1
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
2
|
Zhu N, Swietlik EM, Welch CL, Pauciulo MW, Hagen JJ, Zhou X, Guo Y, Karten J, Pandya D, Tilly T, Lutz KA, Martin JM, Treacy CM, Rosenzweig EB, Krishnan U, Coleman AW, Gonzaga-Jauregui C, Lawrie A, Trembath RC, Wilkins MR, Morrell NW, Shen Y, Gräf S, Nichols WC, Chung WK. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med 2021; 13:80. [PMID: 33971972 PMCID: PMC8112021 DOI: 10.1186/s13073-021-00891-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined. METHODS To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource - Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD. RESULTS Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e-5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development. CONCLUSIONS Rare variant analysis of a large international consortium identified two new candidate genes-FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jacob J Hagen
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xueya Zhou
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yicheng Guo
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Tilly
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Katie A Lutz
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer M Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
| | - Carmen M Treacy
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Erika B Rosenzweig
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Usha Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Anna W Coleman
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Martin R Wilkins
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
West JD, Austin ED, Rizzi EM, Yan L, Tanjore H, Crabtree AL, Moore CS, Muthian G, Carrier EJ, Jacobson DA, Hamid R, Kendall PL, Majka S, Rathinasabapathy A. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci 2021; 22:ijms22095014. [PMID: 34065088 PMCID: PMC8126011 DOI: 10.3390/ijms22095014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function KCNK3 mutation is one of the gene variants driving hereditary pulmonary arterial hypertension (PAH). KCNK3 is expressed in several cell and tissue types on both membrane and endoplasmic reticulum and potentially plays a role in multiple pathological process associated with PAH. However, the role of various stressors driving the susceptibility of KCNK3 mutation to PAH is unknown. Hence, we exposed kcnk3fl/fl animals to hypoxia, metabolic diet and low dose lipopolysaccharide (LPS) and performed molecular characterization of their tissue. We also used tissue samples from KCNK3 patients (skin fibroblast derived inducible pluripotent stem cells, blood, lungs, peripheral blood mononuclear cells) and performed microarray, immunohistochemistry (IHC) and mass cytometry time of flight (CyTOF) experiments. Although a hypoxic insult did not alter vascular tone in kcnk3fl/fl mice, RNASeq study of these lungs implied that inflammatory and metabolic factors were altered, and the follow-up diet study demonstrated a dysregulation of bone marrow cells in kcnk3fl/fl mice. Finally, a low dose LPS study clearly showed that inflammation could be a possible second hit driving PAH in kcnk3fl/fl mice. Multiplex, IHC and CyTOF immunophenotyping studies on human samples confirmed the mouse data and strongly indicated that cell mediated, and innate immune responses may drive PAH susceptibility in these patients. In conclusion, loss of function KCNK3 mutation alters various physiological processes from vascular tone to metabolic diet through inflammation. Our data suggests that altered circulating immune cells may drive PAH susceptibility in patients with KCNK3 mutation.
Collapse
Affiliation(s)
- James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Elise M. Rizzi
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Ling Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Amber L. Crabtree
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Christy S. Moore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Gladson Muthian
- Department of Cancer Biology, Biochemistry and Neuropharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Erica J. Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Peggy L. Kendall
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Susan Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA;
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
- Correspondence:
| |
Collapse
|
4
|
Egom EEA, Moyou-Somo R, Essame Oyono JL, Kamgang R. Identifying Potential Mutations Responsible for Cases of Pulmonary Arterial Hypertension. APPLICATION OF CLINICAL GENETICS 2021; 14:113-124. [PMID: 33732008 PMCID: PMC7958998 DOI: 10.2147/tacg.s260755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive and devastating disease for which there is an escalating body of genetic and related pathophysiological information on disease pathobiology. Nevertheless, the success to date in identifying susceptibility genes, genetic variants and epigenetic processes has been limited due to PAH clinical multi-faceted variations. A number of germline gene candidates have been proposed but demonstrating consistently the association with PAH has been problematic, at least partly due to the reduced penetrance and variable expressivity. Although the data for bone morphogenetic protein receptor type 2 (BMPR2) and related genes remains undoubtedly the most extensive, recent advanced gene sequencing technologies have facilitated the discovery of further gene candidates with mutations among those with and without familial forms of PAH. An in depth understanding of the multitude of biologic variations associated with PAH may provide novel opportunities for therapeutic intervention in the coming years. This knowledge will irrevocably provide the opportunity for improved patient and family counseling as well as improved PAH diagnosis, risk assessment, and personalized treatment.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.,Reflex Medical Centre Cardiac Diagnostics, Reflex Medical Centre, Mississauga, ON, Canada
| | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
5
|
Welch CL, Austin ED, Chung WK. Genes that drive the pathobiology of pediatric pulmonary arterial hypertension. Pediatr Pulmonol 2021; 56:614-620. [PMID: 31917901 PMCID: PMC7343584 DOI: 10.1002/ppul.24637] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022]
Abstract
Emerging data from studies of pediatric-onset pulmonary arterial hypertension (PAH) indicate that the genomics of pediatric PAH is different than that of adults. There is a greater genetic burden in children, with rare genetic factors contributing to at least 35% of pediatric-onset idiopathic PAH (IPAH) compared with ~11% of adult-onset IPAH. De novo variants are the most frequent genetic cause of PAH in children, likely contributing to ~15% of all cases. Rare deleterious variants in bone morphogenetic protein receptor 2 (BMPR2) contribute to pediatric-onset familial PAH and IPAH with similar frequency as adult-onset. While likely gene-disrupting (LGD) variants in BMPR2 contribute across the lifespan, damaging missense variants are more frequent in early-onset PAH. Rare deleterious variants in T-box 4-containing protein (TBX4) are more common in pediatric-compared with adult-onset PAH, explaining ~8% of pediatric IPAH. PAH associated with congenital heart disease (APAH-CHD) and other developmental disorders account for a large proportion of pediatric PAH. SRY-related HMG box transcription factor (SOX17) was recently identified as an APAH-CHD risk gene, contributing less frequently to IPAH, with a greater prevalence of rare deleterious variants in children compared with adults. The differences in genetic burden and genes underlying pediatric- vs adult-onset PAH indicate that genetic information relevant to pediatric PAH cannot be extrapolated from adult studies. Large cohorts of pediatric-onset PAH are necessary to identify the unique etiological differences of PAH in children, as well as the natural history and response to therapy.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
6
|
Welch CL, Chung WK. Genetics and Genomics of Pediatric Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1213. [PMID: 33081265 PMCID: PMC7603012 DOI: 10.3390/genes11101213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with high mortality despite recent therapeutic advances. The disease is caused by both genetic and environmental factors and likely gene-environment interactions. While PAH can manifest across the lifespan, pediatric-onset disease is particularly challenging because it is frequently associated with a more severe clinical course and comorbidities including lung/heart developmental anomalies. In light of these differences, it is perhaps not surprising that emerging data from genetic studies of pediatric-onset PAH indicate that the genetic basis is different than that of adults. There is a greater genetic burden in children, with rare genetic factors contributing to ~42% of pediatric-onset PAH compared to ~12.5% of adult-onset PAH. De novo variants are frequently associated with PAH in children and contribute to at least 15% of all pediatric cases. The standard of medical care for pediatric PAH patients is based on extrapolations from adult data. However, increased etiologic heterogeneity, poorer prognosis, and increased genetic burden for pediatric-onset PAH calls for a dedicated pediatric research agenda to improve molecular diagnosis and clinical management. A genomics-first approach will improve the understanding of pediatric PAH and how it is related to other rare pediatric genetic disorders.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Irving Medical Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Irving Medical Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
- Department of Medicine, Irving Medical Center, Columbia University, 622 W 168th St, New York, NY 10032, USA
| |
Collapse
|
7
|
Customized Massive Parallel Sequencing Panel for Diagnosis of Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:genes11101158. [PMID: 33007923 PMCID: PMC7650688 DOI: 10.3390/genes11101158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension is a very infrequent disease, with a variable etiology and clinical expressivity, making sometimes the clinical diagnosis a challenge. Current classification based on clinical features does not reflect the underlying molecular profiling of these groups. The advance in massive parallel sequencing in PAH has allowed for the describing of several new causative and susceptibility genes related to PAH, improving overall patient diagnosis. In order to address the molecular diagnosis of patients with PAH we designed, validated, and routinely applied a custom panel including 21 genes. Three hundred patients from the National Spanish PAH Registry (REHAP) were included in the analysis. A custom script was developed to annotate and filter the variants. Variant classification was performed according to the ACMG guidelines. Pathogenic and likely pathogenic variants have been found in 15% of the patients with 12% of variants of unknown significance (VUS). We have found variants in patients with connective tissue disease (CTD) and congenital heart disease (CHD). In addition, in a small proportion of patients (1.75%), we observed a possible digenic mode of inheritance. These results stand out the importance of the genetic testing of patients with associated forms of PAH (i.e., CHD and CTD) additionally to the classical IPAH and HPAH forms. Molecular confirmation of the clinical presumptive diagnosis is required in cases with a high clinical overlapping to carry out proper management and follow up of the individuals with the disease.
Collapse
|
8
|
Hernandez-Gonzalez I, Tenorio J, Palomino-Doza J, Martinez Meñaca A, Morales Ruiz R, Lago-Docampo M, Valverde Gomez M, Gomez Roman J, Enguita Valls AB, Perez-Olivares C, Valverde D, Gil Carbonell J, Garrido-Lestache Rodríguez-Monte E, del Cerro MJ, Lapunzina P, Escribano-Subias P. Clinical heterogeneity of Pulmonary Arterial Hypertension associated with variants in TBX4. PLoS One 2020; 15:e0232216. [PMID: 32348326 PMCID: PMC7190146 DOI: 10.1371/journal.pone.0232216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background The knowledge of hereditary predisposition has changed our understanding of Pulmonary Arterial Hypertension. Genetic testing has been widely extended and the application of Pulmonary Arterial Hypertension specific gene panels has allowed its inclusion in the diagnostic workup and increase the diagnostic ratio compared to the traditional sequencing techniques. This is particularly important in the differential diagnosis between Pulmonary Arterial Hypertension and Pulmonary Venoocclusive Disease. Methods Since November 2011, genetic testing is offered to all patients with idiopathic, hereditable and associated forms of Pulmonary Arterial Hypertension or Pulmonary Venoocclusive Disease included in the Spanish Registry of Pulmonary Arterial Hypertension. Herein, we present the clinical phenotype and prognosis of all Pulmonary Arterial Hypertension patients with disease-associated variants in TBX4. Results Out of 579 adults and 45 children, we found in eight patients from seven families, disease-causing associated variants in TBX4. All adult patients had a moderate-severe reduction in diffusion capacity. However, we observed a wide spectrum of clinical presentations, including Pulmonary Venoocclusive Disease suspicion, interstitial lung disease, pulmonary vascular abnormalities and congenital heart disease. Conclusions Genetic testing is now essential for a correct diagnosis work-up in Pulmonary Arterial Hypertension. TBX4-associated Pulmonary Arterial Hypertension has marked clinical heterogeneity. In this regard, a genetic study is extremely useful to obtain an accurate diagnosis and provide appropriate management.
Collapse
Affiliation(s)
| | - Jair Tenorio
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institto de Salud Carlos III, Madrid, Spain
| | - Julian Palomino-Doza
- Department of Cardiology, Inherited Cardiac Disease Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
- Department of Cardiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Institto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Amaya Martinez Meñaca
- Department of Pneumology, Pulmonary Hypertension Unit, Lung Transplant Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Rafael Morales Ruiz
- Department of Radiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Mauro Lago-Docampo
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - María Valverde Gomez
- Department of Cardiology, Inherited Cardiac Disease Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Javier Gomez Roman
- Department of Pathology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ana Belén Enguita Valls
- Department of Pathology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Carmen Perez-Olivares
- Department of Cardiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | | | | - Maria Jesus del Cerro
- Paediatric Cardiology and Grown Up Congenital Heart Disease Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institto de Salud Carlos III, Madrid, Spain
| | - Pilar Escribano-Subias
- Department of Cardiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Institto de Salud Carlos III (CIBERCV), Madrid, Spain
- * E-mail: (PES); (IHG)
| |
Collapse
|
9
|
Ge X, Zhu T, Zhang X, Liu Y, Wang Y, Zhang W. Gender differences in pulmonary arterial hypertension patients with BMPR2 mutation: a meta-analysis. Respir Res 2020; 21:44. [PMID: 32028950 PMCID: PMC7006426 DOI: 10.1186/s12931-020-1309-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate the differences in the proportions of BMPR2 mutations in familial hereditary pulmonary arterial hypertension (HPAH) and idiopathic pulmonary arterial hypertension (IPAH) between males and females and the relationship between BMPR2 mutation and PAH severity. METHODS A computer was used to search the electronic Cochrane Library, PubMed/MEDLINE, and EMBASE databases for clinical trials containing information on the relationship between PAH prognosis and BMPR2 mutations through March 2019. After obtaining the data, a meta-analysis was performed using Review Manager Version 5.3 and Stata. RESULTS A meta-analysis was performed on 17 clinical trials (2198 total patients: 644 male, 1554 female). The results showed that among patients with HPAH and IPAH, the BMPR2 mutation rate is higher in male than in female patients [male group (224/644, 34.78%), female group (457/1554, 29.41%), OR = 1.30, 95% CI: 1.06~1.60, P = 0.01, I2 = 10%]. Furthermore, haemodynamic and functional parameters were more severe in IPAH and HPAH patients with BMPR2 mutations than in those without, and those with BMPR2 mutation were diagnosed at a younger age. The risk of death or transplantation was higher in PAH patients with BMPR2 mutations than in those without (OR = 2.51, 95% CI: 1.29~3.57, P = 0.003, I2 = 24%). Furthermore, the difference was significant only in male patients (OR = 5.58, 95% CI: 2.16~14.39, P = 0.0004, I2 = 0%) and not in female patients (OR = 1.41, 95% CI: 0.75~2.67, P = 0.29, I2 = 0%). CONCLUSION Among patients with HPAH and IPAH, men are more likely to have BMPR2 mutations, which may predict more severe PAH indications and prognosis.
Collapse
Affiliation(s)
- Xiaoyue Ge
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tiantian Zhu
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinyi Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ye Liu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yonglong Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
10
|
Genetics and Other Omics in Pediatric Pulmonary Arterial Hypertension. Chest 2020; 157:1287-1295. [PMID: 32006592 DOI: 10.1016/j.chest.2020.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with high mortality despite therapeutic advances. Clinical management of children with PAH is particularly challenging because of increased complexity of disease etiology and clinical presentation, and the lack of data from pediatric-specific clinical trials. In children, PAH often develops in association with congenital heart disease and other developmental disorders. Emerging data from genetic studies of pediatric-onset PAH indicate that the genetic basis is different than that of adults. There is a greater genetic burden in children, with rare genetic factors contributing to at least 35% of pediatric-onset idiopathic PAH (IPAH) compared with approximately 11% of adult-onset IPAH. De novo variants are the most frequent monogenetic cause of PAH in children, likely contributing to approximately 15% of all cases. Rare deleterious variants in BMPR2 contribute to pediatric-onset IPAH and familial PAH with similar frequency as adult-onset disease but rarely explain cases of PAH associated with other diseases. Rare deleterious variants in developmental genes-including TBX4, SOX17, and other genes requiring confirmation in larger cohorts-are emerging as important contributors to pediatric-onset disease. Because each causal gene contributes to only a small number of cases, large cohorts of pediatric-onset PAH are needed to further identify the unique etiologic differences of PAH in children. We propose a genetics-first approach followed by focused phenotyping of pediatric patients grouped by genetic diagnosis to define endophenotypes that can be used to improve risk stratification and treatment.
Collapse
|
11
|
Fernández AI, Yotti R, González-Mansilla A, Mombiela T, Gutiérrez-Ibanes E, Pérez del Villar C, Navas-Tejedor P, Chazo C, Martínez-Legazpi P, Fernández-Avilés F, Bermejo J. The Biological Bases of Group 2 Pulmonary Hypertension. Int J Mol Sci 2019; 20:ijms20235884. [PMID: 31771195 PMCID: PMC6928720 DOI: 10.3390/ijms20235884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a potentially fatal condition with a prevalence of around 1% in the world population and most commonly caused by left heart disease (PH-LHD). Usually, in PH-LHD, the increase of pulmonary pressure is only conditioned by the retrograde transmission of the left atrial pressure. However, in some cases, the long-term retrograde pressure overload may trigger complex and irreversible biomechanical and biological changes in the pulmonary vasculature. This latter clinical entity, designated as combined pre- and post-capillary PH, is associated with very poor outcomes. The underlying mechanisms of this progression are poorly understood, and most of the current knowledge comes from the field of Group 1-PAH. Treatment is also an unsolved issue in patients with PH-LHD. Targeting the molecular pathways that regulate pulmonary hemodynamics and vascular remodeling has provided excellent results in other forms of PH but has a neutral or detrimental result in patients with PH-LHD. Therefore, a deep and comprehensive biological characterization of PH-LHD is essential to improve the diagnostic and prognostic evaluation of patients and, eventually, identify new therapeutic targets. Ongoing research is aimed at identify candidate genes, variants, non-coding RNAs, and other biomarkers with potential diagnostic and therapeutic implications. In this review, we discuss the state-of-the-art cellular, molecular, genetic, and epigenetic mechanisms potentially involved in PH-LHD. Signaling and effective pathways are particularly emphasized, as well as the current knowledge on -omic biomarkers. Our final aim is to provide readers with the biological foundations on which to ground both clinical and pre-clinical research in the field of PH-LHD.
Collapse
Affiliation(s)
- Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Candelas Pérez del Villar
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Paula Navas-Tejedor
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Christian Chazo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-91-586-8279
| |
Collapse
|
12
|
Liu X, Mei M, Chen X, Lu Y, Dong X, Hu L, Hu X, Cheng G, Cao Y, Yang L, Zhou W. Identification of genetic factors underlying persistent pulmonary hypertension of newborns in a cohort of Chinese neonates. Respir Res 2019; 20:174. [PMID: 31382961 PMCID: PMC6683566 DOI: 10.1186/s12931-019-1148-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Background Persistent pulmonary hypertension of the newborn (PPHN) is a severe clinical problem among neonatal intensive care unit (NICU) patients. The genetic pathogenesis of PPHN is unclear. Only a few genetic polymorphisms have been identified in infants with PPHN. Our study aimed to investigate the potential genetic etiology of PPHN. Methods This study recruited PPHN patients admitted to the NICU of the Children’s Hospital of Fudan University from Jan 2016 to Dec 2017. Exome sequencing was performed for all patients. Variants in reported PPHN/pulmonary arterial hypertension (PAH)-related genes were assessed. Single nucleotide polymorphism (SNP) association and gene-level analyses were carried out in 74 PPHN cases and 115 non-PPHN controls with matched baseline characteristics. Results Among the patient cohort, 74 (64.3%) patients were late preterm and term infants (≥ 34 weeks gestation) and 41 (35.7%) were preterm infants (< 34 weeks gestation). Preterm infants with PPHN exhibited low birth weight and a high frequency of bronchopulmonary dysplasia, respiratory distress syndrome (RDS) and mortality. Nine patients (only one preterm infant) were identified as harboring genetic variants, including three with pathogenic/likely pathogenic variants in TBX4 and BMPR2 and six with variants of unknown significance in BMPR2, SMAD9, TGFB1, KCNA5 and TRPC6. Three SNPs (rs192759073, rs1047883 and rs2229589) in CPS1 and one SNP (rs1044008) in NOTCH3 were significantly associated with PPHN (p < 0.05). CPS1 and SMAD9 were identified as risk genes for PPHN (p < 0.05). Conclusions In this study, we identified genetic variants in PPHN patients, and we reported CPS1, NOTCH3 and SMAD9 as risk genes for late preterm and term PPHN in a single-center Chinese cohort. Our findings provide additional genetic evidence of the pathogenesis of PPHN and new insight into potential strategies for disease treatment. Electronic supplementary material The online version of this article (10.1186/s12931-019-1148-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Liu
- Clinical Genetic Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.,Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Mei Mei
- Department of Pulmonology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiang Chen
- Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yulan Lu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xinran Dong
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Liyuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaojing Hu
- Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Lin Yang
- Clinical Genetic Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China. .,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Wenhao Zhou
- Clinical Genetic Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China. .,Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China. .,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
13
|
Cunningham KP, Holden RG, Escribano-Subias PM, Cogolludo A, Veale EL, Mathie A. Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension. J Physiol 2018; 597:1087-1101. [PMID: 30365877 PMCID: PMC6376074 DOI: 10.1113/jp277275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Key points The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Abstract Pulmonary arterial hypertension (PAH) affects ∼15–50 people per million. KCNK3, the gene that encodes the two pore domain potassium channel TASK‐1 (K2P3.1), has been identified as a possible disease‐causing gene in heritable PAH. Recently, two new mutations have been identified in KCNK3 in PAH patients: G106R and L214R. The present study aimed to characterize the functional properties and regulation of wild‐type (WT) and mutated TASK‐1 channels and determine how these might contribute to PAH and its treatment. Currents through WT and mutated human TASK‐1 channels transiently expressed in tsA201 cells were measured using whole‐cell patch clamp electrophysiology. Localization of fluorescence‐tagged channels was visualized using confocal microscopy and quantified with in‐cell and on‐cell westerns. G106R or L214R mutated channels were located at the plasma membrane to the same degree as WT channels; however, their current was markedly reduced compared to WT TASK‐1 channels. Functional current through these mutated channels could not be restored using activators of WT TASK‐1 channels (pH 8.4, ONO‐RS‐082). The guanylate cyclase activator, riociguat, enhanced current through WT TASK‐1 channels; however, similar to the other activators investigated, riociguat did not have any effect on current through mutated TASK‐1 channels. Thus, novel mutations in TASK‐1 seen in PAH substantially alter the functional properties of these channels. Current through these channels could not be restored by activators of TASK‐1 channels. Riociguat enhancement of current through TASK‐1 channels could contribute to its therapeutic benefit in the treatment of PAH. The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Collapse
Affiliation(s)
- Kevin P Cunningham
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | | | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
14
|
Abstract
Tremendous progress has been made in understanding the genetics of pulmonary arterial hypertension (PAH) since its description in the 1950s as a primary disorder of the pulmonary vasculature. Heterozygous germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of heritable PAH, and in approximately 20% of cases of idiopathic pulmonary arterial hypertension (IPAH). However, recent advances in gene discovery methods have facilitated the discovery of additional genes with mutations among those with and without familial PAH. Heritable PAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, and female predominance. Biallelic germline mutations in the gene EIF2AK4 are now associated with pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. Growing genetic knowledge enhances our capacity to pursue and provide genetic counseling, although the issue remains complex given that the majority of carriers of PAH-related mutations will never be diagnosed with the disease.
Collapse
Affiliation(s)
- Joshua D. Chew
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Loyd
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric D. Austin
- Division of Pulmonary, Allergy, and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
15
|
Ma L, Chung WK. The role of genetics in pulmonary arterial hypertension. J Pathol 2016; 241:273-280. [PMID: 27770446 DOI: 10.1002/path.4833] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
Group 1 pulmonary hypertension or pulmonary arterial hypertension (PAH) is a rare disease characterized by proliferation and occlusion of small pulmonary arterioles, leading to progressive elevation of pulmonary artery pressure and pulmonary vascular resistance, and right ventricular failure. Historically, it has been associated with a high mortality rate, although, over the last decade, treatment has improved survival. PAH includes idiopathic PAH (IPAH), heritable PAH (HPAH), and PAH associated with certain medical conditions. The aetiology of PAH is heterogeneous, and genetics play an important role in some cases. Mutations in BMPR2, encoding bone morphogenetic protein receptor 2, a member of the transforming growth factor-β superfamily of receptors, have been identified in 70% of cases of HPAH, and in 10-40% of cases of IPAH. Other genetic causes of PAH include mutations in the genes encoding activin receptor-like type 1, endoglin, SMAD9, caveolin 1, and potassium two-pore-domain channel subfamily K member 3. Mutations in the gene encoding T-box 4 have been identified in 10-30% of paediatric PAH patients, but rarely in adults with PAH. PAH in children is much more heterogeneous than in adults, and can be associated with several genetic syndromes, congenital heart disease, pulmonary disease, and vascular disease. In addition to rare mutations as a monogenic cause of HPAH, common variants in the gene encoding cerebellin 2 increase the risk of PAH by approximately two-fold. A PAH panel of genes is available for clinical testing, and should be considered for use in clinical management, especially for patients with a family history of PAH. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|