1
|
Hou Y, Tang Y, Cai S. Advances in the study of microparticles in diabetic retinopathy. Postgrad Med J 2024; 100:626-634. [PMID: 38572927 DOI: 10.1093/postmj/qgae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Diabetic retinopathy (DR) is one of the common diabetic microangiopathies, which severely impairs vision in diabetic population. The underlying mechanisms regarding the development of DR are not fully understood, and there is a lack of biomarkers to guide clinical, assessment of disease progression. Recently researchers have found that microparticles (MP) and its bioactive molecules are involved in the development of DR. MP is widely distributed in the circulation and can exert autocrine and paracrine benefits in intercellular signalling, provide a catalytic platform for the thrombospondin complex to promote coagulation, and promote the accumulation of reactive oxygen species to cause endothelial damage. MP interacts with advanced glycosylation end products (AGE) and AGE receptor (RAGE) to activate inflammatory pathways. MP carries a variety of miRNAs that regulate the vascular endothelial growth factor generation pathway. MP has also been applied to the exploration of mesenchymal stromal cell replacement therapy to treat DR. In a word, MP provides new ideas for the study of DR. MP has emerged as a marker to assess the progression of DR. As a potential therapeutic target, MP also has considerable research value.
Collapse
Affiliation(s)
- Yifeng Hou
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yun Tang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Shanjun Cai
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
2
|
Escate R, Padró T, Pérez de Isla L, Fuentes F, Alonso R, Mata P, Badimon L. Circulating miR-6821-5p levels and coronary calcification in asymptomatic familial hypercholesterolemia patients. Atherosclerosis 2024; 392:117502. [PMID: 38513437 DOI: 10.1016/j.atherosclerosis.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND AND AIMS Premature atherosclerotic cardiovascular disease (CVD) is a clinic characteristic of familial hypercholesterolemia (FH). Coronary calcium score (CCS) is a highly used imaging modality to evidence atherosclerotic plaque burden. microRNAs (miRNAs) are non-coding RNAs that epigenetically regulate gene expression. Here, we investigated whether CCS associates with a specific miRNA-signature in FH-patients. METHODS Patients with genetic diagnosis of FH (N = 86) from the nationwide SAFEHEART-cohort were investigated by computed tomography angiography imaging and classified depending on the presence of coronary calcification in FH-CCS (+) and FH-CCS (-) groups by the Agatston score. Differential miRNA profiling was performed in two stages: first by Affymetrix microarray technology (high-throughput differential profiling-studies) and second by RT-PCR using TaqMan-technology (analytical RT-qPCR study) in plasma of the two patient groups. RESULTS miR-193a-5p, miR-30e-5p and miR-6821-5p levels were significantly higher in FH-CCS (+) compared to FH-CCS (-). miR-6821-5p was the best miRNA to discriminate FH-patients CCS(+), according to receiver operating characteristic (ROC) analysis (AUC: 0.70 ± 0.06, p = 0.006). High miR-6821-5p levels were associated with older age (p = 0.03) and high LDL-burden (p = 0.014) using a ROC-derived cut-off value. However, miR-6821-5p did not correlate with age in either the CCS- or CCS + group. Genes involved in calcification processes were identified by in silico analysis. The relation of cell-calcification and expression levels of miR-6821-5p, BMP2 and SPP1 was validated experimentally in human vascular smooth muscle cell cultures. CONCLUSIONS Up-regulated levels of miR-6821-5p are found in the plasma of asymptomatic FH-patients with coronary calcified atherosclerotic plaques, as well as in isolated human vascular smooth muscle cells expressing the pro-calcification genes BMP2 and SPP1. These findings highlight the impact of epigenetic regulation on the development of subclinical atherosclerosis.
Collapse
Affiliation(s)
- Rafael Escate
- Cardiovascular-Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Padró
- Cardiovascular-Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain
| | - Leopoldo Pérez de Isla
- Cardiology Department, Hospital Clínico San Carlos, IDISSC, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Francisco Fuentes
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Córdoba, Spain
| | - Rodrigo Alonso
- Fundación Hipercolesterolemia Familiar, Madrid, Spain; Center for Advanced Metabolic Medicine and Nutrition, Santiago de Chile, Chile
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Research Chair, UAB, Barcelona, Spain.
| |
Collapse
|
3
|
Liani R, Simeone PG, Tripaldi R, D'Ardes D, Creato V, Pepe R, Lessiani G, Bologna G, Cipollone F, Marchisio M, Lanuti P, Santilli F. Kinetics of Circulating Extracellular Vesicles Over the 24-Hour Dosing Interval After Low-Dose Aspirin Administration in Patients at Cardiovascular Risk. Clin Pharmacol Ther 2023; 113:1096-1106. [PMID: 36749026 DOI: 10.1002/cpt.2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are small vesicles deriving from all cell types during cell activation, involved in transcellular communication, and regarded as predictors of vascular damage and of cardiovascular events. We tested the hypothesis that, in patients on chronic low-dose aspirin treatment for cardiovascular prevention, aspirin may affect the release of EVs within the 24-hour interval. We enrolled 84 patients, mostly at high or very high cardiovascular risk, on chronic low-dose aspirin treatment. The numbers of circulating EVs (cEVs) and annexinV+ cEVs (total, platelet-derived, endothelial-derived, and leucocyte-derived) were assessed immediately before, and after 10 and 24 hours of a witnessed aspirin administration. Platelet cyclooxygenase 1 (COX-1) recovery was characterized by measuring serum thromboxane B2 (sTXB2 ) at the same timepoints. Nine healthy participants were also enrolled. In patients, daily aspirin administration acutely inhibited after 10 hours following aspirin administrations the release of cEVs (total and leukocyte-derived) and annexinV+ cEVs (total, platelet-derived, endothelial-derived, and leukocyte-derived), with a rapid recovery at 24 hours. The inhibition after 10 hours suggests a COX-1-dependent mechanism. Interestingly, the slope of platelet-derived and of annexinV+ platelet-derived cEVs were both directly related to sTXB2 slope and COX-1 messenger RNA, raising the hypothesis that vice versa, cEVs may affect the rate of COX-1 recovery and the subsequent duration of aspirin effect. In healthy participants, no circadian difference was observed, except for leukocyte-derived cEVs. Our findings suggest a previously unappreciated effect of aspirin on the kinetics of a subset of cEVs possibly contributing to the cardioprotective effects of this drug.
Collapse
Affiliation(s)
- Rossella Liani
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Paola Giustina Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Romina Tripaldi
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Damiano D'Ardes
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Valeria Creato
- Internal Medicine, Clinica Medica, SS. Annunziata Hospital, Chieti, Italy
| | - Raffaele Pepe
- Internal Medicine, Clinica Medica, SS. Annunziata Hospital, Chieti, Italy
| | | | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| |
Collapse
|
4
|
Lugo-Gavidia LM, Burger D, Nolde JM, Carnagarin R, Chan J, Bosio E, Matthews VB, Schlaich MP. Platelet-derived extracellular vesicles correlate with therapy-induced nocturnal blood pressure changes. J Hypertens 2022; 40:2210-2218. [PMID: 35950995 DOI: 10.1097/hjh.0000000000003248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Elevated nocturnal blood pressure (BP) is closely associated with increased risk of cardiovascular (CV) events. Circulating extracellular vesicles (EVs) have been proposed as a potential CV risk biomarker and shown to correlate with BP. The present study aimed to assess whether a reduction in BP is paralleled by respective changes in EVs. METHODS Fifty-five hypertensive patients (age: 57.7 ± 14.1 years) were included in the study. EVs and BP were assessed at baseline and at 12 weeks follow-up. Interventions to lower BP included advice on life-style modification only or life-style advice combined with additional pharmacotherapy. EVs were evaluated by flow cytometry (CD41+/Annexin V+) and BP by unobserved automated office BP and ambulatory BP monitoring. RESULTS Nocturnal systolic BP correlated with EV levels at baseline ( P = 0.01). Multivariable regression models showed that changes in nocturnal systolic BP (adjusted R2 = 0.23; P = 0.01) and diastolic BP (adjusted R2 = 0.18; P = 0.02) were associated with respective changes in EV levels. Furthermore, intervention-induced improvement of systolic dipping was associated with a reduction in EVs in the univariate analysis (adjusted R2 = 0.06; P = 0.03). In contrast, systolic office, 24 h- and daytime-BP did not show significant associations with EVs. Patients whose medication was up-titrated at baseline showed a trend towards lower EV levels at follow-up (absolute change of -1.7 ± 1.3 EV/μl; P = 0.057). CONCLUSIONS Circulating platelet-derived EVs were positively associated with nocturnal BP and therapy-induced changes over a 12-week treatment period. EVs may provide an integrated measure of BP changes achieved with pharmacotherapy.
Collapse
Affiliation(s)
- Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Justine Chan
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research
| | - Vance B Matthews
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
- Department of Internal Medicine
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
5
|
Badimon L, Padro T, Arderiu G, Vilahur G, Borrell-Pages M, Suades R. Extracellular vesicles in atherothrombosis: From biomarkers and precision medicine to therapeutic targets. Immunol Rev 2022; 312:6-19. [PMID: 35996799 DOI: 10.1111/imr.13127] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of global mortality. Extracellular vesicles (EVs) are small phospholipid vesicles that convey molecular bioactive cargoes and play essential roles in intercellular communication and, hence, a multifaceted role in health and disease. The present review offers a glimpse into the current state and up-to-date concepts on EV field. It also covers their association with several cardiovascular risk factors and ischemic conditions, being subclinical atherosclerosis of utmost relevance for prevention. Interestingly, we show that EVs hold promise as prognostic and diagnostic as well as predictive markers of ASCVD in the precision medicine era. We then report on the role of EVs in atherothrombosis, disentangling the mechanisms involved in the initiation, progression, and complication of atherosclerosis and showing their direct effect in the context of arterial thrombosis. Finally, their potential use for therapeutic intervention is highlighted.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Arderiu
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Kanakalakshmi ST, Swaminathan SM, Basthi Mohan P, Nagaraju SP, Bhojaraja MV, Koulmane Laxminarayana SL. Microparticles in Diabetic Kidney Disease. Clin Chim Acta 2022; 531:418-425. [PMID: 35568209 DOI: 10.1016/j.cca.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
Diabetickidneydisease(DKD)isthemostcommoncauseofrenal failure and a major contributor to the socioeconomic burden in chronic kidney disease (CKD) patients worldwide. The pathogenesis of DKD involves all the structures in the nephron, and it is indicated by proteinuria, hypertension, and progressive decline in renal function, leading tosubstantialmorbidityandmortality. Due to the limitations of currently available standard markers (albuminuria and glomerular filtration rate) in the diagnosis and clinical grading of DKD, it's time to have novel biomarkers for early detection, targeted and effective therapy to prevent the progression. Microparticles (MPs) are extracellular vesicles measuring 0.1 to 1 micron derived by cytoskeletal reorganization in the form of cytoplasmic blebs which alters the phospholipid cytochemistry of the cell membrane. They are shed during cell activation and apoptosis as well as plays an important role in cell-to-cell communication. Over the last few decades, both plasma and urinary MPs have been investigated, validated and the preliminary research looks promising. With alterations in their number and composition documented in clinical situations involving both Type1 and 2 diabetes mellitus, microparticles assay appears to be promising in early diagnosis and prognostication of DKD. WecoverthebasicsofmicroparticlesandtheirinvolvementinDKDinthisreviewarticle.
Collapse
Affiliation(s)
- Sushma Thimmaiah Kanakalakshmi
- Department of Anaesthesiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | |
Collapse
|
7
|
Garavelli S, Prattichizzo F, Ceriello A, Galgani M, de Candia P. Type 1 Diabetes and Associated Cardiovascular Damage: Contribution of Extracellular Vesicles in Tissue Crosstalk. Antioxid Redox Signal 2022; 36:631-651. [PMID: 34407376 DOI: 10.1089/ars.2021.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Type 1 diabetes (T1D) is characterized by the autoimmune destruction of the insulin secreting β-cells, with consequent aberrant blood glucose levels. Hyperglycemia is the common denominator for most of the chronic diabetic vascular complications, which represent the main cause of life reduction in T1D patients. For this disease, three interlaced medical needs remain: understanding the underlying mechanisms involved in pancreatic β-cell loss; identifying biomarkers able to predict T1D progression and its related complications; recognizing novel therapeutic targets. Recent Advances: Extracellular vesicles (EVs), released by most cell types, were discovered to contain a plethora of different molecules (including microRNAs) with regulatory properties, which are emerging as mediators of cell-to-cell communication at the paracrine and endocrine level. Recent knowledge suggests that EVs may act as pathogenic factors, and be developed into disease biomarkers and therapeutic targets in the context of several human diseases. Critical Issues: EVs have been recently shown to sustain a dysregulated cellular crosstalk able to exacerbate the autoimmune response in the pancreatic islets of T1D; moreover, EVs were shown to be able to monitor and/or predict the progression of T1D and the insurgence of vasculopathies. Future Directions: More mechanistic studies are needed to investigate whether the dysregulation of EVs in T1D patients is solely reflecting the progression of diabetes and related complications, or EVs also directly participate in the disease process, thus pointing to a potential use of EVs as therapeutic targets/tools in T1D. Antioxid. Redox Signal. 36, 631-651.
Collapse
Affiliation(s)
- Silvia Garavelli
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," Consiglio Nazionale delle Ricerche (C.N.R.), Naples, Italy
| | | | | | - Mario Galgani
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," Consiglio Nazionale delle Ricerche (C.N.R.), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Italy
| | | |
Collapse
|
8
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
10
|
Chiva-Blanch G, Peña E, Cubedo J, García-Arguinzonis M, Pané A, Gil PA, Perez A, Ortega E, Padró T, Badimon L. Molecular mapping of platelet hyperreactivity in diabetes: the stress proteins complex HSPA8/Hsp90/CSK2α and platelet aggregation in diabetic and normal platelets. Transl Res 2021; 235:1-14. [PMID: 33887528 DOI: 10.1016/j.trsl.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022]
Abstract
The molecular understanding of the pathophysiological changes elicited by diabetes in platelets may help in further elucidating the involvement of this pseudo-cell in the increased risk of developing cardiovascular disease and thrombosis in diabetic subjects. We aimed to investigate the differential characteristics of platelets from diabetic patients and nondiabetic controls to unveil the molecular mechanisms behind the increased platelet reactivity in diabetes. We compared platelets from diabetic and control subjects by 2 dimensional-electrophoresis followed by mass spectrometry. Changes in selected differential proteins were validated by immunoprecipitation assays and western blot. Platelet aggregation was measured by light transmittance aggregometry induced by collagen and ADP, and dynamic coagulation analysis of whole blood was measured by thromboelastometry. We observed significant differences in proteins related to platelet aggregation, cell migration, and cell homeostasis. Subjects with diabetes showed higher platelet aggregation and thrombogenicity and higher contents of the stress-related protein complex HSPA8/Hsp90/CSK2α than nondiabetic subjects. Changes in the chaperones HSPA8 and Hsp90, and in CSK2α protein contents correlated with changes in platelet aggregation and blood coagulation activity. In conclusion, the complex HSPA8/Hsp90/CSK2α is involved in diabetes-related platelet hyperreactivity. The role of the HSPA8/Hsp90/CSK2α complex may become a molecular target for the development of future preventive and therapeutic strategies for platelet dysfunction associated with diabetes and its complications.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Esther Peña
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Judit Cubedo
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Maisa García-Arguinzonis
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Adriana Pané
- Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Pedro A Gil
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonio Perez
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Emilio Ortega
- Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
11
|
Alfì E, Thairi C, Femminò S, Alloatti G, Moccia F, Brizzi MF, Pagliaro P, Penna C. Extracellular vesicles (EVs) in ischemic conditioning and angiogenesis: Focus on endothelial derived EVs. Vascul Pharmacol 2021; 140:106873. [PMID: 33992781 DOI: 10.1016/j.vph.2021.106873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023]
Abstract
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. However, reperfusion further exacerbates the damage of the ischemic heart. This type of injury is known as ischemia-reperfusion injury (IRI). Ischemic conditioning is a procedure which consists of brief cycles of ischemia and reperfusion in order to protect the myocardium against IRI. Remote ischemic conditioning (RIC), namely transient brief episodes of ischemia at a remote site before a subsequent damaging ischemia/reperfusion procedure of the target organ (e.g., the heart), protects against IRI. However, how the stimulus of RIC is transduced from the remote organ to the ischemic heart is still unknown. Recently, extracellular vesicles (EVs) have been proposed to have a role in the RIC procedure. The endothelium releases EVs and is also one of the tissues mostly exposed to EVs during their journey to the target organ. Moreover, EVs may have important roles in angiogenesis and, therefore, in the remodeling of post-ischemic organs. Here we analyze how EVs may contribute to the overall cardioprotective effect and the implication of the endothelium and its EVs in RIC mediated acute cardioprotection as well as in angiogenesis.
Collapse
Affiliation(s)
- Edoardo Alfì
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Saveria Femminò
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, University of Pavia, Laboratory of General Physiology, 27100 Pavia, Italy
| | - Maria F Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| |
Collapse
|
12
|
Lugo-Gavidia LM, Burger D, Matthews VB, Nolde JM, Galindo Kiuchi M, Carnagarin R, Kannenkeril D, Chan J, Joyson A, Herat LY, Azzam O, Schlaich MP. Role of Microparticles in Cardiovascular Disease: Implications for Endothelial Dysfunction, Thrombosis, and Inflammation. HYPERTENSION (DALLAS, TEX. : 1979) 2021; 77:1825-1844. [PMID: 33979187 DOI: 10.1161/hypertensionaha.121.16975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa (D.B.)
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Janis M Nolde
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Márcio Galindo Kiuchi
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Dennis Kannenkeril
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.).,Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany (D.K.)
| | - Justine Chan
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Anu Joyson
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Omar Azzam
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.).,Department of Internal Medicine (O.A.), Royal Perth Hospital, Western Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.).,Departments of Cardiology and Nephrology (M.P.S.), Royal Perth Hospital, Western Australia.,Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (M.P.S.)
| |
Collapse
|
13
|
Giannella A, Ceolotto G, Radu CM, Cattelan A, Iori E, Benetti A, Fabris F, Simioni P, Avogaro A, Vigili de Kreutzenberg S. PAR-4/Ca 2+-calpain pathway activation stimulates platelet-derived microparticles in hyperglycemic type 2 diabetes. Cardiovasc Diabetol 2021; 20:77. [PMID: 33812377 PMCID: PMC8019350 DOI: 10.1186/s12933-021-01267-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Patients with type 2 diabetes (T2DM) have a prothrombotic state that needs to be fully clarified; microparticles (MPs) have emerged as mediators and markers of this condition. Thus, we investigate, in vivo, in T2DM either with good (HbA1c ≤ 7.0%; GGC) or poor (HbA1c > 7.0%; PGC) glycemic control, the circulating levels of MPs, and in vitro, the molecular pathways involved in the release of MPs from platelets (PMP) and tested their pro-inflammatory effects on THP-1 transformed macrophages. Methods In 59 T2DM, and 23 control subjects with normal glucose tolerance (NGT), circulating levels of CD62E+, CD62P+, CD142+, CD45+ MPs were determined by flow cytometry, while plasma levels of ICAM-1, VCAM-1, IL-6 by ELISA. In vitro, PMP release and activation of isolated platelets from GGC and PGC were investigated, along with their effect on IL-6 secretion in THP-1 transformed macrophages. Results We found that MPs CD62P+ (PMP) and CD142+ (tissue factor-bearing MP) were significantly higher in PGC T2DM than GGC T2DM and NGT. Among MPs, PMP were also correlated with HbA1c and IL-6. In vitro, we showed that acute thrombin exposure stimulated a significantly higher PMP release in PGC T2DM than GGC T2DM through a more robust activation of PAR-4 receptor than PAR-1 receptor. Treatment with PAR-4 agonist induced an increased release of PMP in PGC with a Ca2+-calpain dependent mechanism since this effect was blunted by calpain inhibitor. Finally, the uptake of PMP derived from PAR-4 treated PGC platelets into THP-1 transformed macrophages promoted a marked increase of IL-6 release compared to PMP derived from GGC through the activation of the NF-kB pathway. Conclusions These results identify PAR-4 as a mediator of platelet activation, microparticle release, and inflammation, in poorly controlled T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01267-w.
Collapse
Affiliation(s)
- Alessandra Giannella
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Giulio Ceolotto
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Claudia Maria Radu
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Arianna Cattelan
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Elisabetta Iori
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Andrea Benetti
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Fabrizio Fabris
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Paolo Simioni
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Angelo Avogaro
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | | |
Collapse
|
14
|
Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res 2021; 117:2001-2015. [PMID: 33484117 DOI: 10.1093/cvr/cvab003] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid is one of the most abundant and ubiquitous ω-6 polyunsaturated fatty acid, present in esterified form in the membrane phospholipids of all mammalian cells and released from phospholipids by several phospholipases in response to various activating or inhibitory stimuli. Arachidonic acid is the precursor of a large number of enzymatically and non-enzymatically derived, biologically active autacoids, including prostaglandins (PGs), thromboxane (TX) A2, leukotrienes, and epoxyeicosatetraenoic acids (collectively called eicosanoids), endocannabinoids and isoprostanes, respectively. Eicosanoids are local modulators of the physiological functions and pathophysiological roles of blood vessels and platelets. For example, the importance of cyclooxygenase (COX)-1-derived TXA2 from activated platelets in contributing to primary haemostasis and atherothrombosis is demonstrated in animal and human models by the bleeding complications and cardioprotective effects associated with low-dose aspirin, a selective inhibitor of platelet COX-1. The relevance of vascular COX-2-derived prostacyclin (PGI2) in endothelial thromboresistance and atheroprotection is clearly shown by animal and human models and by the adverse cardiovascular effects exerted by COX-2 inhibitors in humans. A vast array of arachidonic acid-transforming enzymes, downstream synthases and isomerases, transmembrane receptors, and specificity in their tissue expression make arachidonic acid metabolism a fine-tuning system of vascular health and disease. Its pharmacological regulation is central in human cardiovascular diseases, as demonstrated by biochemical measurements and intervention trials.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Bianca Rocca
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| | - Carlo Patrono
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Penna C, Femminò S, Alloatti G, Brizzi MF, Angelone T, Pagliaro P. Extracellular Vesicles in Comorbidities Associated with Ischaemic Heart Disease: Focus on Sex, an Overlooked Factor. J Clin Med 2021; 10:327. [PMID: 33477341 PMCID: PMC7830384 DOI: 10.3390/jcm10020327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are emerging early markers of myocardial damage and key mediators of cardioprotection. Therefore, EV are becoming fascinating tools to prevent cardiovascular disease and feasible weapons to limit ischaemia/reperfusion injury. It is well known that metabolic syndrome negatively affects vascular and endothelial function, thus creating predisposition to ischemic diseases. Additionally, sex is known to significantly impact myocardial injury and cardioprotection. Therefore, actions able to reduce risk factors related to comorbidities in ischaemic diseases are required to prevent maladaptive ventricular remodelling, preserve cardiac function, and prevent the onset of heart failure. This implies that early diagnosis and personalised medicine, also related to sex differences, are mandatory for primary or secondary prevention. Here, we report the contribution of EV as biomarkers and/or therapeutic tools in comorbidities predisposing to cardiac ischaemic disease. Whenever possible, attention is dedicated to data linking EV to sex differences.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy;
| | - Maria F. Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| |
Collapse
|
16
|
Production of erythrocyte microparticles in a sub-hemolytic environment. J Artif Organs 2021; 24:135-145. [PMID: 33420875 DOI: 10.1007/s10047-020-01231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023]
Abstract
Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles. Red blood cells isolated from blood of healthy volunteers were exposed to high shear stress in a microfluidic channel to mimic mechanical trauma similar to that occurring in ventricular assist devices. Utilizing flow cytometry techniques, both an increase of shear rate and exposure time showed higher concentrations of red blood cell microparticles. Controlled shear rate exposure shows that red blood cell microparticle concentration may be indicative of sub-hemolytic damage to red blood cells. In addition, properties of these red blood cell microparticles produced by shear suggest that mechanical trauma may underlie some complications for cardiovascular patients.
Collapse
|
17
|
Microparticles-Mediated Vascular Inflammation and its Amelioration by Antioxidant Activity of Baicalin. Antioxidants (Basel) 2020; 9:antiox9090890. [PMID: 32962240 PMCID: PMC7555600 DOI: 10.3390/antiox9090890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microparticles (MPs) are extracellular vesicles (0.1–1.0 μm in size), released in response to cell activation or apoptosis. Endothelial microparticles (EC-MP), vascular smooth muscle cell microparticles (VSMC-MP), and macrophage microparticles (MØ-MP) are key hallmarks of atherosclerosis progression. In our current study, we investigated the potent antioxidant activity of baicalin to ameliorate MP-induced vascular smooth muscle cell (VSMC) dysfunction and endothelial cell (EC) dysfunction, as well as the production of inflammatory mediators in macrophage (RAW264.7). In our study, baicalin suppressed the apoptosis, reactive oxygen species (ROS) generation, NO production, foam cell formation, protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in MØ-MP-induced RAW264.7. In addition, VSMC migration induced by VSMC-MP was dose-dependently inhibited by baicalin. Likewise, baicalin inhibits metalloproteinase-9 expression and suppresses VSMC-MP-induced VSMC proliferation by down-regulation of mitogen-activated protein kinase and proliferating cell nuclear antigen protein expressions. Baicalin also inhibited ROS production and apoptosis in VSMC. In EC, the marker of endothelial dysfunction (endothelial senescence, upregulation of ICAM, and ROS production) induced by EC-MP was halted by baicalin. Our results suggested that baicalin exerts potent biological activity to restore the function of EC and VSMC altered by their corresponding microparticles and inhibits the release of inflammation markers from activated macrophages.
Collapse
|
18
|
Badimon L, Suades R, Vilella-Figuerola A, Crespo J, Vilahur G, Escate R, Padro T, Chiva-Blanch G. Liquid Biopsies: Microvesicles in Cardiovascular Disease. Antioxid Redox Signal 2020; 33:645-662. [PMID: 31696726 DOI: 10.1089/ars.2019.7922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Circulating microvesicles (cMV) are small (0.1-1 μm) phospholipid-rich blebs released by almost all cell types, and their release increases with cell activation and injury, thus reflecting the state of the cell from which they are originated. Microvesicles (MV) are found in the bloodstream, and they affect the phenotype of recipient cells, after local or systemic circulation, by intercellular transfer of their molecular content. Recent Advances: Several studies suggest the use of cell-specific MV subpopulations as predictive biomarkers for cardiovascular diseases (CVDs) at different stages and degrees of severity. In this review, we describe the state of the art of cMV as noninvasive surrogate biomarkers of vascular injury and dysfunction correlated with poor clinical outcomes in CVD. Critical Issues: Despite the growing body of evidence supporting the importance of cMV as hallmarks of CVD and their utility as biomarkers of CVD, the specific roles of each phenotype of cMV in CVD burden and prognosis still remain to be elucidated and validated in large cohorts. In addition, the development of standardized and reproducible techniques is required to be used as biomarkers for disease progression in the clinical setting. Future Directions: A multipanel approach with specific cMV phenotypes, added to current biomarkers and scores, will undoubtedly provide unique prognostic information to stratify patients for appropriate therapy on the basis of their risk of atherothrombotic disease and will open a new research area as therapeutic targets for CVD. MV will add to the implementation of precision medicine by helping the cellular and molecular characterization of CVD patients.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,Cardiology Unit, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alba Vilella-Figuerola
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rafael Escate
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| |
Collapse
|
19
|
Bergen K, Mobarrez F, Jörneskog G, Wallén H, Tehrani S. High levels of endothelial and platelet microvesicles in patients with type 1 diabetes irrespective of microvascular complications. Thromb Res 2020; 196:78-86. [PMID: 32853980 DOI: 10.1016/j.thromres.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Patients with type 1 diabetes have high risk of developing microvascular complications, and microangiopathy contributes to premature cardiovascular disease in this population. The role that microvesicles (MVs) may play in the development of microangiopathy in type 1 diabetes remains unclear. MATERIALS AND METHODS Plasma levels of endothelial MVs (EMVs) and platelet MVs (PMVs) in 130 patients with type 1 diabetes without microangiopathy, 106 patients with microangiopathy and 100 matched healthy controls were analyzed using flow cytometry. MV expression of procoagulant phosphatidylserine (PS) and proinflammatory high mobility group box-1 protein (HMGB1) was also assessed. RESULTS Patients with type 1 diabetes had markedly elevated levels of EMVs and PS+ EMVs as well as PMVs and PS+ PMVs compared to healthy controls (p < .001 for all). Furthermore, HMGB1+ EMVs and HMGB1+ PMVs were significantly increased in patients (p < .001 for all). After adjusting for potential confounders, there were no clear differences between patients with or without microvascular complications for any of the MV parameters. CONCLUSION Type 1 diabetes is a prothrombotic and proinflammatory disease state that, regardless of the presence of clinical microangiopathy, is associated with elevated levels of plasma MVs, in particular those of an endothelial origin. We have for the first time demonstrated that patients with type 1 diabetes have higher levels of HMGB1+ MVs. HMGB1 is an alarmin with potent proinflammatory effects that drive endothelial dysfunction, and it would therefore be of interest to further study the role of HMGB1+ MVs in the development of macrovascular complications in type 1 diabetes.
Collapse
Affiliation(s)
- Karin Bergen
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Nephrology, Danderyd University Hospital, Stockholm, Sweden.
| | | | - Gun Jörneskog
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Håkan Wallén
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Sara Tehrani
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Carracedo J, Alique M, Ramírez-Carracedo R, Bodega G, Ramírez R. Endothelial Extracellular Vesicles Produced by Senescent Cells: Pathophysiological Role in the Cardiovascular Disease Associated with all Types of Diabetes Mellitus. Curr Vasc Pharmacol 2020; 17:447-454. [PMID: 30124156 DOI: 10.2174/1570161116666180820115726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Endothelial senescence-associated with aging or induced prematurely in pathological situations, such as diabetes, is a first step in the development of Cardiovascular Disease (CVDs) and particularly inflammatory cardiovascular diseases. The main mechanism that links endothelial senescence and the progression of CVDs is the production of altered Extracellular Vesicles (EVs) by senescent endothelial cells among them, Microvesicles (MVs). MVs are recognized as intercellular signaling elements that play a key role in regulating tissue homeostasis. However, MVs produced by damage cell conveyed epigenetic signals, mainly involving microRNAs, which induce many of the injured responses in other vascular cells leading to the development of CVDs. Many studies strongly support that the quantification and characterization of the MVs released by senescent endothelial cells may be useful diagnostic tools in patients with CVDs, as well as a future therapeutic target for these diseases. In this review, we summarize the current knowledge linking senescence-associated MVs to the development of CVDs and discuss the roles of these MVs, in particular, in diabetic-associated increases the risk of CVDs.
Collapse
Affiliation(s)
- Julia Carracedo
- Department of Genetic, Physiology and Microbiology, Faculty of Biology, Complutense University/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Matilde Alique
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez-Carracedo
- Cardiovascular Joint Research Unit, University Francisco de Vitoria/ University Hospital Ramon y Cajal Research Unit (IRYCIS), Madrid, Spain
| | - Guillermo Bodega
- Biomedicine and Biotechnology Department, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| |
Collapse
|
21
|
Amabile N, Bagdadi I, Armero S, Elhadad S, Sebag F, Landolff Q, Saby L, Mechulan A, Boulanger CM, Caussin C. Impact of left atrial appendage closure on circulating microvesicles levels: The MICROPLUG study. Int J Cardiol 2020; 307:24-30. [PMID: 31668659 DOI: 10.1016/j.ijcard.2019.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Left atrial appendage occlusion (LAAO) has emerged as a valid alternative to oral anticoagulation therapy for the prevention of systemic embolism in patients with non-valvular atrial fibrillation (NVAF). Microvesicles (MVs) are shed-membrane particles generated during various cellular types activation/apoptosis that carry out diverse biological effects. LAA has been suspected to be a potential source of MVs during AF, but the effects its occlusion on circulating MVs levels are unknown. METHODS N = 25 LAAO and n = 25 control patients who underwent coronary angiography were included. Blood samples were drawn before and 48 h after procedure for all. A third sample was collected 6 weeks after procedure in LAAO patients. In N = 10 extra patients, samples were collected from right atrium, LAA and pulmonary vein during LAAO procedure. Circulating AnnV + procoagulant, endothelial, platelets, red blood cells/RBC and leukocytes derived-MVs were measured using flow cytometry methods. RESULTS In the LAAO group, AnnV+, platelets, RBC, and leukocytes MVs were significantly increased following intervention, whereas only AnnV + MVs levels significantly rose in controls. The 6-w analysis showed that RBC-MVs and AnnV + MVs levels were still significantly elevated compared to baseline values in LAAO patients. The in-site analysis revealed that leukocytes and CD62e + endothelial-MVs were significantly higher in left atrial appendage compared to pulmonary vein, suggesting a local increased production. No major adverse event was observed in any patient post procedural course. CONCLUSIONS LAAO impacts circulating MVs and might create mild pro-coagulant status and potential erythrocytes activation due to the device healing during the first weeks following intervention.
Collapse
Affiliation(s)
- Nicolas Amabile
- Department of Cardiology, Institut Mutualiste Montsouris, Paris, France.
| | - Imane Bagdadi
- Department of Cardiology, Institut Mutualiste Montsouris, Paris, France
| | | | - Simon Elhadad
- Department of Cardiology, CH Marne La Vallée, Jossigny, France
| | - Frederic Sebag
- Department of Cardiology, Institut Mutualiste Montsouris, Paris, France
| | - Quentin Landolff
- Department of Cardiology, Institut Mutualiste Montsouris, Paris, France
| | - Ludivine Saby
- Department of Cardiology, Hôpital Européen, Marseille, France
| | | | | | | |
Collapse
|
22
|
Ferreira-González I, Sánchez-Recalde Á, Abu-Assi E, Arias MÁ, Gallego P, Del Río I. Revista Española de Cardiología: annual report 2019. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2020; 73:410-417. [PMID: 32291243 DOI: 10.1016/j.rec.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
| | | | | | | | | | - Iria Del Río
- Editorial Director, Revista Española de Cardiología
| |
Collapse
|
23
|
Ferreira-González I, Sánchez-Recalde Á, Abu-Assi E, Arias MÁ, Gallego P, del Río I. Revista Española de Cardiología: anuario de 2019. Rev Esp Cardiol 2020. [DOI: 10.1016/j.recesp.2020.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Cavallari C, Figliolini F, Tapparo M, Cedrino M, Trevisan A, Positello L, Rispoli P, Solini A, Migliaretti G, Camussi G, Brizzi MF. miR-130a and Tgfβ Content in Extracellular Vesicles Derived from the Serum of Subjects at High Cardiovascular Risk Predicts their In-Vivo Angiogenic Potential. Sci Rep 2020; 10:706. [PMID: 31959759 PMCID: PMC6971269 DOI: 10.1038/s41598-019-55783-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Serum-derived extracellular vesicles (sEV) from healthy donors display in-vivo pro-angiogenic properties. To identify patients that may benefit from autologous sEV administration for pro-angiogenic purposes, sEV angiogenic capability has been evaluated in type 2 diabetic (T2DM) subjects (D), in obese individuals with (OD) and without (O) T2DM, and in subjects with ischemic disease (IC) (9 patients/group). sEV display different angiogenic properties in such cluster of individuals. miRNomic profile and TGFβ content in sEV were evaluated. We found that miR-130a and TGFβ content correlates with sEV in-vitro and in-vivo angiogenic properties, particularly in T2DM patients. Ingenuity Pathway Analysis (IPA) identified a number of genes as among the most significant miR-130a interactors. Gain-of-function experiments recognized homeoboxA5 (HOXA5) as a miR-130a specific target. Finally, ROC curve analyses revealed that sEV ineffectiveness could be predicted (Likelihood Ratio+ (LH+) = 3.3 IC 95% from 2.6 to 3.9) by comparing miR-130a and TGFβ content 'in Series'. We demonstrate that sEV from high cardiovascular risk patients have different angiogenic properties and that miR-130a and TGFβ sEV content predicts 'true ineffective sEVs'. These results provide the rationale for the use of these assays to identify patients that may benefit from autologous sEV administration to boost the angiogenetic process.
Collapse
Affiliation(s)
| | | | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Pietro Rispoli
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Giuseppe Migliaretti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- 2i3T Scarl, University of Turin, Turin, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Maria Felice Brizzi
- 2i3T Scarl, University of Turin, Turin, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
25
|
Bratseth V, Margeirsdottir HD, Chiva-Blanch G, Heier M, Solheim S, Arnesen H, Dahl-Jørgensen K, Seljeflot I. Annexin V + Microvesicles in Children and Adolescents with Type 1 Diabetes: A Prospective Cohort Study. J Diabetes Res 2020; 2020:7216863. [PMID: 32309448 PMCID: PMC7149325 DOI: 10.1155/2020/7216863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 1 diabetes is a chronic disease including hyperglycemia and accelerated atherosclerosis, with high risk of micro- and macrovascular complications. Circulating microvesicles (cMVs) are procoagulant cell fragments shed during activation/apoptosis and discussed to be markers of vascular dysfunction and hypercoagulability. Limited knowledge exists on hypercoagulability in young diabetics. We aimed to investigate cMVs over a five-year period in children/adolescents with type 1 diabetes compared with controls and any associations with glycemic control and cardiovascular risk factors. We hypothesized increased shedding of cMVs in type 1 diabetes in response to vascular activation. METHODS The cohort included type 1 diabetics (n = 40) and healthy controls (n = 40), mean age 14 years (range 11) at inclusion, randomly selected from the Norwegian Atherosclerosis and Childhood Diabetes (ACD) study. Citrated plasma was prepared and stored at -80°C until cMV analysis by flow cytometry. RESULTS Comparable levels of Annexin V (AV+) cMVs were observed at inclusion. At five-year follow-up, total AV+ cMVs were significantly lower in subjects with type 1 diabetes compared with controls; however, no significant differences were observed after adjusting for covariates. In the type 1 diabetes group, the total AV+, tissue factor-expressing AV+/CD142+, neutrophil-derived AV+/CD15+ and AV+/CD45+/CD15+, and endothelial-derived AV+/CD309+ and CD309+/CD34+ cMVs were inversely correlated with HbA1c (r = -0.437, r = -0.515, r = -0.575, r = -0.529, r = -0.416, and r = -0.445, respectively; all p ≤ 0.01), however, only at inclusion. No significant correlations with cardiovascular risk factors were observed. CONCLUSIONS Children/adolescents with type 1 diabetes show similar levels of AV+ cMVs as healthy controls and limited associations with glucose control. This indicates that our young diabetics on intensive insulin treatment have preserved vascular homeostasis and absence of procoagulant cMVs.
Collapse
Affiliation(s)
- Vibeke Bratseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hanna D. Margeirsdottir
- Pediatric Department, Oslo University Hospital Ullevaal, Oslo, Norway
- Oslo Diabetes Research Centre, Oslo, Norway
| | - Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain
- Endocrinology and Nutrition Department Institut d' Investigacions Biomediques August Pi Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Martin Heier
- Pediatric Department, Oslo University Hospital Ullevaal, Oslo, Norway
- Oslo Diabetes Research Centre, Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Pediatric Department, Oslo University Hospital Ullevaal, Oslo, Norway
- Oslo Diabetes Research Centre, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Lv Y, Tan J, Miao Y, Zhang Q. The role of microvesicles and its active molecules in regulating cellular biology. J Cell Mol Med 2019; 23:7894-7904. [PMID: 31559684 PMCID: PMC6850934 DOI: 10.1111/jcmm.14667] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Cell‐derived microvesicles are membrane vesicles produced by the outward budding of the plasma membrane and released by almost all types of cells. These have been considered as another mechanism of intercellular communication, because they carry active molecules, such as proteins, lipids and nucleic acids. Furthermore, these are present in circulating fluids, such as blood and urine, and are closely correlated to the progression of pathophysiological conditions in many diseases. Recent studies have revealed that microvesicles have a dual effect of damage and protection of receptor cells. However, the nature of the active molecules involved in this effect remains unclear. The present study mainly emphasized the mechanism of microvesicles and the active molecules mediating the different biological effects of receptor cells by affecting autophagy, apoptosis and inflammation pathways. The effective ways of blocking microvesicles and its active molecules in mediating cell damage when microvesicles exert harmful effects were also discussed.
Collapse
Affiliation(s)
- YingMei Lv
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
27
|
Molecular Targets of Aspirin and Prevention of Preeclampsia and Their Potential Association with Circulating Extracellular Vesicles during Pregnancy. Int J Mol Sci 2019; 20:ijms20184370. [PMID: 31492014 PMCID: PMC6769718 DOI: 10.3390/ijms20184370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Uncomplicated healthy pregnancy is the outcome of successful fertilization, implantation of embryos, trophoblast development and adequate placentation. Any deviation in these cascades of events may lead to complicated pregnancies such as preeclampsia (PE). The current incidence of PE is 2–8% in all pregnancies worldwide, leading to high maternal as well as perinatal mortality and morbidity rates. A number of randomized controlled clinical trials observed the association between low dose aspirin (LDA) treatment in early gestational age and significant reduction of early onset of PE in high-risk pregnant women. However, a substantial knowledge gap exists in identifying the particular mechanism of action of aspirin on placental function. It is already established that the placental-derived exosomes (PdE) are present in the maternal circulation from 6 weeks of gestation, and exosomes contain bioactive molecules such as proteins, lipids and RNA that are a “fingerprint” of their originating cells. Interestingly, levels of exosomes are higher in PE compared to normal pregnancies, and changes in the level of PdE during the first trimester may be used to classify women at risk for developing PE. The aim of this review is to discuss the mechanisms of action of LDA on placental and maternal physiological systems including the role of PdE in these phenomena. This review article will contribute to the in-depth understanding of LDA-induced PE prevention.
Collapse
|
28
|
Gkaliagkousi E, Nikolaidou B, Gavriilaki E, Lazaridis A, Yiannaki E, Anyfanti P, Zografou I, Markala D, Douma S. Increased erythrocyte- and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus. Diab Vasc Dis Res 2019; 16:458-465. [PMID: 31046456 DOI: 10.1177/1479164119844691] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the thrombotic microenvironment in early stages of type 2 diabetes mellitus measuring platelet-derived, endothelial-derived and erythrocyte-derived microvesicles. METHODS We recruited 50 newly diagnosed type 2 diabetes mellitus patients who did not receive glucose-lowering treatment except for metformin and 25 matched non-type 2 diabetes mellitus volunteers. Microvesicles were measured with flow cytometry, glycated haemoglobin with high-performance liquid chromatography and advanced glycation end products with enzyme-linked immunosorbent assay. RESULTS Type 2 diabetes mellitus patients showed significantly higher levels of platelet-derived microvesicles [195/μL (115-409) vs 110/μL (73-150), p = 0.001] and erythrocyte-derived microvesicles [26/μL (9-100) vs 9/μL (4-25), p = 0.007] compared to non-type 2 diabetes mellitus individuals. Platelet-derived microvesicles were positively associated with fasting blood glucose (p = 0.026) and glycated haemoglobin (p = 0.002). Erythrocyte-derived microvesicles were also positively associated with fasting blood glucose (p = 0.018) but not with glycated haemoglobin (p = 0.193). No significant association was observed between platelet-derived microvesicles (p = 0.126) or erythrocyte-derived microvesicles (p = 0.857) and advanced glycation end products. Erythrocyte-derived microvesicles predicted the presence of type 2 diabetes mellitus, independently of platelet-derived microvesicles. CONCLUSION In newly diagnosed type 2 diabetes mellitus, ongoing atherothrombosis is evident during the early stages as evidenced by increased microvesicles levels. Furthermore, the association with glycemic profile suggests that microvesicles represent not only a novel mechanism by which hyperglycemia amplifies thrombotic tendency in type 2 diabetes mellitus but also early markers of thrombosis highlighting the need for earlier management of hyperglycemia.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Barbara Nikolaidou
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Gavriilaki
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Lazaridis
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthalia Yiannaki
- 2 Department of Hematology, Theagenion Cancer Center, Thessaloniki, Greece
| | - Panagiota Anyfanti
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Zografou
- 3 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Markala
- 2 Department of Hematology, Theagenion Cancer Center, Thessaloniki, Greece
| | - Stella Douma
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
29
|
Zarà M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci 2019; 20:ijms20112840. [PMID: 31212641 PMCID: PMC6600675 DOI: 10.3390/ijms20112840] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | | | - Marina Camera
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy.
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Patrizia Amadio
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Elena Tremoli
- Scientific Direction, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Silvia Stella Barbieri
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| |
Collapse
|
30
|
Rosinska J, Maciejewska J, Narożny R, Osztynowicz K, Raczak B, Michalak S, Watała C, Kozubski W, Łukasik M. Effect of acetylsalicylic acid intake on platelet derived microvesicles in healthy subjects. Platelets 2019; 31:206-214. [PMID: 30895834 DOI: 10.1080/09537104.2019.1588242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Platelet-derived microvesicles (pMVs) are released from platelets in physiological and pathological conditions and exhibit a wide range of prothrombotic, antithrombotic, proatherogenic, and pro-inflammatory properties. Antiplatelet agents, such as acetylsalicylic acid (ASA), are widely used for the prevention and treatment of vascular diseases, but their impact on pMV release remains poorly understood and contradictory mainly because of discrepancies in the methodology and lack of well-standardized MV assessment protocols. The present study investigated the effects of ASA not only on total pMV release but also on their phenotypes defined using the surface expression of pro-inflammatory (CD40L, CD62P, CD31) and procoagulant (PS, PAC-1) markers in healthy subjects. Fifty healthy volunteers were enrolled in the study and received a daily dose of 150 mg ASA for 3 consecutive days. Circulating pMVs were characterized and quantified before and after the intervention period using flow cytometry. Serum levels of thromboxane B2 (TXB2) and whole blood impedance platelet aggregation under arachidonic acid (AA) stimulation were also investigated to assess ASA compliance. In general, ASA did not effect pMV numbers in healthy subjects despite its effective inhibition of platelet aggregation Moreover, in premenopausal women, we noticed an increase in the number of pMVs. Further studies are needed to assess whether dose modification of ASA or combinations or changes in antiplatelet therapy would reduce pMV formation, especially in patients with cardiovascular risk factors.
Collapse
Affiliation(s)
- Justyna Rosinska
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Maciejewska
- Laboratory of Flow Cytometry and Vascular Biology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Narożny
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Krystyna Osztynowicz
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Raczak
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sławomir Michalak
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Cezary Watała
- Department of Haemostasis and Haemostatic Disorders, Medical University, Lodz, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Łukasik
- Laboratory of Flow Cytometry and Vascular Biology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
31
|
Rosińska J, Ambrosius W, Maciejewska J, Narożny R, Kozubski W, Łukasik M. Association of platelet-derived microvesicles and their phenotypes with carotid atherosclerosis and recurrent vascular events in patients after ischemic stroke. Thromb Res 2019; 176:18-26. [PMID: 30763823 DOI: 10.1016/j.thromres.2019.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Platelet-derived microvesicles (pMVs) exhibit procoagulant and proinflammatory properties and play a role in the development and progression of atherosclerosis. The study examined the association between the total number of pMVs and their phenotypes with carotid atherosclerosis and recurrent vascular events (VEs) in patients in the convalescent phase of ischemic stroke (IS). MATERIALS AND METHODS The study group consisted of 72 patients with IS secondary to large artery atherosclerosis (LAA) (n = 40) and small arteries occlusion (SAO) (n = 32) and 69 matched cardiovascular disease risk-factor (RF) controls. Total pMV number, defined as CD61+ microvesicles (MVs), and their phenotypes, defined as the surface expression of proinflammatory (CD40L, CD62P, CD31) and procoagulant (PS, PAC-1) markers, were characterized and quantified using flow cytometry. The mean common carotid intima-media thickness (CCA mean IMT), maximal common carotid IMT (CCA max IMT) and maximal bifurcation IMT (BIF max IMT) were measured bilaterally using B-mode, color Doppler ultrasonography. All study subjects were observed for one-year to establish the occurrence of VEs. RESULTS No differences in pMV parameters between LAA and SAO stroke subjects and between stroke subgroups and controls were found. Stroke patients with carotid atherosclerosis exhibited higher concentration of CD62P+/CD61+ and PAC-1+/CD61+ MVs compared to patients without the atherosclerosis. Positive associations between total number of pMVs, AnV+ MVs and AnV+/CD61+ MVs and atherosclerotic thickening of carotid intima-media in stroke patients were found. Elevated concentration of AnV+/CD61+, PAC-1+/CD61+, CD61P+/CD61+ and CD31+/CD61+ MVs, were revealed in stroke patients who suffered from recurrent VE in one-year follow-up period. Negative correlation of pMVs and CD62P+/CD61+ MVs concentration as well as percentage of total CD61+ in AnV+ population of MVs and time elapsed from IS in convalescent stroke subjects was revealed. CONCLUSION Our results confirm positive correlations between total pMV number, the number of PAC-1+/CD61+ and CD62+/CD61+ MVs and carotid atherosclerosis in stroke subjects. Some pMV parameters may exhibit a predictive value for the next VE in groups with a history of stroke. pMVs and some of their phenotypes decline over time elapsed from stroke in convalescent stroke subjects.
Collapse
Affiliation(s)
- Justyna Rosińska
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Wojciech Ambrosius
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Maciejewska
- Laboratory of Flow Cytometry and Vascular Biology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Narożny
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Łukasik
- Laboratory of Flow Cytometry and Vascular Biology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
32
|
|
33
|
Abstract
Platelet-derived microvesicles (pMVs) are small, heterogeneous vesicles released from platelet membranes as a result of activation. These microvesicles possess a wide range of properties, including prothrombotic, proatherogenic, proinflammatory, immunomodulatory, and even anticoagulant activity. The elevated release of these microvesicles has been observed in various metabolic, inflammatory, thrombotic, and vascular diseases, including ischemic heart disease, stroke, hypertension, diabetes, and connective tissue disease. Modulation of both pMV generation and the expression of their surface molecules may have beneficial clinical implications and could become a novel therapeutic target. However, mechanisms by which pharmacological agents can modify pMV formation are elusive. The purpose of this review is to discuss the effects of drugs routinely used in primary and secondary prevention of vascular disease on the release of pMV and expression of their surface procoagulant and proinflammatory molecules.
Collapse
Affiliation(s)
- Justyna Rosińska
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznan, Poland.
| | - Maria Łukasik
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznan, Poland
| |
Collapse
|
34
|
Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 2018; 60:81-91. [DOI: 10.1016/j.mam.2017.11.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
|
35
|
Zhang W, Chen S, Liu ML. Pathogenic roles of microvesicles in diabetic retinopathy. Acta Pharmacol Sin 2018; 39:1-11. [PMID: 28713160 DOI: 10.1038/aps.2017.77] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and has been recognized as the leading cause of blindness in adults. Several interrelated molecular pathways are involved in the development of DR. Microvesicles (MVs) are cell membrane vesicles, which carry many biologic molecules, such as mRNAs, microRNAs, transcription factors, membrane lipids, membrane receptors, and other proteins. They may be involved in intercellular communication that can promote inflammation, angiogenesis, and coagulation. Recent studies have indicated that changes in the number and composition of MVs may reflect the pathologic conditions of DR. At present, MVs are well recognized as being involved in the pathophysiological conditions of tumors and cardio-metabolic diseases. However, the roles of MVs in DR have yet to be investigated. In this review, we provide an overview of DR-induced microvascular injury that is caused by MVs derived from endothelial and circulating cells, and discuss the possible mechanisms by which MVs can lead to endothelial dysfunction, coagulation and inflammation. In addition, the protective effects of preconditioned MVs and stem cell-derived MVs are also described . Understanding the involvement of MVs in the pathophysiological conditions of DR may provide insight into the disease mechanisms and may suggest novel therapeutic strategies for DR in the future.
Collapse
|
36
|
Cheng G, Shan XF, Wang XL, Dong WW, Li Z, Liu XH, Zhang W, Xing K, Chang FJ. Endothelial damage effects of circulating microparticles from patients with stable angina are reduced by aspirin through ERK/p38 MAPKs pathways. Cardiovasc Ther 2017; 35. [PMID: 28520220 DOI: 10.1111/1755-5922.12273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/14/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Gong Cheng
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Xue-Feng Shan
- Department of Children's Cardiac surgery; First Affiliated Hospital of Xinjiang Medical University; Urumuqi Xinjiang China
| | - Xu-Lang Wang
- Department of Nursing; Xian'yang Vocational and Technical College; Xian'yang Shaanxi China
| | - Wei-Wei Dong
- Xinjiang Petroleum Institute; Urumuqi Xinjiang China
| | - Zhe Li
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Xin-Hong Liu
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Wei Zhang
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Kun Xing
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Feng-Jun Chang
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| |
Collapse
|
37
|
Abstract
Heart failure (HF) continues to have a sufficient impact on morbidity, mortality, and disability in developed countries. Growing evidence supports the hypothesis that microparticles (MPs) might contribute to the pathogenesis of the HF development playing a pivotal role in the regulation of the endogenous repair system, thrombosis, coagulation, inflammation, immunity, and metabolic memory phenomenon. Therefore, there is a large body of data clarifying the predictive value of MP numerous in circulation among subjects with HF. Although the determination of MP signature is better than measurement of single MP circulating level, there is not yet close confirmation that immune phenotype of cells produced MPs are important for HF prediction and development. The aim of the chapter is to summarize knowledge regarding the role of various MPs in diagnosis and prognosis of HF. The role of MPs as a delivery vehicle for drugs attenuated cardiac remodeling is considered.
Collapse
|
38
|
Chiva-Blanch G, Bratseth V, Ritschel V, Andersen GØ, Halvorsen S, Eritsland J, Arnesen H, Badimon L, Seljeflot I. Monocyte-derived circulating microparticles (CD14 +, CD14 +/CD11b + and CD14 +/CD142 +) are related to long-term prognosis for cardiovascular mortality in STEMI patients. Int J Cardiol 2016; 227:876-881. [PMID: 27915085 DOI: 10.1016/j.ijcard.2016.11.302] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circulating microparticles (cMPs) have been proposed as novel biomarkers of cardiovascular disease (CVD). We aimed to investigate the prognostic relevance of cMPs for future major adverse cardiovascular events (MACE) in STEMI patients. METHODS We included 200 STEMI patients treated with percutaneous coronary intervention (PCI). One hundred patients with a primary composite end point (recurrent nonfatal acute MI, rehospitalization for heart failure, unscheduled PCI or death because of CV causes) were case-matched for sex, age, and CVD risk factors to 100 patients without a primary endpoint at the end of study follow-up (4.4 (1.4) years). cMPs from vascular cells were measured by flow cytometer at a mean of 28h after onset of symptoms. RESULTS No differences were observed in MP shedding between patients with or without a MACE at the end of the study follow-up. However, compared to patients who survived during follow-up, patients who died because of CV causes (n=24) presented with increased total cMPs (Annexin V-AV-+), cMPs carrying tissue factor, and increased MP shedding from platelets, lymphocytes, monocytes, and activated leukocytes, and ~10% lower left ventricular ejection fraction (LVEF). ROC-curve analyses showed that monocyte-derived cMPs (CD14+/AV+, CD11b+/CD14+/AV+ and CD142+/CD14+/AV+) considered together with LVEF best predicted cardiovascular mortality. CONCLUSIONS Monocyte-derived cMPs assessed in the acute phase relate to the prognosis of CV death at the long term. These findings may be of clinical interest in the risk assessment of STEMI patients.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain.
| | - Vibeke Bratseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Vibeke Ritschel
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Geir Ø Andersen
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sigrun Halvorsen
- Faculty of Medicine, University of Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|