1
|
Zerillo L, Polvere I, Stilo R, Vito P, Rinaldi M, Zotti T, Costagliola C. Diverse effects of synthetic glucocorticoid species on cell viability and stress response of neuroblastoma cells. Neuroscience 2024; 554:1-10. [PMID: 39002754 DOI: 10.1016/j.neuroscience.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Glucocorticoids (GCs) are widely used as powerful anti-inflammatory and immunosuppressive therapeutics in multiple pathological conditions. However, compelling evidence indicates that they might promote neurodegeneration by altering mitochondrial homeostatic processes. Although the effect of dexamethasone on cell survival and homeostasis has been widely investigated, the effect of other glucocorticoids needs to be explored in more detail. In this report, we have compared the neurotoxicity induced by dexamethasone, prednisolone, betamethasone, and hydrocortisone in cultured neuroblastoma cells, through the analysis of several parameters such as cell viability, ER stress, oxidative stress, and mitochondrial fusion and fission markers. Interestingly, we have found that synthetic glucocorticoids may impact neuronal viability by affecting different cellular responses, suggesting that their therapeutic use should be consciously decided after careful consideration of benefits and detrimental effects.
Collapse
Affiliation(s)
- Lucrezia Zerillo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | | | - Romania Stilo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Pasquale Vito
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | - Michele Rinaldi
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy.
| | - Tiziana Zotti
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy.
| | - Ciro Costagliola
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
2
|
Gospodinova KO, Olsen D, Kaas M, Anderson SM, Phillips J, Walker RM, Bermingham ML, Payne AL, Giannopoulos P, Pandya D, Spires-Jones TL, Abbott CM, Porteous DJ, Glerup S, Evans KL. Loss of SORCS2 is Associated with Neuronal DNA Double-Strand Breaks. Cell Mol Neurobiol 2023; 43:237-249. [PMID: 34741697 PMCID: PMC9813074 DOI: 10.1007/s10571-021-01163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023]
Abstract
SORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIβ-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA breaks in vitro, suggesting that the observed differences may not be the result of aberrant neuronal activity in these cells. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.
Collapse
Affiliation(s)
- Katerina O. Gospodinova
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Ditte Olsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mathias Kaas
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Susan M. Anderson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Jonathan Phillips
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Rosie M. Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK ,Present Address: University of Edinburgh, Chancellor’s Building, 49, Edinburgh, EH16 4SB UK
| | - Mairead L. Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Abigail L. Payne
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Panagiotis Giannopoulos
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Divya Pandya
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Catherine M. Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| |
Collapse
|
3
|
Abdesheikhi J, Sedghy F, Farsinejad A, Mahmoudi M, ranjkesh M, Ahmadi-Zeidabadi M. Protective potential of piroxicam on human peripheral blood mononuclear cells against the suppressive capacity of glioblastoma cell lines. Sci Rep 2022; 12:19806. [PMID: 36396965 PMCID: PMC9672323 DOI: 10.1038/s41598-022-24392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Dexamethasone, a common medication used in the treatment regimen of glioblastoma, has broad inhibitory effects on the immune responses. Here, in an in vitro study, we examined the effects of piroxicam, a potent substitute for dexamethasone, on peripheral blood mononuclear cells (PBMCs) co-cultured with two glioblastoma cell lines, U-87 MG and A-172 cells. MTT assay was used to determine the proliferation of PBMCs treated with piroxicam, or dexamethasone. In addition, to evaluate the effects of drugs on the cell cycle distribution, DNA content per cell was analyzed in PBMCs and A-172 cell lines using flow cytometry. Oxidative parameters, including superoxide dismutase-3 (SOD3) activity and total anti-antioxidant capacity, lactate dehydrogenase (LDH) activity, as well as IFN-γ and TGF-β levels were measured in PBMCs alone or in the presence of cell lines using ELISA. Unlike dexamethasone, piroxicam showed a protective effect on PBMCs against both glioblastoma cell lines. Furthermore, while dexamethasone reduced the proliferation of PBMCs, piroxicam had no adverse effect on the proliferation. Cell cycle analysis showed a reduction in the G2/M phase in piroxicam-treated A-172 cells. Additionally, dexamethasone limited the cell cycle progression by increasing the fraction of PBMCs in G0/G1. Interestingly, after co-culturing piroxicam-treated PBMCs with cell lines, a remarkable rise in the LDH activity was observed. Although not significant, piroxicam partially decreased TGF-β levels in both cell lines. Our findings suggested a protective effect of piroxicam, but not dexamethasone, on PBMCs against inhibitory mechanisms of two glioblastoma cell lines, U-87 and A-172 cells.
Collapse
Affiliation(s)
- Jahangir Abdesheikhi
- grid.412105.30000 0001 2092 9755Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Sedghy
- grid.412105.30000 0001 2092 9755Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran ,grid.412503.10000 0000 9826 9569Faculty of Medicine, Shahid Bahonar University, Pajoohesh Sq, Kerman, 7616914111 Iran
| | - Alireza Farsinejad
- grid.412105.30000 0001 2092 9755Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran ,grid.412105.30000 0001 2092 9755Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Merat Mahmoudi
- grid.412105.30000 0001 2092 9755Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi ranjkesh
- grid.412105.30000 0001 2092 9755Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- grid.412105.30000 0001 2092 9755Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Koch MS, Zdioruk M, Nowicki MO, Griffith AM, Aguilar E, Aguilar LK, Guzik BW, Barone F, Tak PP, Tabatabai G, Lederer JA, Chiocca EA, Lawler S. Systemic high-dose dexamethasone treatment may modulate the efficacy of intratumoral viral oncolytic immunotherapy in glioblastoma models. J Immunother Cancer 2022; 10:jitc-2021-003368. [PMID: 35017150 PMCID: PMC8753448 DOI: 10.1136/jitc-2021-003368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background Intratumoral viral oncolytic immunotherapy is a promising new approach for the treatment of a variety of solid cancers. CAN-2409 is a replication-deficient adenovirus that delivers herpes simplex virus thymidine kinase to cancer cells, resulting in local conversion of ganciclovir or valacyclovir into a toxic metabolite. This leads to highly immunogenic cell death, followed by a local immune response against a variety of cancer neoantigens and, next, a systemic immune response against the injected tumor and uninjected distant metastases. CAN-2409 treatment has shown promising results in clinical studies in glioblastoma (GBM). Patients with GBM are usually given the corticosteroid dexamethasone to manage edema. Previous work has suggested that concurrent dexamethasone therapy may have a negative effect in patients treated with immune checkpoint inhibitors in patients with GBM. However, the effects of dexamethasone on the efficacy of CAN-2409 treatment have not been explored. Methods In vitro experiments included cell viability and neurosphere T-cell killing assays. Effects of dexamethasone on CAN-2409 in vivo were examined using a syngeneic murine GBM model; survival was assessed according to Kaplan-Meier; analyses of tumor-infiltrating lymphocytes were performed with mass cytometry (CyTOF - cytometry by time-of-flight). Data were analyzed using a general linear model, with one-way analysis of variance followed by Dunnett’s multiple comparison test, Kruskal-Wallis test, Dunn’s multiple comparison test or statistical significance analysis of microarrays. Results In a mouse model of GBM, we found that high doses of dexamethasone combined with CAN-2409 led to significantly reduced median survival (29.0 days) compared with CAN-2409 treatment alone (39.5 days). CyTOF analyses of tumor-infiltrating immune cells demonstrated potent immune stimulation induced by CAN-2409 treatment. These effects were diminished when high-dose dexamethasone was used. Functional immune cell characterization suggested increased immune cell exhaustion and tumor promoting profiles after dexamethasone treatment. Conclusion Our data suggest that concurrent high-dose dexamethasone treatment may impair the efficacy of oncolytic viral immunotherapy of GBM, supporting the notion that dexamethasone use should be balanced between symptom control and impact on the therapeutic outcome.
Collapse
Affiliation(s)
- Marilin S Koch
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Mykola Zdioruk
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Michal O Nowicki
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Alec M Griffith
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | - Paul P Tak
- Candel Therapeutics, Needham, Massachusetts, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - James A Lederer
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA .,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Ramesh PS, Devegowda D, Singh A, Thimmulappa RK. NRF2, p53, and p16: Predictive biomarkers to stratify human papillomavirus associated head and neck cancer patients for de-escalation of cancer therapy. Crit Rev Oncol Hematol 2020; 148:102885. [PMID: 32062315 DOI: 10.1016/j.critrevonc.2020.102885] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 01/18/2023] Open
Abstract
Patients with HPV associated (HPV+ve) head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal cancer, show better treatment response, higher survival rates, and lower risks of recurrence as compared to HPV-ve HNSCC patients. Despite increased sensitivity to treatment modality, HPV+ve HNSCC patients are subjected to the same intensive anti-cancer therapy as HPV-ve HNSCC patients and thus subjecting them to unwarranted long-term toxicity. To identify predictive biomarkers for risk-stratification, we have analyzed the mutational spectrum, and the evidence suggests that gain-of-function mutations in the NRF2 pathway are highly prevalent in HPV-ve HNSCC. At the same time, it is rare in HPV+ve HNSCC tumors. We have reviewed the importance of gain-of-NRF2 function and loss of p53 in the prognosis of HNSCC patients and discussed a predictive scoring system using a combination of HPV status (p16), NRF2 pathway and p53 to stratify HPV+ve HNSCC into good versus poor responders, which could immensely help in guiding future de-escalation treatment approaches in patients with HPV+ve HNSCC.
Collapse
Affiliation(s)
- Pushkal S Ramesh
- Centre of Excellence in Molecular Biology & Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology & Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India
| | - Anju Singh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Rajesh K Thimmulappa
- Centre of Excellence in Molecular Biology & Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| |
Collapse
|
6
|
Suwanjang W, Wu KLH, Prachayasittikul S, Chetsawang B, Charngkaew K. Mitochondrial Dynamics Impairment in Dexamethasone-Treated Neuronal Cells. Neurochem Res 2019; 44:1567-1581. [PMID: 30888577 DOI: 10.1007/s11064-019-02779-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand.
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 73170, Nakhonpathom, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, 10700, Bangkok, Thailand
| |
Collapse
|
7
|
Martin-de-Saavedra MD, Navarro E, Moreno-Ortega AJ, Cunha MP, Buendia I, Hernansanz-Agustín P, León R, Cano-Abad MF, Martínez-Ruiz A, Martínez-Murillo R, Duchen MR, López MG. The APPswe/PS1A246E mutations in an astrocytic cell line leads to increased vulnerability to oxygen and glucose deprivation, Ca2+
dysregulation, and mitochondrial abnormalities. J Neurochem 2018; 145:170-182. [DOI: 10.1111/jnc.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/20/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Affiliation(s)
- María Dolores Martin-de-Saavedra
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Department of Physiology; Northwestern University Feinberg School of Medicine; Chicago Illinois USA
| | - Elisa Navarro
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| | - Ana J. Moreno-Ortega
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - Mauricio P. Cunha
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Izaskun Buendia
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| | - Pablo Hernansanz-Agustín
- Servicio de Inmunología; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
- Departamento de Bioquímica; Facultad de Medicina; Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols; Madrid Spain
| | - Rafael León
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - María F. Cano-Abad
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV); Madrid Spain
| | | | - Michael R. Duchen
- Department of Cell and Developmental Biology; University College London; London UK
| | - Manuela G. López
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
8
|
Jiao H, Zhou K, Zhao J, Wang X, Lin H. A high-caloric diet rich in soy oil alleviates oxidative damage of skeletal muscles induced by dexamethasone in chickens. Redox Rep 2017; 23:68-82. [PMID: 29157186 PMCID: PMC6748688 DOI: 10.1080/13510002.2017.1405494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Glucocorticoids (GCs) can induce oxidative damage in
skeletal muscles. The purpose of this study was to demonstrate a high caloric
(HC) diet rich in soy oil would change the oxidative stress induced by a GC. Methods: The effect of dexamethasone (DEX) and HC diet on oxidative
stress in plasma, skeletal muscles (M. pectoralis major,
PM; M. biceps femoris, BF), and mitochondria were
determined. The biomarkers of oxidative damage and antioxidative enzyme activity
were determined. The fatty acid profile of muscles and the activities of complex
I and II in mitochondria were measured. Results: The results showed that DEX increased the concentrations of
oxidative damage markers in plasma, muscles, and mitochondria. The activity of
complex I was significantly suppressed by DEX. DEX-chickens had higher
proportions of polyunsaturated fatty acids and lower proportions of
monounsaturated fatty acids in the PM. A HC diet decreased the levels of
oxidative damage biomarkers in plasma, muscles, and mitochondria. The
interaction between DEX and diet suppressed the activities of complex I and II
in HC-chickens. Discussion: Oxidative damage in skeletal muscles and mitochondria
was the result of GC-induced suppression of the activity of mitochondrial
complex I. A HC diet improved the antioxidative capacity and reduced the
oxidative damage induced by the GC.
Collapse
Affiliation(s)
- Hongchao Jiao
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Kaifeng Zhou
- b Shandong Extension Station of Animal Husbandry , Jinan , Shandong , People's Republic of China
| | - Jingpeng Zhao
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Xiaojuan Wang
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Hai Lin
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| |
Collapse
|
9
|
Bostian ACL, Maddukuri L, Reed MR, Savenka T, Hartman JH, Davis L, Pouncey DL, Miller GP, Eoff RL. Kynurenine Signaling Increases DNA Polymerase Kappa Expression and Promotes Genomic Instability in Glioblastoma Cells. Chem Res Toxicol 2015; 29:101-8. [PMID: 26651356 DOI: 10.1021/acs.chemrestox.5b00452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overexpression of the translesion synthesis polymerase hpol κ in glioblastomas has been linked to poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating AhR in glioblastoma, led to a decrease in the endogenous AhR agonist kynurenine and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling, and the resulting overexpression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that upregulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Tatsiana Savenka
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Lauren Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Dakota L Pouncey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|