
| |
Collapse
|
28
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
29
|
Bajer D. Nano-starch for food applications obtained by hydrolysis and ultrasonication methods. Food Chem 2023; 402:134489. [DOI: 10.1016/j.foodchem.2022.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 03/06/2023]
|
30
|
Marta H, Wijaya C, Sukri N, Cahyana Y, Mohammad M. A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers (Basel) 2022; 14:polym14224875. [PMID: 36433002 PMCID: PMC9693780 DOI: 10.3390/polym14224875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Starch can be found in the stems, roots, fruits, and seeds of plants such as sweet potato, cassava, corn, potato, and many more. In addition to its original form, starch can be modified by reducing its size. Starch nanoparticles have a small size and large active surface area, making them suitable for use as fillers or as a reinforcing material in bioplastics. The aim of reinforcing material is to improve the characteristics of bioplastics. This literature study aims to provide in-depth information on the potential use of starch nanoparticles as a reinforcing material in bioplastic packaging. This study also reviews starch size reduction methods including acid hydrolysis, nanoprecipitation, milling, and others; characteristics of the nano-starch particle; and methods to produce bioplastic and its characteristics. The use of starch nanoparticles as a reinforcing material can increase tensile strength, reduce water vapor and oxygen permeability, and increase the biodegradability of bioplastics. However, the use of starch nanoparticles as a reinforcing material for bioplastic packaging still encounters obstacles in its commercialization efforts, due to high production costs and ineffectiveness.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Claudia Wijaya
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nandi Sukri
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
31
|
Tajbakhsh M, Mazhari F, Mavvaji M. Copper (II)-immobilized on Starch-coated Nanomagnetite as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of Propargylamines through One-pot A 3 Coupling Reaction. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Mazhari
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Mavvaji
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
32
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
33
|
Ma C, Zhang Y, Yue R, Zhang W, Sun J, Ma Z, Niu F, Zhu H, Liu Y. Establishment of a quality evaluation system of sweet potato starch using multivariate statistics. Front Nutr 2022; 9:1025061. [DOI: 10.3389/fnut.2022.1025061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe quality of starch greatly affects the quality of processed products. There are many indexes for quality evaluation of starch. Currently, amylose content is considered the chief index in the quality evaluation of sweet potato starch, which is entirely based on tradition (experience) method. The existing evaluation standards lack quality evaluation standards for sweet potato starch.PurposeTo screen reasonable evaluation indexes of sweet potato starch, and establish a scientific and systematic evaluation system of sweet potato starch.MethodsTwenty-two components and quality indexes of sweet potato starch were measured. The evaluation indexes of sweet potato starch were screened based on a statistical description, correlation analysis, and principal component analysis (PCA), and a quality evaluation model of sweet potato starch for brewing was established based on analytic hierarchy process. The calculated values of the model were verified by linear fitting with standardized sensory evaluation values.ResultsThe coefficient of variation of total starch content (%), amylose content (%), amylopectin content (%), L* value, ΔE, water absorption capacity (g/g), and pasting temperature was less than 6%, while the coefficient of variation of other indexes was larger. In addition, there were different degrees of correlation among the indexes. PCA was used to identify interrelated variables, and the first six principal components together account for 82.26% of the total variability. Then, seven core indexes — setback (cp), rate of regression (%), ratio of amylose to amylopectin (%), gel strength (kgf/cm2), a* value, ash content (%), and solubility (%) — were selected from the six principal components according to the load value of the rotation matrix. These seven core indexes replaced the original 22 indexes to simplify the evaluation of sweet potato starch. The quality evaluation model of sweet potato starch was Y = 0.034X2 + 0.321X6 + 0.141X8 + 0.08X17 + 0.023X19 + 0.08X21 + 0.321X22.ConclusionThe comprehensive evaluation system of sweet potato starch can accurately predict the quality of sweet potato starch. The development of such a system is of great significance to the post-harvest processing of high-starch sweet potato and the breeding of high-quality and high-starch sweet potato varieties.
Collapse
|
34
|
Nanoarchitectonics of Starch Nanoparticles Rosin Catalyzed by Algerian Natural Montmorillonite (Maghnite-H+) for Enhanced Antimicrobial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Pu H, Chen X, Wang J, Niu W, Li Y, Zhang C, Liu G, Huang J. A comparison of B- and A-type nanoparticles on pressure resistance. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Villwock VK, BeMiller JN. The Architecture, Nature, and Mystery of Starch Granules. Part 2. STARCH-STARKE 2022. [DOI: 10.1002/star.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- V. Kurtis Villwock
- Whistler Center for Carbohydrate Research Department of Food Science (NLSN) Purdue University West Lafayette IN 47907 USA
| | - James N. BeMiller
- Whistler Center for Carbohydrate Research Department of Food Science (NLSN) Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
37
|
Kanth S, Puttaiahgowda YM. CURRENT STATE AND FUTURE PERSPECTIVES OF STARCH DERIVATIVES AND THEIR BLENDS AS ANTIMICROBIAL MATERIALS. STARCH-STARKE 2022. [DOI: 10.1002/star.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shreya Kanth
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
38
|
Wang L, Hu Q, Huang Y, Xiong Q, Chen Y, Gan C, Zhang Y, Cui G, Cui J. Study on the preparation of sustained-release thiamethoxam microspheres by blending microcrystalline wax with tapioca starch ester or dehydroabietic acid ester as the matrix. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:576-587. [PMID: 35611791 DOI: 10.1080/03601234.2022.2079908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The controlled release formulations (CRFs) are considered an effective way to solve damage to the environment caused by traditional pesticide formulations. To change the defects of traditional neonicotinoid formulations that dissolve quickly in soil, three types of thiamethoxam (TM) CRFs microspheres with content of 20% TM were prepared using microcrystalline wax (MK) as the matrix, laurate acid tapioca starch ester (MSK) and stearyl dehydroabietic acid ester (MDK) as the regulators of ingredient release. The release behavior of CRFs microspheres in water and soil showed that the microspheres had superior stability and different TM sustained-release periods, and TM release of the microspheres in soil was faster than that in water. The release rate is TM/MDK > TM/MSK > TM/MK. In water, the release of thiamethoxam technical was finished after 38 hours. However, for TM/MK, the release rate was 94% after 240 hours, and the release time was extended by 6 times. Meanwhile, TM/MDK has a particular pH-responsive release. Research shows that using microcrystalline wax as the matrix, by adding MSK or MDK to adjust the release of ingredients, pesticide CRFs microspheres with different release periods can be prepared to achieve the purpose of controlling the release of pesticides.
Collapse
Affiliation(s)
- Linlin Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Qiang Hu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Qipeng Xiong
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Guoqin Cui
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| |
Collapse
|
39
|
Harun Z, Arsad A, Pang AL, Zaini MAA, Abdurrahman M, Awang N, Junin R, Mohsin R. Acid Hydrolysis and Optimization Techniques for Nanoparticles Preparation: Current Review. Appl Biochem Biotechnol 2022; 194:3779-3801. [PMID: 35488954 DOI: 10.1007/s12010-022-03932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nanostarch is unique in that it is highly soluble, thermally stable, non-toxic and inexpensive. Hence, it is utilized in numerous well-established applications, including drug delivery, cosmetics, textiles, foods, and enhanced oil recovery (EOR). These applications take advantage of the special functions that can be achieved through modifications to the structure and properties of native starch. The most common method for the preparation of nanostarch with a relatively higher crystallinity and stability is acid hydrolysis. Technically, the properties of nanostarch are highly dependent on several factors during the hydrolysis process, such as the acid, concentration of acid, reaction time, reaction temperature, and source of starch. The production of nanostarch with desired properties requires a detailed understanding on each of the factors as they are inevitably affected the physical and chemical properties of nanostarch. Hence, it is vital to incorporate optimization technique into the production process to achieve the full potential of nanostarch. Therefore, the current review comprehensively elaborates on the factors that affect acid hydrolysis as well as the optimization techniques used in the preparation of nanostarch.
Collapse
Affiliation(s)
- Zakiah Harun
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| | - Agus Arsad
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia.
| | - Ai Ling Pang
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| | - Mohd Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| | - Muslim Abdurrahman
- Fakultas Teknik - Universitas Islam Riau, Jalan Kaharuddin Nasution, Workshop Gedung B, Lantai 2, Pekan Baru, 28284, Indonesia
| | - Nuha Awang
- Plant Engineering Technology (PETech), Universiti Kuala Lumpur - Malaysian Institute of Industrial Technology (UniKL MITEC), Jalan Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750, Masai, Johor, Malaysia
| | - Radzuan Junin
- Department of Petroleum Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
| | - Rahmat Mohsin
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| |
Collapse
|
40
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
41
|
Chavan P, Sinhmar A, Sharma S, Dufresne A, Thory R, Kaur M, Sandhu KS, Nehra M, Nain V. Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials. STARCH-STARKE 2022. [DOI: 10.1002/star.202100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prafull Chavan
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Somesh Sharma
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2 Grenoble F‐38000 France
| | - Rahul Thory
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Maninder Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Manju Nehra
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| | - Vikash Nain
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| |
Collapse
|
42
|
Xie X, Zhang Y, Zhu Y, Lan Y. Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles. NANOMATERIALS 2022; 12:nano12040598. [PMID: 35214927 PMCID: PMC8877468 DOI: 10.3390/nano12040598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
Based on the characteristics of charge reversal around the isoelectric point (pI) of amphoteric starch-containing anionic and cationic groups, amphoteric cassava starch nanoparticles (CA-CANPs) are prepared by a W/O microemulsion crosslinking method using (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride as a cationic reagent and POCl3 as an anionic reagent, and the effects of preparation conditions on the particle size of the CA-CANPs are studied in detail in the present study. CA-CANPs with a smooth surface and an average diameter of 252 nm are successfully prepared at the following optimised conditions: a crosslinking agent amount of 15 wt%, an aqueous starch concentration of 6.0 wt%, an oil–water ratio of 10:1, a total surfactant amount of 0.20 g·mL−1, and a CHPTAC amount of 4.05 wt%. The pH-responsive value of the CA-CANPs can be regulated by adjusting the nitrogen–phosphorus molar ratio in the CA-CANPs. By using CA-CANPs with a pI of 6.89 as drug carriers and the paclitaxel (PTX) as a model drug, the maximum loading rate of 36.14 mg·g−1 is achieved, and the loading process is consistent with the Langmuir isotherm adsorption, with the calculated thermodynamic parameters of ΔH° = −37.91 kJ·mol−1, ΔS° = −10.96 J·mol−1·K−1 and ΔG° < 0. By testing the release rate in vitro, it is noted that the release rates of PTX in a neutral environment (37.6% after 96 h) and a slightly acidic environment (58.65% after 96 h) are quite different, suggesting that the CA-CANPs have the possibility of being a targeted controlled-release carrier with pH responsiveness for antitumor drugs.
Collapse
|
43
|
Ghorbel N, ben Ayed E, Kallel A, Boufi S. Interfacial dynamics analysis in starch nanocrystal/ poly (butyl methacrylate) nanocomposites: Impact of the reinforcement’s functionalization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Pan X, Liu P, Wang Y, Yi YL, Zhang HQ, Qian DW, Xiao P, Shang EX, Duan JA. Synthesis of starch nanoparticles with controlled morphology and various adsorption rate for urea. Food Chem 2022; 369:130882. [PMID: 34481403 DOI: 10.1016/j.foodchem.2021.130882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 01/29/2023]
Abstract
Starch nanoparticles (SNPs) with different morphology and particle size can be prepared by modulating the reaction conditions over SNPs preparation. This study was to synthesize various SNPs by using ultrasound assisted nanoprecipitation method, and characterized by particle size analysis, SEM and XRD performing. SNPs were successfully produced via nanoprecipitation and the particle size were controlled in the range of 95 to 150 nm. Moreover, variously different morphologies were obtained when using corn, potato or Trichosanthes kirilowii pulp (TKP) starch to produce nanoparticles, including fiber, flake and film. Results shown film TKP SNPs demonstrated an improved urea adsorption rate to 135.60 mg/g with the highest qm at 1.00 mg/mL. SNPs can be developed using ultrasound assisted nanoprecipitation method and the particle size together with surface morphology can be varied according to the source of starch and preparation method, while surface morphology is the key factor in altering adsorption performance.
Collapse
Affiliation(s)
- Xin Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yiwei Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan-Ling Yi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huang-Qin Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
45
|
Preparation and characterization of nanoparticles from cereal and pulse starches by ultrasonic-assisted dissolution and rapid nanoprecipitation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Vijayakumar R, Sivaraman Y, Pavagada Siddappa KM, Dandu JPR. Synthesis of lignin nanoparticles employing acid precipitation method and its application to enhance the mechanical, UV-barrier and antioxidant properties of chitosan films. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.2016305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ramya Vijayakumar
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| | - Yamini Sivaraman
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| | - Keshava Murthy Pavagada Siddappa
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| | - Jeevan Prasad Reddy Dandu
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
47
|
Optimization of processing parameters to produce nanoparticles prepared by rapid nanoprecipitation of pea starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Dukare AS, Arputharaj A, Bharimalla A, Saxena S, Vigneshwaran N. Nanostarch production by enzymatic hydrolysis of cereal and tuber starches. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
49
|
Surface-charged starch nanocrystals from glutinous rice: Preparation, crystalline properties and cytotoxicity. Int J Biol Macromol 2021; 192:557-563. [PMID: 34653438 DOI: 10.1016/j.ijbiomac.2021.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
The high-amylopectin glutinous rice is used in this study for the preparation of starch nanocrystals (SNCs) with the acid hydrolysis and enzymatic treatment. The fabricated SNC is carried out the surface modifications by phosphorylation and cationization to produce the nanocrystals with the charged surface. Four kinds of SNCs are obtained with the different surface charges involving the varied negative charges, positive charge and no charge. The chemical structures, morphologies and crystalline properties of four SNCs were investigated, together with the effect of surface charges to their cytotoxicity for two cell lines RAW267.4 and CAL27 by the cell proliferation and cell migration assay. The sulfuric acid-hydrolyzed SNC and phosphorylated SNC have more ordered regions and therefore display the higher crystallinities than the enzymatic treated SNC. Four obtained SNCs all exhibited weak cytotoxicity, indicating their good biocompatibility in the potential biomedical application.
Collapse
|
50
|
Maniglia BC, La Fuente CIA, Siqueira LDV, Tadini CC. Carbohydrate Nanomaterials Addition to Starch‐Based Packaging: A Review about Fundamentals and Application. STARCH-STARKE 2021. [DOI: 10.1002/star.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bianca Chieregato Maniglia
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP) ‐ Universidade de São Paulo Ribeirão Preto SP 14040–900 Brazil
| | - Carla Ivonne Arias La Fuente
- Department of Agri‐food Industry Food and Nutrition (LAN), School of Agriculture Luiz de Queiroz (ESALQ) Universidade de São Paulo Piracicaba SP 13418–900 Brazil
| | - Larissa do Val Siqueira
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| | - Carmen Cecilia Tadini
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| |
Collapse
|