1
|
Adamu BF, Gao J, Xiangnan Y, Tan S, Zhao H, Jhatial AK. Rhamnus prinoides leaf extract loaded polycaprolactone-cellulose acetate nanofibrous scaffold as potential wound dressing: An in vitro study. Int J Biol Macromol 2024; 279:134934. [PMID: 39179067 DOI: 10.1016/j.ijbiomac.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Rhamnus prinoides leaf contains carbohydrates, saccharides, phenolic acids, and diterpenes with antibacterial, wound-healing, and anti-inflammatory properties. In this study, Rhamnus prinoides leaf extract was successfully incorporated into polycaprolactone-cellulose acetate (PCL-CA) nanofibers through electrospinning technique for the first time. The mats' morphology, diameter, chemical, and crystalline structure were characterized. The study investigated the mats' antibacterial activity, wound healing, cytotoxicity, drug release behaviour, hydrophilicity, and water absorbency properties. The results revealed that the mats exhibited continuous, smooth, without-beads, and interconnected structures, with average fiber diameters ranging from 385 ± 21 nm to 332 ± 74 nm. The antibacterial effeciency was remarkable against S. aureus and E. coli, achieving bacterial reduction percentages exceeding 99 % at concentrations of 3 % and above against S. aureus and 5 % and above against E. coli. Cytotoxic tests showed low-cytotoxicity up to an extract concentration of 7 %. The extract release increases with an increase in concentration. In vitro wound healing assay, the mats enhanced cell migration to the wound area. Additionally, the incorporation of Rhamnus prinoides significantly improved the hydrophilicity and water absorbency of the nanofibers. Overall, the study highlights the mats' broad antimicrobial and wound healing properties with less cytotoxicity, hydrophilicity, and water absorbency, making them promising for use as wound dressings.
Collapse
Affiliation(s)
- Biruk Fentahun Adamu
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Textile engineering department, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Jing Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Yuan Xiangnan
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shaojie Tan
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Huihui Zhao
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Abdul Khalique Jhatial
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
| |
Collapse
|
2
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
3
|
Sowmya B, Panda PK. Electrospun poly (ε-caprolactone)/beeswax based super-hydrophobic anti-adhesive nanofibers as physical barriers for impeding fibroblasts invasion. J Biomater Appl 2023; 38:681-691. [PMID: 37926902 DOI: 10.1177/08853282231212604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Super-hydrophobic electrospun membranes are very essential barrier materials to physically isolate the wound site in order to prevent adhesions and for restoring the normal functioning of the surrounding tissues and organs. In the present study, poly (ε-caprolactone) (PCL)/beeswax (BW) based nanofibrous anti-adhesion membranes were fabricated by electrospinning technique. The BW concentration was varied from 10 to 30 wt.%. The nanofibers were evaluated for their morphological and physio-chemical properties. The electrospun mats demonstrate random distribution of nanofibers. Surface wettability was evaluated using static water contact angle method. PCL/BW (70/30) membrane had shown super-hydrophobicity (contact angle = 150°). From the cell culture studies, it was evident that cell viability, adhesion and proliferation of L929 cells on PCL/BW (70/30) membrane were comparatively lower than those on pure PCL membrane due to its super-hydrophobic nature. Consequently, PCL/BW (70/30) membrane was found as a potential candidate for fibroblast (L929) cell anti-adhesion applications.
Collapse
Affiliation(s)
- B Sowmya
- Materials Science and Division, CSIR National Aerospace Laboratories, Bangalore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | |
Collapse
|
4
|
Wu X, Chen J, Zhou A, Zhao Y, Tian Z, Zhang Y, Chen K, Ning X, Xu Y. Light-Activated Chemically Reactive Fibrous Patch Revolutionizes Wound Repair Through the Prevention of Postoperative Adhesion. NANO LETTERS 2023; 23:1435-1444. [PMID: 36752657 DOI: 10.1021/acs.nanolett.2c04774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A light-activated chemically reactive fibrous patch (ChemPatch) with tissue adhesion and wound healing activity was developed for preventing postoperative peritoneal adhesion. ChemPatch was constructed by an integrative electrospinning fabrication strategy, generating multifunctional PCL-NHS fibers encapsulating antioxidant curcumin and MnO2 nanoparticles. ChemPatch exhibited excellent photothermal conversion, which not only reformed the physical state to match the tissue but also improved conjugation between ChemPatch and tissues, allowing for strong attachment. Importantly, ChemPatch possessed good antioxidant and radical scavenging activity, which protected cells in an oxidative microenvironment and improved tissue regeneration. Particularly, ChemPatch acted as a multifunctional barrier and could not only promote reepithelialization and revascularization in wound defect model but simultaneously ameliorate inflammation and prevent postoperative peritoneal adhesion in a mouse cecal defect model. Thus, ChemPatch represents a dual-active bioadhesive barrier for reducing the incidence and severity of peritoneal adhesions.
Collapse
Affiliation(s)
- Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yinfeng Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi 830046, P. R. China
| | - Yiping Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Ensan B, Bathaei P, Nassiri M, Khazaei M, Hassanian SM, Abdollahi A, Ghorbani HR, Aliakbarian M, Ferns GA, Avan A. The Therapeutic Potential of Targeting Key Signaling Pathways as a Novel Approach to Ameliorating Post-Surgical Adhesions. Curr Pharm Des 2022; 28:3592-3617. [PMID: 35466868 DOI: 10.2174/1381612828666220422090238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Peritoneal adhesions (PA) are a common complication of abdominal operations. A growing body of evidence shows that inhibition of inflammation and fibrosis at sites of peritoneal damaging could prevent the development of intra-abdominal adhesions. METHODS A search of PubMed, Medline, CINAHL and Embase databases was performed using the keywords 'postsurgical adhesion', 'post-operative adhesion', 'peritoneal adhesion', 'surgery-induced adhesion' and 'abdominal adhesion'. Studies detailing the use of pharmacological and non-pharmacological agents for peritoneal adhesion prevention were identified, and their bibliographies were thoroughly reviewed to identify further related articles. RESULTS Several signaling pathways, such as tumor necrosis factor-alpha, tissue plasminogen activator, and type 1 plasminogen activator inhibitor, macrophages, fibroblasts, and mesothelial cells play a key part in the development of plasminogen activator. Several therapeutic approaches based on anti-PA drug barriers and traditional herbal medicines have been developed to prevent and treat adhesion formation. In recent years, the most promising method to prevent PA is treatment using biomaterial-based barriers. CONCLUSION In this review, we provide an overview of the pathophysiology of adhesion formation and various agents targeting different pathways, including chemical agents, herbal agents, physical barriers, and clinical trials concerning this matter.
Collapse
Affiliation(s)
- Behzad Ensan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parsa Bathaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Ghorbani
- Orology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Nakielski P, Rinoldi C, Pruchniewski M, Pawłowska S, Gazińska M, Strojny B, Rybak D, Jezierska-Woźniak K, Urbanek O, Denis P, Sinderewicz E, Czelejewska W, Staszkiewicz-Chodor J, Grodzik M, Ziai Y, Barczewska M, Maksymowicz W, Pierini F. Laser-Assisted Fabrication of Injectable Nanofibrous Cell Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104971. [PMID: 34802179 DOI: 10.1002/smll.202104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Michał Pruchniewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Sylwia Pawłowska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Małgorzata Gazińska
- Department of Engineering and Technology of Polymers, Wrocław University of Science and Technology, Wrocław, 50-370, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Katarzyna Jezierska-Woźniak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Emilia Sinderewicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Wioleta Czelejewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Joanna Staszkiewicz-Chodor
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Monika Barczewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Wojciech Maksymowicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
8
|
Facile fabrication of phospholipid-functionalized nanofiber-based barriers with enhanced anti-adhesion efficiency. Colloids Surf B Biointerfaces 2021; 203:111728. [PMID: 33819819 DOI: 10.1016/j.colsurfb.2021.111728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Electrospun nanofibrous membranes (NFMs) have attracted considerable attention as a potential physical barrier for reducing postoperative adhesion. However, no anti-adhesion barrier can completely prevent adhesion formation. In this study, phospholipid-functionalized NFMs were readily fabricated by one-step electrospinning to obtain nanofiber-based barriers with enhanced wettability and anti-adhesion efficiency. The optimized phospholipid NFMs were shown to have a fiber diameter of 831 nm ± 135 nm that is drastically decreasing, high porosity of 87.6 % ± 1.1 %, and superior hydrophilicity. Moreover, the phospholipid NFMs with excellent cytocompatibility exhibited fibroblasts being significantly reduced (≈ 51 %) after incubation of 3 days compared to that of the NFMs (≈ 96 %), confirming long-lasting anti-adhesion capability against fibroblasts. Meanwhile, less cell adhesion and proliferation of Raw 264.7 macrophages on NFM-10Lec indicated its superior anti-inflammatory effects. Thus, the facile phospholipid-functionalized nanofibers provided a promising strategy for anti-adhesion applications.
Collapse
|
9
|
Kheilnezhad B, Hadjizadeh A. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci 2021; 9:2850-2873. [PMID: 33710194 DOI: 10.1039/d0bm02023k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Postoperative adhesions (POA) are one of the main problems suffered by patients and are a common complaint. It is considered to be closely associated with the healing mechanism of damaged tissues. Tissue adhesions accompany other symptoms such as inflammation, pain, and even dyskinesia under certain conditions, compromising the patients' quality of life. On the other hand, common treatments involve high costs, re-surgery or long-term hospital stays. Therefore, alternative approaches need to be formulated so that aforementioned problems can be resolved. To this end, a review of recent advances in this context is imperative. In this review, we have highlighted the mechanism of adhesion formation, advances in common therapeutic approaches, and prospective treatments in preventing tissue adhesions. Based on the literature, it can be determined that the disadvantages of available commercial products in the treatment of tissue adhesion have led researchers to utilize alternative methods for designing anti-adhesive products with different structures such as electrospun fibrous mats, hydrogels, and nanospheres. These studies are on the fast track in producing optimal anti-adhesion materials. We hope that this article can attract attention by showing various mechanisms and solutions involved in adhesion problems and inspire the further development of anti-adhesion biomaterials.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University, Tehran, Iran.
| |
Collapse
|
10
|
Chandel AKS, Shimizu A, Hasegawa K, Ito T. Advancement of Biomaterial-Based Postoperative Adhesion Barriers. Macromol Biosci 2021; 21:e2000395. [PMID: 33463888 DOI: 10.1002/mabi.202000395] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Indexed: 01/16/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a prevalent incidence that generally happens during the healing process of traumatized tissues. It causes multiple severe complications such as intestinal obstruction, chronic abdominal pain, and female infertility. To prevent PPA, several antiadhesion materials and drug delivery systems composed of biomaterials are used clinically, and clinical antiadhesive is one of the important applications nowadays. In addition to several commercially available materials, like film, spray, injectable hydrogel, powder, or solution type have been energetically studied based on natural and synthetic biomaterials such as alginate, hyaluronan, cellulose, starch, chondroitin sulfate, polyethylene glycol, polylactic acid, etc. Moreover, many kinds of animal adhesion models, such as cecum abrasion models and unitary horn models, are developed to evaluate new materials' efficacy. A new animal adhesion model based on hepatectomy and conventional animal adhesion models is recently developed and a new adhesion barrier by this new model is also developed. In summary, many kinds of materials and animal models are studied; thus, it is quite important to overview this field's current progress. Here, PPA is reviewed in terms of the species of biomaterials and animal models and several problems to be solved to develop better antiadhesion materials in the future are discussed.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Potential of a facile sandwiched electrospun scaffold loaded with ibuprofen as an anti-adhesion barrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111451. [PMID: 33255038 DOI: 10.1016/j.msec.2020.111451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022]
Abstract
The combination of nanofibre-based barriers and anti-adhesion drugs is potentially useful for adhesion prevention after ventral surgeries. However, drug molecules exposed to the surface of barriers easily result in an initial burst that is sharp, thus limiting the anti-adhesion efficiency. In this study, we developed a sandwiched electrospun scaffold loaded with ibuprofen (Sandwich) serving as a physical barrier, as well as an effectual carrier delivering it into the injured site for enhancing anti-adhesion capability. This Sandwich scaffold exhibited significantly a reduced initial burst of drug release in the first hour and a prolonged delivery for ibuprofen over 14 days, expected to provide the long-term anti-adhesion capability. In vitro study on fibroblasts showed that incorporation of ibuprofen effectively inhibited their adhesion and proliferation, and developed Sandwich maintained the least adhesion of L-929 after 5 days of culture (<20%). For RAW 264.7 macrophages, worse cell adhesion and poorer TNF-α production of Sandwich indicated its superior anti-inflammatory effect. In summary, the sandwiched ibuprofen-loaded scaffold showed promising potential for preventing adhesion formation.
Collapse
|
12
|
Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater 2020; 116:84-104. [PMID: 32871282 DOI: 10.1016/j.actbio.2020.08.036] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Peritoneal adhesions (PA) are a postoperative syndrome with high incidence rate, which can cause chronic abdominal pain, intestinal obstruction, and female infertility. Previous studies have identified that PA are caused by a disordered feedback of blood coagulation, inflammation, and fibrinolysis. Monocytes, macrophages, fibroblasts, and mesothelial cells are involved in this process, and secreted signaling molecules, such as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), tissue plasminogen activator (tPA), and type 1 plasminogen activator inhibitor (PAI-1), play a key role in PA development. There have been many attempts to prevent PA formation by anti-PA drugs, barriers, and other therapeutic methods, but their effectiveness has not been widely accepted. Treatment by biomaterial-based barriers is believed to be the most promising method to prevent PA formation in recent years. In this review, the pathogenesis, treatment approaches, and animal models of PA are summarized and discussed to understand the challenges faced in the biomaterial-based anti-PA treatments.
Collapse
|