1
|
Lu Z, Lightcap IV, Tennyson AG. An organometallic catalase mimic with exceptional activity, H 2O 2 stability, and catalase/peroxidase selectivity. Dalton Trans 2021; 50:15493-15501. [PMID: 34473153 DOI: 10.1039/d1dt02002a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-porphyrin and -salen redox therapeutics catalyze redox reactions involving O2˙-, H2O2, and other reactive oxygen species, thereby modulating cellular redox states. Many of these complexes perform catalase reactions via high-valent Mn-oxo or -hydroxo intermediates that oxidize H2O2 to O2, but these intermediates can also oxidize other molecules (e.g., thiols), which is peroxidase reactivity. Whether catalase or peroxidase reactivity predominates depends on the metal-ligand set and the local environment, complicating predictions of what therapeutic effects (e.g., promoting vs. suppressing apoptosis) a complex might produce in a given disease. We recently reported an organoruthenium complex (Ru1) that catalyzes ABTS˙- reduction to ABTS2- with H2O2 as the terminal reductant. Given that H2O2 is thermodynamically a stronger oxidant than ABTS˙-, we reasoned that the intermediate that reduced ABTS˙- would also be able to reduce H2O2 to H2O. Herein we demonstrate Ru1-catalyzed H2O2 disproportionation into O2 and H2O, exhibiting an 8,580-fold faster catalase TOF vs. peroxidase TOF, which is 89.2-fold greater than the highest value reported for a Mn-porphyin or -salen complex. Furthermore, Ru1 was 120-fold more stable to H2O2 than the best MnSOD mimic (TON = 4000 vs. 33.4) Mechanistic studies provide evidence that the mechanism for Ru1-catalyzed H2O2 disproportionation is conserved with the mechanism for ABTS˙- reduction. Therapeutic effects of redox catalysts can be predicted with greater accuracy for catalysts that exhibit exclusively catalase activity, thereby facilitating the development of future redox therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Zhuomin Lu
- Department of Chemistry, Clemson University, Clemson University, USA.
| | - Ian V Lightcap
- Center for Sustainable Energy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew G Tennyson
- Department of Chemistry, Clemson University, Clemson University, USA.
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, Chen Y, Guo M, Han W, Ye A, Xie T, Chu B, Shi C, Yang S, Chen C. Precision Redox: The Key for Antioxidant Pharmacology. Antioxid Redox Signal 2021; 34:1069-1082. [PMID: 33270507 PMCID: PMC8080931 DOI: 10.1089/ars.2020.8212] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Significance: The redox balance of cells provides a stable microenvironment for biological macromolecules to perform their physiological functions. As redox imbalance is closely related to the occurrence and development of a variety of diseases, antioxidant therapies are an attractive option. However, redox-based therapeutic strategies have not yet shown satisfactory results. To find the key reason is of great significance. Recent Advances: We emphasize the precise nature of redox regulation and elucidate the importance and necessity of precision redox strategies from three aspects: differences in redox status, differences in redox function, and differences in the effects of redox therapy. We then propose the "5R" principle of precision redox in antioxidant pharmacology: "Right species, Right place, Right time, Right level, and Right target." Critical Issues: Redox status must be considered in the context of species, time, place, level, and target. The function of a biomacromolecule and its cellular signaling role are closely dependent on redox status. Accurate evaluation of redox status and specific interventions are critical for the success of redox treatments. Precision redox is the key for antioxidant pharmacology. The precise application of antioxidants as nutritional supplements is also key to the general health of the population. Future Directions: Future studies to develop more accurate methods for detecting redox status and accurately evaluating the redox state of different physiological and pathological processes are needed. Antioxidant pharmacology should consider the "5R" principle rather than continuing to apply global nonspecific antioxidant treatments. Antioxid. Redox Signal. 34, 1069-1082.
Collapse
Affiliation(s)
- Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chuanxin Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuzhe Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wensheng Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Boyu Chu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangpo Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I, Alvarez Secord A. H 2O 2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6653790. [PMID: 33815656 PMCID: PMC7987459 DOI: 10.1155/2021/6653790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Mn(III) ortho-N-alkyl- and N-alkoxyalkyl porphyrins (MnPs) were initially developed as superoxide dismutase (SOD) mimics. These compounds were later shown to react with numerous reactive species (such as ONOO-, H2O2, H2S, CO3 •-, ascorbate, and GSH). Moreover, the ability of MnPs to oxidatively modify activities of numerous proteins has emerged as their major mechanism of action both in normal and in cancer cells. Among those proteins are transcription factors (NF-κB and Nrf2), mitogen-activated protein kinases, MAPKs, antiapoptotic bcl-2, and endogenous antioxidative defenses. The lead Mn porphyrins, namely, MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001), and MnTnHex-2-PyP5+, were tested in numerous injuries of normal tissue and cellular and animal cancer models. The wealth of the data led to the progression of MnTnBuOE-2-PyP5+ into four Phase II clinical trials on glioma, head and neck cancer, anal cancer, and multiple brain metastases, while MnTE-2-PyP5+ is in Phase II clinical trial on atopic dermatitis and itch.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weina Duan
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Du
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Zhipeng Cao
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huaxin Sheng
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021; 10:antiox10010130. [PMID: 33477607 PMCID: PMC7831323 DOI: 10.3390/antiox10010130] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6038
| |
Collapse
|
5
|
Liu J, Li Z, Ghanizadeh H, Kerckhoffs H, Sofkova-Bobcheva S, Wu W, Wang X, Liu Y, Li X, Zhao H, Chen X, Zhang Y, Wang A. Comparative Genomic and Physiological Analyses of a Superoxide Dismutase Mimetic (SODm-123) for Its Ability to Respond to Oxidative Stress in Tomato Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13608-13619. [PMID: 33175525 DOI: 10.1021/acs.jafc.0c04618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superoxide dismutases (SODs) are a group of enzymes that have a crucial role in controlling oxidative stress in plants. Here, we synthesized an environmentally friendly SOD mimic, SODm-123, from L-aspartic acid and manganese oxide. SODm-123 showed similar enzymatic activity to Mn-SOD. To gain insights into the role of SODm-123 in oxidative stress tolerance, a series of experiments were conducted to assess the physiological and molecular responses of tomato plants when treated with SODm-123. The results showed that the levels of O2-• and H2O2 in tomato cells were affected by SODm-123 treatment, indicating that SODm-123 can control oxidative stress like Mn-SOD. The results also exhibited that SODm-123 increased the contents of photosynthetic pigments. However, it was noted that SODm-123 resulted in a reduction in the content of soluble sugar and MDA. These results indicate that SODm-123 promoted the efficiency of photosynthesis by regulating the content of H2O2. To further investigate the role of SODm-123 in controlling oxidative stress, a transcriptome analysis was used to identify differentially expressed genes (DEGs) associated with SODm-123 treatment. The results indicated that SODm-123 treatment resulted in 341 differentially expressed genes (DEGs) in treated tomato leaves at 96 h after treatment. Kyoto encyclopedia of genes and genomes (KEGG) revealed that DEGs were involved in pathways such as photosynthetic pigment biosynthesis, ABC transporters, sugar metabolism, and MAPK signaling, which further confirmed a positive role of SODm-123 in improving stress tolerance in plants. Overall, the results of this study suggest that SODm-123 promotes the growth and development of tomato seedlings and therefore can be used as a potential growth-promoting agent for plants.
Collapse
Affiliation(s)
- Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhugang Li
- Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Huub Kerckhoffs
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Svetla Sofkova-Bobcheva
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Wending Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yanxin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xinmao Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hui Zhao
- Daqing High-Tech Zone Huamei Technology Co., Ltd., Daqing 161090, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Abstract
In this Review, we focus on catalytic antioxidant study based on transition metal complexes, organoselenium compounds, supramolecules and protein scaffolds.
Collapse
Affiliation(s)
- Riku Kubota
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
7
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|
8
|
Superoxide dismutase activity enabled by a redox-active ligand rather than metal. Nat Chem 2018; 10:1207-1212. [PMID: 30275506 DOI: 10.1038/s41557-018-0137-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species are integral to many physiological processes. Although their roles are still being elucidated, they seem to be linked to a variety of disorders and may represent promising drug targets. Mimics of superoxide dismutases, which catalyse the decomposition of O2•- to H2O2 and O2, have traditionally used redox-active metals, which are toxic outside of a tightly coordinating ligand. Purely organic antioxidants have also been investigated but generally require stoichiometric, rather than catalytic, doses. Here, we show that a complex of the redox-inactive metal zinc(II) with a hexadentate ligand containing a redox-active quinol can catalytically degrade superoxide, as demonstrated by both reactivity assays and stopped-flow kinetics studies of direct reactions with O2•- and the zinc(II) complex. The observed superoxide dismutase catalysis has an important advantage over previously reported work in that it is hastened, rather than impeded, by the presence of phosphate, the concentration of which is high under physiological conditions.
Collapse
|
9
|
Insights on Localized and Systemic Delivery of Redox-Based Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2468457. [PMID: 29636836 PMCID: PMC5832094 DOI: 10.1155/2018/2468457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside.
Collapse
|
10
|
Bonetta R. Potential Therapeutic Applications of MnSODs and SOD-Mimetics. Chemistry 2017; 24:5032-5041. [DOI: 10.1002/chem.201704561] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Rosalin Bonetta
- Centre of Molecular Medicine and Biobanking; University of Malta; Msida MSD2080 Malta
| |
Collapse
|
11
|
Yulyana Y, Tovmasyan A, Ho IAW, Sia KC, Newman JP, Ng WH, Guo CM, Hui KM, Batinic-Haberle I, Lam PYP. Redox-Active Mn Porphyrin-based Potent SOD Mimic, MnTnBuOE-2-PyP(5+), Enhances Carbenoxolone-Mediated TRAIL-Induced Apoptosis in Glioblastoma Multiforme. Stem Cell Rev Rep 2016; 12:140-55. [PMID: 26454429 DOI: 10.1007/s12015-015-9628-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme is the most malignant tumor of the brain and is challenging to treat due to its highly invasive nature and heterogeneity. Malignant brain tumor displays high metabolic activity which perturbs its redox environment and in turn translates to high oxidative stress. Thus, pushing the oxidative stress level to achieve the maximum tolerable threshold that induces cell death is a potential strategy for cancer therapy. Previously, we have shown that gap junction inhibitor, carbenoxolone (CBX), is capable of enhancing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis in glioma cells. Since CBX is known to induce oxidative stress, we hypothesized that the addition of another potent mediator of oxidative stress, powerful SOD mimic MnTnBuOE-2-PyP(5+) (MnBuOE), could further enhance TRAIL-driven therapeutic efficacy in glioma cells. Our results showed that combining TRAIL + CBX with MnBuOE significantly enhances cell death of glioma cell lines and this enhancement could be further potentiated by CBX pretreatment. MnBuOE-driven cytotoxicity is due to its ability to take advantage of oxidative stress imposed by CBX + TRAIL system, and enhance it in the presence of endogenous reductants, ascorbate and thiol, thereby producing cytotoxic H2O2, and in turn inducing death of glioma cells but not normal astrocytes. Most importantly, combination treatment significantly reduces viability of TRAIL-resistant Asian patient-derived glioma cells, thus demonstrating the potential clinical use of our therapeutic system. It was reported that H2O2 is involved in membrane depolarization-based sensitization of cancer cells toward TRAIL. MnBuOE is entering Clinical Trials as a normal brain radioprotector in glioma patients at Duke University increasing Clinical relevance of our studies.
Collapse
Affiliation(s)
- Yulyana Yulyana
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Research Drive 281b/285 MSRB I, Box 3455, Durham, NC, 27710, USA
| | - Ivy A W Ho
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.,National Neuroscience Institute, Singapore, Singapore
| | - Kian Chuan Sia
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.,National University of Singapore, Singapore, Singapore
| | - Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Chang Ming Guo
- Department of Orthopedics, Singapore General Hospital, Singapore, Singapore
| | - Kam Man Hui
- Bek Chai Heah Laboratory of Cancer Genomics, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre of Singapore, Singapore, Singapore.,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Research Drive 281b/285 MSRB I, Box 3455, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University Medical Centre, Durham, NC, USA.
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. .,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Jankovic A, Ferreri C, Filipovic M, Ivanovic-Burmazovic I, Stancic A, Otasevic V, Korac A, Buzadzic B, Korac B. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin. Free Radic Res 2016; 50:S51-S63. [DOI: 10.1080/10715762.2016.1232483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Carla Ferreri
- ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Milos Filipovic
- CNRS, Institute of Biochemistry and Cellular Genetics, Université de Bordeaux, Bordeaux, France
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Centre for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, Centre for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 Department of PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute, Duke University School of Medicine , Durham, North Carolina
| |
Collapse
|
14
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015; 5:43-65. [PMID: 25827425 PMCID: PMC4392060 DOI: 10.1016/j.redox.2015.01.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA; PK/PD BioAnalytical Duke Cancer Institute Shared Resource, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
15
|
Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:315-29. [PMID: 25348382 PMCID: PMC4397104 DOI: 10.1002/wnan.1305] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Mitochondria, the so-called 'energy factory of cells' not only produce energy but also contribute immensely in cellular mortality management. Mitochondrial dysfunctions result in various diseases including but not limited to cancer, atherosclerosis, and neurodegenerative diseases. In the recent years, targeting mitochondria emerged as an attractive strategy to control mitochondrial dysfunction-related diseases. Despite the desire to direct therapeutics to the mitochondria, the actual task is more difficult due to the highly complex nature of the mitochondria. The potential benefits of integrating nanomaterials with properties such as biodegradability, magnetization, and fluorescence into a single object of nanoscale dimensions can lead to the development of hybrid nanomedical platforms for targeting therapeutics to the mitochondria. Only a handful of nanoparticles based on metal oxides, gold nanoparticles, dendrons, carbon nanotubes, and liposomes were recently engineered to target mitochondria. Most of these materials face tremendous challenges when administered in vivo due to their limited biocompatibility. Biodegradable polymeric nanoparticles emerged as eminent candidates for effective drug delivery. In this review, we highlight the current advancements in the development of biodegradable nanoparticle platforms as effective targeting tools for mitochondrial medicine.
Collapse
Affiliation(s)
- Rakesh K. Pathak
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| | - Nagesh Kolishetti
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
- PartiKula LLC, 7777 Davie Rd., Hollywood, FL 33024
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| |
Collapse
|
16
|
Tovmasyan A, Carballal S, Ghazaryan R, Melikyan L, Weitner T, Maia CC, Reboucas JS, Radi R, Spasojevic I, Benov L, Batinic-Haberle I. Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 2014; 53:11467-83. [PMID: 25333724 PMCID: PMC4220860 DOI: 10.1021/ic501329p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/06/2023]
Abstract
Our goal herein has been to gain further insight into the parameters which control porphyrin therapeutic potential. Mn porphyrins (MnTnOct-2-PyP(5+), MnTnHexOE-2-PyP(5+), MnTE-2-PyPhP(5+), and MnTPhE-2-PyP(5+)) that bear the same positive charge and same number of carbon atoms at meso positions of porphyrin core were explored. The carbon atoms of their meso substituents are organized to form either linear or cyclic structures of vastly different redox properties, bulkiness, and lipophilicities. These Mn porphyrins were compared to frequently studied compounds, MnTE-2-PyP(5+), MnTE-3-PyP(5+), and MnTBAP(3-). All Mn(III) porphyrins (MnPs) have metal-centered reduction potential, E1/2 for Mn(III)P/Mn(II)P redox couple, ranging from -194 to +340 mV versus NHE, log kcat(O2(•-)) from 3.16 to 7.92, and log kred(ONOO(-)) from 5.02 to 7.53. The lipophilicity, expressed as partition between n-octanol and water, log POW, was in the range -1.67 to -7.67. The therapeutic potential of MnPs was assessed via: (i) in vitro ability to prevent spontaneous lipid peroxidation in rat brain homogenate as assessed by malondialdehyde levels; (ii) in vivo O2(•-) specific assay to measure the efficacy in protecting the aerobic growth of SOD-deficient Saccharomyces cerevisiae; and (iii) aqueous solution chemistry to measure the reactivity toward major in vivo endogenous antioxidant, ascorbate. Under the conditions of lipid peroxidation assay, the transport across the cellular membranes, and in turn shape and size of molecule, played no significant role. Those MnPs of E1/2 ∼ +300 mV were the most efficacious, significantly inhibiting lipid peroxidation in 0.5-10 μM range. At up to 200 μM, MnTBAP(3-) (E1/2 = -194 mV vs NHE) failed to inhibit lipid peroxidation, while MnTE-2-PyPhP(5+) with 129 mV more positive E1/2 (-65 mV vs NHE) was fully efficacious at 50 μM. The E1/2 of Mn(III)P/Mn(II)P redox couple is proportional to the log kcat(O2(•-)), i.e., the SOD-like activity of MnPs. It is further proportional to kred(ONOO(-)) and the ability of MnPs to prevent lipid peroxidation. In turn, the inhibition of lipid peroxidation by MnPs is also proportional to their SOD-like activity. In an in vivo S. cerevisiae assay, however, while E1/2 predominates, lipophilicity significantly affects the efficacy of MnPs. MnPs of similar log POW and E1/2, that have linear alkyl or alkoxyalkyl pyridyl substituents, distribute more easily within a cell and in turn provide higher protection to S. cerevisiae in comparison to MnP with bulky cyclic substituents. The bell-shape curve, with MnTE-2-PyP(5+) exhibiting the highest ability to catalyze ascorbate oxidation, has been established and discussed. Our data support the notion that the SOD-like activity of MnPs parallels their therapeutic potential, though species other than O2(•-), such as peroxynitrite, H2O2, lipid reactive species, and cellular reductants, may be involved in their mode(s) of action(s).
Collapse
Affiliation(s)
- Artak Tovmasyan
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Sebastian Carballal
- Departamento
de Bioquímica and Center for Free Radical and Biomedical
Research, Facultad de Medicina, Universidad
de la República, Montevideo, Uruguay
| | - Robert Ghazaryan
- Department of Organic Chemistry, Faculty
of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Lida Melikyan
- Department of Organic Chemistry, Faculty
of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Tin Weitner
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Clarissa
G. C. Maia
- Departamento de Quimica, CCEN, Universidade
Federal de Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Julio S. Reboucas
- Departamento de Quimica, CCEN, Universidade
Federal de Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical
Research, Facultad de Medicina, Universidad
de la República, Montevideo, Uruguay
| | - Ivan Spasojevic
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ines Batinic-Haberle
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| |
Collapse
|
17
|
Gauter-Fleckenstein B, Reboucas JS, Fleckenstein K, Tovmasyan A, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP(5+). Redox Biol 2014; 2:400-10. [PMID: 24624330 PMCID: PMC3949096 DOI: 10.1016/j.redox.2013.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
With the goal to enhance the distribution of cationic Mn porphyrins within mitochondria, the lipophilic Mn(III)meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) has been synthesized and tested in several different model of diseases, where it shows remarkable efficacy at as low as 50 µg/kg single or multiple doses. Yet, in a rat lung radioprotection study, at higher 0.6-1 mg/kg doses, due to its high accumulation and micellar character, it became toxic. To avoid the toxicity, herein the pulmonary radioprotection of MnTnHex-2-PyP(5+) was assessed at 50 µg/kg. Fischer rats were irradiated to their right hemithorax (28 Gy) and treated with 0.05 mg/kg/day of MnTnHex-2-PyP(5+) for 2 weeks by subcutaneously-implanted osmotic pumps, starting at 2 h post-radiation. The body weights and breathing frequencies were followed for 10 weeks post-radiation, when the histopathology and immunohistochemistry were assessed. Impact of MnTnHex-2-PyP(5+) on macrophage recruitment (ED-1), DNA oxidative damage (8-OHdG), TGF-β1, VEGF(A) and HIF-1α were measured. MnTnHex-2-PyP(5+) significantly decreased radiation-induced lung histopathological (H&E staining) and functional damage (breathing frequencies), suppressed oxidative stress directly (8-OHdG), or indirectly, affecting TGF-β1, VEGF (A) and HIF-1α pathways. The magnitude of the therapeutic effects is similar to the effects demonstrated under same experimental conditions with 120-fold higher dose of ~5000-fold less lipophilic Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+).
Collapse
Key Words
- 8-OHdG, 8-hydroxy-2'-deoxyguanosine
- AKT, protein kinase B (PKB), a serine/threonine-specific protein kinase
- ALS, amyotrophic laterial sclerosis
- AP-1, activator protein-1
- AT, ataxia telangiectasia
- BBB, blood brain barrier
- Breathing frequencies
- CNS, central nervous system
- CO3−, carbonate radical
- ClO−, hypochlorite
- ETC, mitochondrial electron transport chain
- Fischer rats
- GMP, good manufacturing practice
- GS−, monodeprotonated glutathione
- HIF-1α, hypoxia inducible factor-1
- HO2−, monodeprotonated hydrogen peroxide
- Histopathology
- I/R, ischemia reperfusion
- Immunohistochemistry
- Lung injury
- MCAO, middle cerebral artery occlusion
- Manganese porphyrins
- MnP, Mn porphyrin
- MnTDE-2-ImP5+, Mn(III) tetrakis[N,N'-diethylimidazolium-2-yl)porphyrin, AEOL10150
- MnTE-2-PyP5+
- MnTE-2-PyP5+, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (AEOL10113)
- MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis(N-(n-butoxyethyl)pyridinium-2-yl)porphyrin
- MnTnHex-2-PyP5+
- MnTnHex-2-PyP5+, Mn(III) meso-tetrakis(N-(n-hexyl)pyridinium-2-yl)porphyrin (AEOL10113)
- NF-κB, nuclear factor κB
- NHE, normal hydrogen electrode
- NO, nitric oxide
- NOX4, NADPH oxidase, isoform 4 E1/2, Half-wave metal-centered reduction potential
- Nrf-2, nuclear factor-erythroid-derived 2-like 2
- O2−, superoxide
- ONOO−, peroxynitrite
- PI3K, phosphatidylinositide 3-kinase
- PTEN, phosphoinositide 3-phosphatase
- Radioprotection
- Redox-modulators
- SAH, subarachnoid hemorrhage
- SOD, superoxide dismutase
- SP-1, specificity protein-1
- TF, transcription factor
- TGF-β1, one of the 3 members of the TGF-β transforming growth factor-β family
- VEGF, vascular endothelial growth factor
- mTOR, mammalian target of rapamycin (mTOR), a serine/threonine protein kinase
Collapse
Affiliation(s)
- Benjamin Gauter-Fleckenstein
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julio S Reboucas
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katharina Fleckenstein
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, USA ; Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center, Durham, USA
| | - Chen Jiang
- Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center, Durham, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, 655W Baltimore Street, Bressler Research Building, 8-025, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Lacerda DDS, Santos CF, Oliveira AS, Zimmermann R, Schneider R, Agostini F, Dani C, Funchal C, Gomez R. Antioxidant and hepatoprotective effects of an organic grapevine leaf (Vitis labrusca L.) extract in diabetic rats. RSC Adv 2014. [DOI: 10.1039/c4ra08396b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Changes on metabolic, biochemical and oxidative parameters in the livers of diabetic rats after chronic administration of an aqueous extract of organic grapevine leaves.
Collapse
Affiliation(s)
- Denise dos Santos Lacerda
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia
- Universidade Federal do Rio Grande do Sul (UFRGS)
- Porto Alegre, Brasil
| | - Carolina Ferreira Santos
- Departamento de Farmacologia – Instituto de Ciências Básicas da Saúde
- Universidade Federal do Rio Grande do Sul (UFRGS)
- Porto Alegre, Brasil
| | | | | | - Ricardo Schneider
- Departamento de Farmacologia – Instituto de Ciências Básicas da Saúde
- Universidade Federal do Rio Grande do Sul (UFRGS)
- Porto Alegre, Brasil
| | | | - Caroline Dani
- Centro Universitário Metodista do IPA
- Porto Alegre, Brasil
- Universidade de Caxias do Sul, UCS
- Caxias do Sul, Brasil
| | | | - Rosane Gomez
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia
- Universidade Federal do Rio Grande do Sul (UFRGS)
- Porto Alegre, Brasil
- Departamento de Farmacologia – Instituto de Ciências Básicas da Saúde
- Universidade Federal do Rio Grande do Sul (UFRGS)
| |
Collapse
|
19
|
Archambeau JO, Tovmasyan A, Pearlstein RD, Crapo JD, Batinic-Haberle I. Superoxide dismutase mimic, MnTE-2-PyP(5+) ameliorates acute and chronic proctitis following focal proton irradiation of the rat rectum. Redox Biol 2013; 1:599-607. [PMID: 24363995 PMCID: PMC3863774 DOI: 10.1016/j.redox.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 01/05/2023] Open
Abstract
Radiation proctitis, an inflammation and damage to the lower part of colon, is a common adverse event of the radiotherapy of tumors in the abdominal and pelvic region (colon, prostate, cervical). Several Mn(III) porphyrin-based superoxide dismutase mimics have been synthesized and successfully evaluated in preclinical models as radioprotectants. Here we report for the first time the remarkable rectal radioprotection of frequently explored Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+). A batch prepared in compliance with good manufacturing practice (GMP), which has good safety/toxicity profile, was used for this study. MnTE-2-PyP(5+) was given subcutaneously at 5 mg/kg, either 1 h before or 1 h after irradiation, with additional drug administered at weekly intervals thereafter. MnTE-2-PyP(5+) ameliorated both acute and chronic radiation proctitis in male Sprague-Dawley rats irradiated with 20-30 Gy protons delivered to 2.5 cm span of rectum using spread-out Bragg peak of a proton treatment beam. Focal irradiation of the rectum produced acute proctitis, which healed, followed by chronic rectal dilation and symptomatic proctitis. MnTE-2-PyP(5+) protected rectal mucosa from radiation-induced crypt loss measured 10 days post-irradiation. Significant effects were observed with both pre- and post-treatment regimens. However, only MnTE-2-PyP(5+) pre-treatment, but not post-treatment, prevented the development of rectal dilation, indicating that proper dosing regimen is critical for radioprotection. The pre-treatment also prevented or delayed the development of chronic proctitis depending on the radiation dose. Further work aimed at developing MnTE-2-PyP(5+) and similar drugs as adjunctive agents for radiotherapy of pelvic tumors is warranted. The present study substantiates the prospects of employing this and similar analogs in preserving normal tissue during cancer radiation as well as any other radiation exposure.
Collapse
Key Words
- AP-1, activator protein-1
- CGE, cobalt gray equivalent
- GSH, glutathione
- HIF-1α, hypoxia inducible factor-1
- Mn porphyrin
- MnP, Mn(III) porphyrins
- MnTDE-2-ImP5+, Mn(III) meso-tetrakis(N,N’-diethylimidazolium-2-yl)porphyrin (AEOL10150)
- MnTE-2-PyP5+
- MnTE-2-PyP5+, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (AEOL10113, BMX-010)
- MnTM-2-PyP5+, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (AEOL10112)
- MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin
- MnTnHex-2-PyP5+, Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (BMX-001)
- NF-κB, nuclear factor κB
- PT, proton therapy
- Proton beam therapy
- Radiation proctitis
- Radioprotector
- SOD mimic
- SOD, superoxide dismutase
- SP-1, specificity protein-1
- TF, transcription factor
- kcat(O2−), the rate constant for the catalysis of O2− dismutation by Mn porphyrin or SOD enzyme
Collapse
Affiliation(s)
- John O Archambeau
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert D Pearlstein
- Department of Surgery (Neurosurgery), Duke University School of Medicine, Durham, NC 27710, USA
| | - James D Crapo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO 80206, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|