1
|
Xi ZC, Ren HG, Ai L, Wang Y, Liu MF, Qiu YF, Feng JL, Fu W, Bi QQ, Wang F, Xu HX. Ginsenoside Rg1 mitigates cerebral ischaemia/reperfusion injury in mice by inhibiting autophagy through activation of mTOR signalling. Acta Pharmacol Sin 2024; 45:2474-2486. [PMID: 38937576 PMCID: PMC11579309 DOI: 10.1038/s41401-024-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 μM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.
Collapse
Affiliation(s)
- Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Han-Gui Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Lin Ai
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yuan Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Meng-Fan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yu-Fei Qiu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Ji-Ling Feng
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Wang Fu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Qian-Qian Bi
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
2
|
Kletkiewicz H, Wojciechowski MS, Rogalska J. Cannabidiol effectively prevents oxidative stress and stabilizes hypoxia-inducible factor-1 alpha (HIF-1α) in an animal model of global hypoxia. Sci Rep 2024; 14:15952. [PMID: 38987284 PMCID: PMC11237132 DOI: 10.1038/s41598-024-66599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant. As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses. We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
3
|
Huo L, Fu J, Wang S, Wang H, Liu X. Emerging ferroptosis inhibitors as a novel therapeutic strategy for the treatment of neonatal hypoxic-ischemic encephalopathy. Eur J Med Chem 2024; 271:116453. [PMID: 38701713 DOI: 10.1016/j.ejmech.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Shimeng Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
4
|
Song Y, Li B, Chen H, Yu Z. Research progress of absorbable stents. Int J Med Sci 2024; 21:404-412. [PMID: 38169581 PMCID: PMC10758145 DOI: 10.7150/ijms.90012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerosis, a chronic inflammation of blood vessel walls, is a progressive pathophysiological process characterized by lipid deposition and innate adaptive immune responses. Arteriosclerosis often leads to narrowing of blood vessels. At present, interventional stent therapy is the main treatment method for vascular stenosis, which has the advantages of less trauma, less risk and faster recovery. However, atherosclerosis occurs in a complex pathophysiological environment. Stenting inevitably causes local tissue damage, leading to complications such as inflammation, intimal hyperplasia, late thrombosis, stent restenosis and other complications. It is urgent to optimize interventional therapy program. This article summarizes the advantages and disadvantages of absorbable metal scaffolds and the research progress of absorbable polymer scaffolds. The optimization strategy of stent is proposed. The status quo of drug coating was summarized. The prospect of new stent. To improve the therapeutic effect of arteriosclerosis.
Collapse
Affiliation(s)
- Ying Song
- Department of Neurovascular oncology Surgery, First Hospital of Jilin University, 1 Xinmin Avenue Changchun 130021, Jilin Province, China
| | - Bingwei Li
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1 Xinmin Avenue Changchun 130021, Jilin Province, China
| | - Hao Chen
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1 Xinmin Avenue Changchun 130021, Jilin Province, China
| | - Zhuyuan Yu
- Department of Neurovascular oncology Surgery, First Hospital of Jilin University, 1 Xinmin Avenue Changchun 130021, Jilin Province, China
| |
Collapse
|
5
|
Tan X, Zhang T, Ding X, Zhao X, Liu Q, Xia Z, Cao Q, Yan F, Chen L, Zhu M, Tang Y, Song Y. Iron overload facilitates neonatal hypoxic-ischemic brain damage via SLC7A11-mediated ferroptosis. J Neurosci Res 2023; 101:1107-1124. [PMID: 36929608 DOI: 10.1002/jnr.25184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
Oxidative damage and cell death are involved in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Ferroptosis is a newly identified mode of cell death that results from the oxidative damage induced by excessive iron. In HIBD, iron accumulates in brain tissues due to the massive destruction of red blood cells and increased permeability of the blood brain barrier vasculature, which can trigger ferroptosis. Ferroptosis is implicated in various diseases involving neuronal injury; however, the roles of iron and ferroptosis in HIBD have not been identified. In the present study, we investigated the role of iron overload in neuronal ferroptosis both in HIBD rat models and in oxygen- and glucose-deprived (OGD) SH-SY5Y cells. We observed that iron deposition in the cerebral cortex was significantly increased in HIBD rats. Features of ferroptosis such as shrunken mitochondria, increased MDA (malondialdehyde) levels, and reduced solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression were observed in the cerebral cortex of HIBD rats. Administration of an iron chelator in HIBD rats upregulated SLC7A11 expression and alleviated neuronal ferroptosis in cerebral cortex tissue. Additionally, overexpression of SLC7A11 in SH-SY5Y cells increased cell viability and attenuated OGD-induced ferroptosis. Our results demonstrate that iron overload induces neuronal ferroptosis by inhibiting SLC7A11 expression in HIBD. Inhibition of neuronal ferroptosis may be a promising strategy to alleviate brain damage in HIBD.
Collapse
Affiliation(s)
- Xuying Tan
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ting Zhang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xuejiao Ding
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaopeng Zhao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qianjun Liu
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhenglong Xia
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qihua Cao
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Feng Yan
- Department of Delivery Room, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Li Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Mingwei Zhu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yaping Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yanyan Song
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
6
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
8
|
Requie LM, Gómez-Gonzalo M, Speggiorin M, Managò F, Melone M, Congiu M, Chiavegato A, Lia A, Zonta M, Losi G, Henriques VJ, Pugliese A, Pacinelli G, Marsicano G, Papaleo F, Muntoni AL, Conti F, Carmignoto G. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat Neurosci 2022; 25:1639-1650. [PMID: 36396976 DOI: 10.1038/s41593-022-01193-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.
Collapse
Affiliation(s)
- Linda Maria Requie
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| | - Michele Speggiorin
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Mauro Congiu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, Università degli Studi di Cagliari, Cagliari, Italy.,Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Angela Chiavegato
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Annamaria Lia
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gabriele Losi
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.,Nanoscienze Institute, National Research Council (CNR), Modena, Italy
| | - Vanessa Jorge Henriques
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Arianna Pugliese
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Giovanni Marsicano
- University of Bordeaux and Interdisciplinary Institute for Neuroscience (CNRS), Bordeaux, France
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| |
Collapse
|
9
|
MeCP2 inhibits ischemic neuronal injury by enhancing methylation of the FOXO3a promoter to repress the SPRY2-ZEB1 axis. Exp Mol Med 2022; 54:1076-1085. [PMID: 35915222 PMCID: PMC9440071 DOI: 10.1038/s12276-022-00790-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMethyl CpG binding protein 2 (MeCP2) is involved in nerve regeneration following ischemic stroke, but the related mechanism remains unclear. Here, we found low MeCP2 expression in hippocampal tissues. Using functional analysis, we demonstrated that MeCP2 accelerated FOXO3a methylation and subsequently inhibited its expression, thus repressing the apoptosis of neuronal cells. Mechanistically, FOXO3a could bind to the promoter region of SPRY2, consequently inducing its transcription and promoting the expression of the downstream target gene ZEB1. Altogether, our study revealed that overexpression of MeCP2 can protect mice against ischemic brain injury via disruption of the FOXO3a/SPRY2/ZEB1 signaling axis. Our results identify ectopic expression of MeCP2 as a therapeutic target in ischemic stroke.
Collapse
|
10
|
Chlikadze N, Arabuli M, Lazrishvili I, Mitagvaria N. Ultrastructural Changes in the Penumbra of the Local Cerebral Infarction in Rats. Bull Exp Biol Med 2022; 172:602-607. [PMID: 35353286 DOI: 10.1007/s10517-022-05438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 10/18/2022]
Abstract
We studied changes in the ultrastructure of synapses and myelin nerve fibers that develop in the penumbra in 4 and 12 h and 2 and 4 days after modeling infarction in the frontoparietal cortex in rats. Ischemic stroke was induced by injection of a photosensitive dye into their bloodstream followed by illumination of the brain surface with a halogen lamp. Visible ultrastructural changes were observed in the penumbra zone, namely in the axodendritic and axospinous synapses; they consisted in polymorphism and disorganization of synaptic vesicles, mitochondrial swelling, swelling and vacuolization of the postsynaptic fragments of dendrites, and shortening and osmiophilia of the active zone. In the presynaptic terminals, clear-cut signs of transformation were observed only in 2 and 4 days after infarction modeling. These terminals were located at the ends of the degenerated myelinated axons of necrotic neurons. These findings demonstrate irreversible changes in the ultrastructure of synapses in the penumbra in 2-4 days after infarction and indicate the necessity of early treatment of strokes.
Collapse
Affiliation(s)
- N Chlikadze
- Research Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.,Department of Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - M Arabuli
- Department of Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - I Lazrishvili
- I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - N Mitagvaria
- I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
| |
Collapse
|
11
|
Ge C, Zhang S, Mu H, Zheng S, Tan Z, Huang X, Xu C, Zou J, Zhu Y, Feng D, Aa J. Emerging Mechanisms and Disease Implications of Ferroptosis: Potential Applications of Natural Products. Front Cell Dev Biol 2022; 9:774957. [PMID: 35118067 PMCID: PMC8804219 DOI: 10.3389/fcell.2021.774957] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023] Open
Abstract
Ferroptosis, a newly discovered form of regulatory cell death (RCD), has been demonstrated to be distinct from other types of RCD, such as apoptosis, necroptosis, and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation and oxidative perturbation, and is inhibited by iron chelators and lipophilic antioxidants. This process is regulated by specific pathways and is implicated in diverse biological contexts, mainly including iron homeostasis, lipid metabolism, and glutathione metabolism. A large body of evidence suggests that ferroptosis is interrelated with various physiological and pathological processes, including tumor progression (neuro)degenerative diseases, and hepatic and renal failure. There is an urgent need for the discovery of novel effective ferroptosis-modulating compounds, even though some experimental reagents and approved clinical drugs have been well documented to have anti- or pro-ferroptotic properties. This review outlines recent advances in molecular mechanisms of the ferroptotic death process and discusses its multiple roles in diverse pathophysiological contexts. Furthermore, we summarize chemical compounds and natural products, that act as inducers or inhibitors of ferroptosis in the prevention and treatment of various diseases. Herein, it is particularly highlighted that natural products show promising prospects in ferroptosis-associated (adjuvant) therapy with unique advantages of having multiple components, multiple biotargets and slight side effects.
Collapse
Affiliation(s)
- Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sujie Zhang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huiwen Mu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shaojun Zheng
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaoyi Tan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xintong Huang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zou
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Yubing Zhu, ; Dong Feng, ; Jiye Aa,
| | - Dong Feng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing, China
- *Correspondence: Yubing Zhu, ; Dong Feng, ; Jiye Aa,
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Yubing Zhu, ; Dong Feng, ; Jiye Aa,
| |
Collapse
|
12
|
Huang Y, Suguro R, Hu W, Zheng J, Liu Y, Guan M, Zhou N, Zhang X. Nitric oxide and thyroid carcinoma: A review. Front Endocrinol (Lausanne) 2022; 13:1050656. [PMID: 36699047 PMCID: PMC9870175 DOI: 10.3389/fendo.2022.1050656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Thyroid carcinoma is the most common endocrine cancer in the world, and its incidence has been steadily increasing in recent years. Despite its relatively good prognosis, therapies have not improved greatly in recent years. Therefore, exploring new therapies for thyroid carcinoma represents an unmet need. Nitric oxide (NO) is a short-term endogenous signaling molecule that plays a vital role in various physiological and pathological processes and is synthesized by nitric oxide synthase (NOS). Many studies have been conducted over the past decades to explain its correlation to cancer. NO exerts a wide range of effects on cancer, involving angiogenesis, apoptosis, cell cycle, invasion, and metastasis. It also serves a dual function by promoting and halting tumor development simultaneously. The relationship between NO and thyroid carcinoma has been intensively studied and discussed. This paper reviews the role and molecular mechanism of NO in thyroid carcinoma and discusses potentials of prevention and treatment of thyroid carcinoma.
Collapse
Affiliation(s)
- Yu Huang
- School of Pharmacy, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Rinkiko Suguro
- State Key Laboratory of Quality Research in Chinese Medicine, Macau, Macau SAR, China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau, Macau SAR, China
| | - Jiayu Zheng
- School of Pharmacy, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Mingxin Guan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Na Zhou
- School of Pharmacy, Macau University of Science and Technology, Macau, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau, Macau SAR, China
- *Correspondence: Na Zhou, ; Xin Zhang,
| | - Xin Zhang
- School of Pharmacy, Macau University of Science and Technology, Macau, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau, Macau SAR, China
- *Correspondence: Na Zhou, ; Xin Zhang,
| |
Collapse
|
13
|
Feng Z, Min L, Chen H, Deng W, Tan M, Liu H, Hou J. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol 2021; 43:101984. [PMID: 33933882 PMCID: PMC8105676 DOI: 10.1016/j.redox.2021.101984] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
Motor neuron death is supposed to result in primary motor cortex atrophy after spinal cord injury (SCI), which is relevant to poorer motor recovery for patients with SCI. However, the exact mechanisms of motor neuron death remain elusive. Here, we demonstrated that iron deposition in the motor cortex was significantly increased in both SCI patients and rats, which triggered the accumulation of lipid reactive oxygen species (ROS) and resulted in motor neuronal ferroptosis ultimately. While iron chelator, ROS inhibitor and ferroptosis inhibitor reduced iron overload-induced motor neuron death and promoted motor functional recovery. Further, we found that activated microglia in the motor cortex following SCI secreted abundant nitric oxide (NO), which regulated cellular iron homeostasis-related proteins to induce iron overload in motor neurons. Thus, we conclude that microglial activation induced iron overload in the motor cortex after SCI triggered motor neuronal ferroptosis and impeded motor functional recovery. These findings might provide novel therapeutic strategies for SCI. SCI induces iron overload in the motor cortex. Iron overload after SCI induces lipid peroxidation, thus triggers neuronal ferroptosis. Activated microglia in M1 secrete superfluous NO to disturb iron metabolism after SCI.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingxia Min
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Chen
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiwei Deng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingliang Tan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
14
|
Cao Y, Liu H, Zhang J, Dong Y. Circular RNA cZNF292 silence alleviates OGD/R-induced injury through up-regulation of miR-22 in rat neural stem cells (NSCs). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:594-601. [PMID: 32052645 DOI: 10.1080/21691401.2020.1725536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Hypoxic-ischaemic encephalopathy (HIE) is a prevailing severe brain damage disease in newborns, and caused by perinatal asphyxia cerebral ischaemia and reperfusion. Here, we investigated the role of cZNF292 in oxygen-glucose deprivation/reperfusion (OGD/R)-induced neural stem cells (NSCs) injury, and explored the underlying molecular mechanism.Methods: Before NSCs were subjected to OGD/R treatment, NSCs were transfected with or without overexpressing cZNF292, si-cZNF292 or miR-22 inhibitor. Viability, apoptosis and potential molecular mechanism were examined. Cell viability and apoptotic rate were evaluated utilizing cell counting kit-8 (CCK-8) and flow cytometry. The cZNF292 and miR-22 expression was determined utilizing quantitative reverse transcription-PCR (qRT-PCR). Moreover, apoptosis and Wnt/β-catenin and PKC/ERK pathways-associated proteins were quantified applying western blot.Results: OGD/R repressed viability and promoted apoptosis of NSCs. Also, cZNF292 expression was promoted by OGD/R treatment. Moreover, cZNF292 overexpression further caused OGD/R-stimulated damage. Inversely, silencing cZNF292 alleviated OGD/R-stimulated damage in NSCs. In addition, miR-22 expression was negatively regulated by cZNF292. It was confirmed that silencing cZNF292 attenuated OGD/R-induced NSCs injury and promoted the activation of Wnt/β-catenin and PKC/ERK pathways via the up-regulation of miR-22.Conclusions: The cZNF292 silence alleviated OGD/R-induced injury through the up-regulation of miR-22 in NSCs, and which furnished the theoretical basis for further research on HIE progression.
Collapse
Affiliation(s)
- Yaqin Cao
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| | - Hui Liu
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| | - Jun Zhang
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| | - Yubin Dong
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| |
Collapse
|
15
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
16
|
Zeng T, Deng G, Zhong W, Gao Z, Ma S, Mo C, Li Y, Huang S, Zhou C, Lai Y, Xie S, Xie Z, Chen Y, He S, Lv Z, Gao L. Indoleamine 2, 3-dioxygenase 1enhanceshepatocytes ferroptosis in acute immune hepatitis associated with excess nitrative stress. Free Radic Biol Med 2020; 152:668-679. [PMID: 31945497 DOI: 10.1016/j.freeradbiomed.2020.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a recently recognized form of regulated cell death that is characterized by lipid peroxidation. However, the molecular mechanisms of ferroptosis in acute immune hepatitis (AIH) are largely unknown. In this study, we investigated the classical ferroptotic events in the livers of mice with concanavalin A (ConA) to induce AIH. The dramatically upregulated gene indoleamine 2, 3-dioxygenase 1 (IDO1) was identified with AIH, and its role in generation of ferroptosis and reactive nitrogen species (RNS) was assessed both in vitro and in vivo by genetic deletion or pharmacologic inhibition of IDO1. We observed that ferroptosis contributed to the ConA-induced hepatic damage, which was confirmed by the therapeutical effects of ferroptosis inhibitor (ferrostatin-1). Noteworthy, upregulation of hepatic IDO1 and nitrative stress in ConA-induced hepatic damage were also remarkably inhibited by the ferroptosis abolishment. Additionally, IDO1 deficiency contributed to ferroptosis resistance by activating solute carrier family 7 member 11 (SLC7A11; also known as xCT) expression, accompanied with the reductions of murine liver lesions and RNS. Meanwhile, IDO inhibitor 1-methyl tryptophan alleviated murine liver damage with the reduction of inducible nitric oxide synthase and 3-nitrotyrosine expression. Consistent with the results in vivo, hepatocytes-specific knockdown of IDO1 led to ferroptosis resistance upon exposure to ferroptosis-inducing compound (Erastin) in vitro, whereas IDO1 overexpression aggravated the classical ferroptotic events, and the RNS stress. Overall, these results revealed a novel molecular mechanism of ferroptosis with the key feature of nitrative stress in ConA-induced liver injury, and also identified IDO1-dependent ferroptosis as a potential target for the treatment of AIH.
Collapse
Affiliation(s)
- Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, Shenzhen, Guangdong, China
| | - Zhuowei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuoyi Ma
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Escobar I, Xu J, Jackson CW, Perez-Pinzon MA. Altered Neural Networks in the Papez Circuit: Implications for Cognitive Dysfunction after Cerebral Ischemia. J Alzheimers Dis 2020; 67:425-446. [PMID: 30584147 PMCID: PMC6398564 DOI: 10.3233/jad-180875] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia remains a leading cause of mortality worldwide. Although the incidence of death has decreased over the years, surviving patients may suffer from long-term cognitive impairments and have an increased risk for dementia. Unfortunately, research aimed toward developing therapies that can improve cognitive outcomes following cerebral ischemia has proved difficult given the fact that little is known about the underlying processes involved. Nevertheless, mechanisms that disrupt neural network activity may provide valuable insight, since disturbances in both local and global networks in the brain have been associated with deficits in cognition. In this review, we suggest that abnormal neural dynamics within different brain networks may arise from disruptions in synaptic plasticity processes and circuitry after ischemia. This discussion primarily concerns disruptions in local network activity within the hippocampus and other extra-hippocampal components of the Papez circuit, given their role in memory processing. However, impaired synaptic plasticity processes and disruptions in structural and functional connections within the Papez circuit have important implications for alterations within the global network, as well. Although much work is required to establish this relationship, evidence thus far suggests there is a link. If pursued further, findings may lead toward a better understanding of how deficits in cognition arise, not only in cerebral ischemia, but in other neurological diseases as well.
Collapse
Affiliation(s)
- Iris Escobar
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jing Xu
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles W Jackson
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Wang Y, Wu Y, Li T, Wang X, Zhu C. Iron Metabolism and Brain Development in Premature Infants. Front Physiol 2019; 10:463. [PMID: 31105583 PMCID: PMC6494966 DOI: 10.3389/fphys.2019.00463] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is important for a remarkable array of essential functions during brain development, and it needs to be provided in adequate amounts, especially to preterm infants. In this review article, we provide an overview of iron metabolism and homeostasis at the cellular level, as well as its regulation at the mRNA translation level, and we emphasize the importance of iron for brain development in fetal and early life in preterm infants. We also review the risk factors for disrupted iron metabolism that lead to high risk of developing iron deficiency and subsequent adverse effects on neurodevelopment in preterm infants. At the other extreme, iron overload, which is usually caused by excess iron supplementation in iron-replete preterm infants, might negatively impact brain development or even induce brain injury. Maintaining the balance of iron during the fetal and neonatal periods is important, and thus iron status should be monitored routinely and evaluated thoroughly during the neonatal period or before discharge of preterm infants so that iron supplementation can be individualized.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Neonatology (NICU), Children’s Hospital Affiliated Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yanan Wu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Neonatology (NICU), Children’s Hospital Affiliated Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Physiology, Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Qin X, Cheng J, Zhong Y, Mahgoub OK, Akter F, Fan Y, Aldughaim M, Xie Q, Qin L, Gu L, Jian Z, Xiong X, Liu R. Mechanism and Treatment Related to Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. Front Mol Neurosci 2019; 12:88. [PMID: 31031592 PMCID: PMC6470360 DOI: 10.3389/fnmol.2019.00088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is a type of neonatal brain injury, which occurs due to lack of supply and oxygen deprivation to the brain. It is associated with a high morbidity and mortality rate. There are several therapeutic strategies that can be used to improve outcomes in patients with HIE. These include cell therapies such as marrow mesenchymal stem cells (MSCs) and umbilical cord blood stem cells (UCBCs), which are being incorporated into the new protocols for the prevention of ischemic brain damage. The focus of this review is to discuss the mechanism of oxidative stress in HIE and summarize the current available treatments for HIE. We hope that a better understanding of the relationship between oxidative stress and HIE will provide new insights on the potential therapy of this devastating condition.
Collapse
Affiliation(s)
- Xingping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Farhana Akter
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States.,Department of Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yanqin Fan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mohammed Aldughaim
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Qiurong Xie
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingxia Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Renzhong Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Tolaymat Y, Doré S, Griffin HW, Shih S, Edwards ME, Weiss MD. Inhaled Gases for Neuroprotection of Neonates: A Review. Front Pediatr 2019; 7:558. [PMID: 32047729 PMCID: PMC6996209 DOI: 10.3389/fped.2019.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
Importance: Hypoxic-ischemic encephalopathy (HIE) is a significant cause of morbidity and mortality in neonates. The incidence of HIE is 1-8 per 1,000 live births in developed countries. Whole-body hypothermia reduces the risk of disability or death, but 7 infants needed to be treated to prevent death or major neurodevelopmental disability. Inhalational gases may be promising synergistic agents due to their rapid onset and easy titratability. Objective: To review current data on different inhaled gases with neuroprotective properties that may serve as adjunct therapies to hypothermia. Evidence review: Literature review was performed using the PubMed database, google scholar, and ClinicalTrials.Gov. Results focused on articles published from January 1, 2005, through December 31, 2017. Articles published earlier than 2005 were included when appropriate for historical perspective. Our review emphasized preclinical and clinical studies relevant to the use of inhaled agents for neuroprotection. Findings: Based on the relevance to our topic, 111 articles were selected pertaining to the incidence of HIE, pathophysiology of HIE, therapeutic hypothermia, and emerging therapies for hypoxic-ischemic encephalopathy in preclinical and clinical settings. Supplemental tables summarizes highly relevant 49 publications that were included in this review. The selected publications emphasize the emergence of promising inhaled gases that may improve neurologic survival and alleviate neurodevelopmental disability when combined with therapeutic hypothermia in the future. Conclusions: Many inhaled agents have neuroprotective properties and could serve as an adjunct therapy to whole-body hypothermia. Inhaled agents are ideal due to their easy administration, titrability, and rapid onset and offset.
Collapse
Affiliation(s)
- Youness Tolaymat
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Departments of Neurology, Psychiatry, Pharmaceuticals and Neuroscience, University of Florida, Gainesville, FL, United States
| | - Hudson W Griffin
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Susana Shih
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Mary E Edwards
- Health Science Center Libraries, University of Florida, Gainesville, FL, United States
| | - Michael D Weiss
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Ning N, Liu C, Wu P, Hu Y, Zhang W, Zhang L, Li M, Gho SM, Kim DH, Guo H, Yang J, Jin C. Spatiotemporal variations of magnetic susceptibility in the deep gray matter nuclei from 1 month to 6 years: A quantitative susceptibility mapping study. J Magn Reson Imaging 2018; 49:1600-1609. [PMID: 30569483 DOI: 10.1002/jmri.26579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is emerging as a technique that quantifies the paramagnetic nonheme iron in brain tissue. Brain iron quantification during early development provides insights into the underlying mechanism of brain maturation. PURPOSE To quantify the spatiotemporal variations of brain iron-related magnetic susceptibility in deep gray matter nuclei during early development by using QSM. STUDY TYPE Retrospective. SUBJECTS Eighty-seven infants and children aged 1 month to 6 years. FIELD STRENGTH/SEQUENCE Enhanced T2 *-weighted angiography using a 3D gradient-echo sequence at 3.0T. ASSESSMENT QSM was calculated by modified sophisticated harmonic artifact reduction for phase data and sparse linear equations and sparse least squares-based algorithm. Means of susceptibility in deep gray matter nuclei (caudate nucleus, putamen, globus pallidus, thalamus) relative to that in splenium of corpus callosum were measured. STATISTICAL TESTS Relationships of mean susceptibility with age and referenced iron concentration were tested by Pearson correlation. Differences of mean susceptibility between the selected nuclei in each age group were compared by one-way analysis of variance (ANOVA) and Fisher's Linear Significant Difference (LSD) test. RESULTS Positive correlations of susceptibility with both referenced iron concentration and age were found (P < 0.0001); particularly, globus pallidus showed the highest correlation with age (correlation coefficient, 0.882; slope, 1.203; P < 0.001) and greatest susceptibility (P < 0.05) among the selected nuclei. DATA CONCLUSION QSM allows the feasible quantification of iron deposition in deep gray matter nuclei in infants and young children, which exhibited gradual accumulation at different speeds. The fastest and highest iron accumulation was observed in the globus pallidus with increasing age during early development. LEVEL OF EVIDENCE 4 Technical Efficacy:Stage 2 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Ning Ning
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Department of Nuclear Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Congcong Liu
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Peng Wu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, P.R. China
| | - Yajie Hu
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Weishan Zhang
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lei Zhang
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Mengxuan Li
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Sung-Min Gho
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, P.R. China
| | - Jian Yang
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chao Jin
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
22
|
Xie D, Xu Y, Jing W, Juxiang Z, Hailun L, Yu H, Zheng DH, Lin YT. Berberine nanoparticles protects tubular epithelial cells from renal ischemia-reperfusion injury. Oncotarget 2018; 8:24154-24162. [PMID: 28445993 PMCID: PMC5421835 DOI: 10.18632/oncotarget.16530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/13/2017] [Indexed: 02/05/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is one of the most common causes of acute renal failure, the prognosis of which remains poor and there still lacks of effective therapeutics available in the clinic. This study aimed at investigating the effects of Berberine nanoparticles (BBR-NP) on the ischemia-reperfusion injury of renal tubular epithelial cells and underlying the mechanisms. Our results showed that in a rat model of renal I/R injury, BBR and BBR-NP protected renal against injury both functionally (as assessed by serum urea nitrogen and creatinine level) and morphologically (as assessed by HE staining, transmission electron microscopy and TUNEL staining) in a dose-dependent manner, with the effects of BBR-NP superior to BBR alone. Mechanism investigation showed that BBR-NP reversed oxidative stress and subsequent apoptosis of renal cells, as demonstrated by the decreased expression of proteins involved in the oxidative stress and mitochondrial stress pathways. In conclusion, our study showed that BBR-NP is superior to BBR alone in protecting renal against I/R injury and explored the underlying mechanisms, which should be tested in further studies and might give impetus to the development of novel therapeutics based on BBR-NP against renal I/R.
Collapse
Affiliation(s)
- Da Xie
- Department of Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Nephrology, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, China
| | - Wang Jing
- Department of Pediatrics, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, China
| | - Zeng Juxiang
- Jiangsu College of Nursing, Huai'an, Jiangsu, China
| | - Li Hailun
- Department of Nephrology, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, China
| | - Hu Yu
- Department of Nephrology, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, China
| | - Dong-Hui Zheng
- Department of Nephrology, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, China
| | - Yong-Tao Lin
- Jiangsu College of Nursing, Huai'an, Jiangsu, China
| |
Collapse
|
23
|
Zhao RB, Zhu LH, Shu JP, Qiao LX, Xia ZK. GAS5 silencing protects against hypoxia/ischemia-induced neonatal brain injury. Biochem Biophys Res Commun 2018; 497:285-291. [DOI: 10.1016/j.bbrc.2018.02.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
|
24
|
Bhowmick S, Drew KL. Arctic ground squirrel resist peroxynitrite-mediated cell death in response to oxygen glucose deprivation. Free Radic Biol Med 2017; 113:203-211. [PMID: 28962873 PMCID: PMC5699938 DOI: 10.1016/j.freeradbiomed.2017.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury initiates a cascade of events, generating nitric oxide (NO) and superoxide(O2•-) to form peroxynitrite (ONOO-), a potent oxidant. Arctic ground squirrels (AGS; Urocitellus parryii) show high tolerance to I/R injury. However, the underlying mechanism remains elusive. We hypothesize that tolerance to I/R modeled in an acute hippocampal slice preparation in AGS is modulated by reduced oxidative and nitrative stress. Hippocampal slices (400µm) from rat and AGS were subjected to oxygen glucose deprivation (OGD) using a novel microperfusion technique. Slices were exposed to NO, O2.- donors with and without OGD; pretreatment with inhibitors of NO, O2.- and ONOO- followed by OGD. Perfusates collected every 15min were analyzed for LDH release, a marker of cell death. 3-nitrotyrosine (3NT) and 4-hydroxynonenal (4HNE) were measured to assess oxidative and nitrative stress. Results show that NO/O2.- alone is not sufficient to cause ischemic-like cell death, but with OGD enhances cell death more in rat than in AGS. A NOS inhibitor, SOD mimetic and ONOO- inhibitor attenuates OGD injury in rat but has no effect in AGS. Rats also show a higher level of 3NT and 4HNE with OGD than AGS suggesting the greater level of injury in rat is via formation of ONOO-.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
25
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
26
|
Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury. Biochem Soc Trans 2017; 45:1067-1076. [PMID: 28939695 PMCID: PMC5652227 DOI: 10.1042/bst20170017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023]
Abstract
Birth asphyxia in term neonates affects 1–2/1000 live births and results in the development of hypoxic–ischaemic encephalopathy with devastating life-long consequences. The majority of neuronal cell death occurs with a delay, providing the potential of a treatment window within which to act. Currently, treatment options are limited to therapeutic hypothermia which is not universally successful. To identify new interventions, we need to understand the molecular mechanisms underlying the injury. Here, we provide an overview of the contribution of both oxidative stress and endoplasmic reticulum stress in the development of neonatal brain injury and identify current preclinical therapeutic strategies.
Collapse
|
27
|
Wang X, Zhang R, Wei W, Jiang H, Gao Z, Lin J, Zhang J. Long-term sequelae of hippocampal lesions in patients with transient global amnesia: A multiparametric MRI study. J Magn Reson Imaging 2017; 47:1350-1358. [PMID: 28884957 DOI: 10.1002/jmri.25844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MRI signal diffusion-weighted imaging (DWI) hyperintensity in the hippocampus in patients with transient global amnesia (TGA) are resolved within several days after the onset of TGA. PURPOSE To use multiparametric MRI to unravel the sequelae of TGA. STUDY TYPE A prospective longitudinal study. POPULATION Eight TGA patients. FIELD STRENGTH/SEQUENCE A 3.0T Siemens Tim Trio MRI scanner with T1 -weighted MPRAGE, diffusion-weighted echo planar imaging, and multiecho gradient-recalled echo sequences. ASSESSMENT Brain MRI scanned within 72 hours, 2 weeks, and 3 months after onset of TGA, respectively. T1 image hippocampus was first segmented into 12 subregions using FreeSurfer and registered to DWI to locate DWI lesion. Then a T1 image with segmented hippocampus was registered to its corresponding apparent diffusion coefficient (ADC) map, fractional anisotropy (FA) map, and quantitative susceptibility map, respectively. Finally, the volume, water diffusion and anisotropy, and magnetic susceptibility of DWI lesion were analyzed. STATISTICAL TESTS A paired samples t-test was performed to detect measurement differences between three tests. Pearson correlation was used to assess the correlations between all measurements. RESULTS Hyperintensity was detected in the head, body, and caudate of CA1 and hippocampal tail. No significant changes existed in CA1/unit volume across the three timepoint measurements (all, P > 0.480). In Test 1, ratio ADC (DWI lesion / adjacent healthy, rADC) and ratio FA (rFA) decreased below, while ratio susceptibility increased above 1.0. In Test 2, all the episodes normalized around 1.0. In Test 3, rADC remained normalization, but rFA decreased and ratio susceptibility increased again. In Test 1 and Test 3 (vs. Test 2), decreased FA values were accompanied with lower axial diffusivity and/or higher radial diffusivity (all, P < 0.001). Moreover, rFA significantly correlated with ratio susceptibility in Test 3 (r = -0.665, P = 0.039). DATA CONCLUSION Microstructural sequelae in hippocampus were demonstrated, which indicates that ischemic lesions may be associated with TGA. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1350-1358.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, P.R. China
| | - Wenping Wei
- MRI Center, First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - Haibo Jiang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China
| | - Zhongming Gao
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen, P.R. China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, P.R. China
| |
Collapse
|
28
|
Zhang R, Lin YQ, Wang WS, Wang XQ. Excessive nNOS/NO/AMPK signaling activation mediated by the blockage of the CBS/H2S system contributes to oxygen‑glucose deprivation‑induced endoplasmic reticulum stress in PC12 cells. Int J Mol Med 2017; 40:549-557. [PMID: 28656194 DOI: 10.3892/ijmm.2017.3035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/25/2017] [Indexed: 11/06/2022] Open
Abstract
Hypoxic‑ischemia stress causes severe brain injury, leading to death and disability worldwide. Although it has been reported that endoplasmic reticulum (ER) stress is an essential step in the progression of hypoxia or ischemia‑induced brain injury, the underlying molecular mechanisms are and have not yet been fully elucidated. Accumulating evidence has indicated that both nitric oxide (NO) and hydrogen sulfide (H2S) play an important role in the development of cerebral ischemic injury. In the present study, we aimed to investigate the effect of the association between NO signaling and the cystathionine β‑synthase (CBS)/H2S system on ER stress in a cell model of cerebral hypoxia‑ischemia injury. We found that oxygen‑glucose deprivation (OGD) markedly increased the NO level and neuronal NO synthase (nNOS) activity. 3‑Bromo‑7‑nitroindazole (3‑Br‑7‑NI), a relatively selective nNOS inhibitor, abolished the OGD‑induced inhibition of cell viability and the increased expression of ER stress‑related proteins, including glucose‑regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase‑12 in PC12 cells, indicating the contribution of excessive nNOS/NO signaling to OGD‑induced ER stress. Furthermore, we found that OGD increased the phosphorylated AMP‑activated protein kinase (p‑AMPK)/AMPK ratio, and the AMPK activator, 5‑aminoimidazole‑4‑carboxamide‑1‑β‑D‑ribofuranoside (AICAR), attenuated the effects on OGD‑induced ER stress, suggesting that OGD‑induced NO overproduction results in AMPK activation in PC12 cells. We also found that OGD induced the downregulation of the CBS/H2S system, as indicated by the decreased H2S level in the culture supernatant and CBS activity in PC12 cells. In addition, we found that treatment with NaHS (a H2S donor) or S‑adenosyl‑L‑methionine (SAM, a CBS agonist) mitigated OGD‑induced ER stress, as well as the NO level, nNOS activity and AMPK phosphorylation in PC12 cells. On the whole, these results suggest that the inhibition of the CBS/H2S system, which facilitated excessive nNOS/NO/AMPK activation, contributes to OGD‑induced ER stress.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yong-Quan Lin
- Department of Emergency Medicine, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Wei-Sheng Wang
- Department of Neurology, The Third People's Hospital of Liaocheng City, Liaocheng, Shandong 252000, P.R. China
| | - Xin-Qiang Wang
- Department of Neurology, The Second People's Hospital of Liaocheng City, Linqing, Shandong 252601, P.R. China
| |
Collapse
|
29
|
Pathipati P, Ferriero DM. The Differential Effects of Erythropoietin Exposure to Oxidative Stress on Microglia and Astrocytes in vitro. Dev Neurosci 2017; 39:310-322. [PMID: 28511187 DOI: 10.1159/000467391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
The neonatal brain is especially susceptible to oxidative stress owing to its reduced antioxidant capacity. Following hypoxic-ischemic (HI) injury, for example, there is a prolonged elevation in levels of hydrogen peroxide (H2O2) in the immature brain compared to the adult brain, resulting in lasting injury that can lead to life-long disability or morbidity. Erythropoietin (Epo) is one of few multifaceted treatment options that have been promising enough to trial in the clinic for both term and preterm brain injury. Despite this, there is a lack of clear understanding of how Epo modulates glial cell activity following oxidative injury, specifically, whether it affects microglia (Mg) and astrocytes (Ast) differently. Using an in vitro approach using primary murine Mg and Ast subjected to H2O2 injury, we studied the oxidative and inflammatory responses of Mg and Ast to recombinant murine (rm)Epo treatment. We found that Epo protects Ast from H2O2 injury (p < 0.05) and increases secreted nitric oxide levels in these cells (p < 0.05) while suppressing intracellular reactive oxygen species (p < 0.05) and superoxide ion (p < 0.05) levels only in Mg. Using a multiplex analysis, we noted that although H2O2 induced the levels of several chemokines, rmEpo did not have any significant specific effects on their levels, either with or without the presence of conditioned medium from injured neurons (NCM). Ultimately, it appears that rmEpo has pleiotropic effects based on the cell type; it has a protective effect on Ast but an antioxidative effect only on Mg without any significant modulation of chemokine and cytokine levels in either cell type. These findings highlight the importance of considering all cell types when assessing the benefits and pitfalls of Epo use.
Collapse
Affiliation(s)
- Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
30
|
Roles of Nitric Oxide Synthase Isoforms in Neurogenesis. Mol Neurobiol 2017; 55:2645-2652. [PMID: 28421538 DOI: 10.1007/s12035-017-0513-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Nitric oxide (NO), a free radical gas, acts as a neurotransmitter or neuromodulator in the central nervous system (CNS). It has been widely explored as a mediator of neuroinflammation, neuronal damages, and neurodegeneration at its pathological levels. Recently, increasing evidence suggests that NO plays key roles in mediating adult neurogenesis, the process of neural stem cells (NSCs) to generate newborn neurons for replacing damaged neurons or maintaining the function of the brain. NO synthase (NOS) is a major enzyme catalyzing the generation of NO in the brain. Recent studies indicate that three homologous NOS isoforms are involved in the proliferation of NSCs and neurogenesis. Therefore, the impact of NOS isoforms on NSC functions needs to be elucidated. Here, we summarize the studies on the role of NO and NOS with different isoforms in NSC proliferation and neurogenesis with the focus on introducing action mechanisms involved in the regulation of NSC function. This growing research area provides the new insight into controlling NSC function via regulating NO microenvironment in the brain. It also provides the evidence on targeting NOS for the treatment of brain diseases.
Collapse
|
31
|
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a disease that occurs when the brain is subjected to hypoxia, resulting in neuronal death and neurological deficits, with a poor prognosis. The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release, cellular proteolysis, reactive oxygen species generation, nitric oxide synthesis, and inflammation. The molecular and cellular changes in HIE include protein misfolding, aggregation, and destruction of organelles. The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway, the extrinsic Fas receptor pathway, and the endoplasmic reticulum stress-induced pathway. Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century. Hypothermia, xenon gas treatment, the use of melatonin and erythropoietin, and hypoxic-ischemic preconditioning have proven effective in HIE patients. Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes. A large number of molecular chaperones are induced after brain ischemia and hypoxia, among which the heat shock proteins are the most important. Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects. Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations, assisting in the proper folding of newly synthesized polypeptides, regulating the degradation of misfolded proteins, inhibiting the aggregation of proteins, and by controlling the refolding of misfolded proteins. In addition, heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways, including the intrinsic pathway, the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway. Molecular chaperones play a key role in neuroprotection in HIE. In this review, we provide an overview of the mechanisms of HIE and discuss the various treatment strategies. Given their critical role in the disease, molecular chaperones are promising therapeutic targets for HIE.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wei-Na Ju
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
32
|
Zhao M, Zhu P, Fujino M, Zhuang J, Guo H, Sheikh I, Zhao L, Li XK. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int J Mol Sci 2016; 17:ijms17122078. [PMID: 27973415 PMCID: PMC5187878 DOI: 10.3390/ijms17122078] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply and is, thus, extremely sensitive to hypoxia. Strong evidence indicates that oxidative stress plays an important role in pathogenesis and progression. Following hypoxia and ischemia, reactive oxygen species (ROS) production rapidly increases and overwhelms antioxidant defenses. A large excess of ROS will directly modify or degenerate cellular macromolecules, such as membranes, proteins, lipids, and DNA, and lead to a cascading inflammatory response, and protease secretion. These derivatives are involved in a complex interplay of multiple pathways (e.g., inflammation, apoptosis, autophagy, and necrosis) which finally lead to brain injury. In this review, we highlight the molecular mechanism for oxidative stress in HIE, summarize current research on therapeutic strategies utilized in combating oxidative stress, and try to explore novel potential clinical approaches.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
| | - Masayuki Fujino
- National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
| | - IdrisAhmed Sheikh
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
| | - Lingling Zhao
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
| | - Xiao-Kang Li
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
- National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| |
Collapse
|
33
|
Devraj G, Beerlage C, Brüne B, Kempf VAJ. Hypoxia and HIF-1 activation in bacterial infections. Microbes Infect 2016; 19:144-156. [PMID: 27903434 DOI: 10.1016/j.micinf.2016.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
For most of the living beings, oxygen is one of the essential elements required to sustain life. Deprivation of oxygen causes tissue hypoxia and this severely affects host cell and organ functions. Tissue hypoxia is a prominent microenvironmental condition occurring in infections and there is a body of evidence that hypoxia and inflammation are interconnected with each other. The primary key factor mediating the mammalian hypoxic response is hypoxia inducible factor (HIF)-1, which regulates oxygen homeostasis on cellular, tissue and organism level. Recent studies show that HIF-1 plays a central role in angiogenesis, cancer and cardiovascular disease but also in bacterial infections. Activation of HIF-1 depends on the nature of the pathogen and the characteristics of infections in certain hosts. Up to date, it is not completely clear whether the phenomenon of HIF-1 activation in infections has a protective or detrimental effect on the host. In this review, we give an overview of whether and how hypoxia and HIF-1 affect the course of infections.
Collapse
Affiliation(s)
- Gayatri Devraj
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Christiane Beerlage
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Affiliation(s)
- Qing Lu
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem 2016; 139 Suppl 1:179-197. [DOI: 10.1111/jnc.13425] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Abdel A. Belaidi
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| | - Ashley I. Bush
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|