1
|
Zheng W, Ma L, Luo X, Xu R, Cao Z, He Y, Chang Y, You Y, Chen T, Liu H. Ultrasound-triggered functional hydrogel promotes multistage bone regeneration. Biomaterials 2024; 311:122650. [PMID: 38889598 DOI: 10.1016/j.biomaterials.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
The dysfunction of bone mesenchymal stem cells (BMSCs), caused by the physical and chemical properties of the inflammatory and repair phases of bone regeneration, contributes to the failure of bone regeneration. To meet the spatiotemporal needs of BMSCs in different phases, designing biocompatible materials that respond to external stimuli, improve migration in the inflammatory phase, reduce apoptosis in the proliferative phase, and clear the hurdle in the differentiation phase of BMSCs is an effective strategy for multistage repair of bone defects. In this study, we designed a cascade-response functional composite hydrogel (Gel@Eb/HA) to regulate BMSCs dysfunction in vitro and in vivo. Gel@Eb/HA improved the migration of BMSCs by upregulating the expression of chemokine (C-C motif) ligand 5 (CCL5) during the inflammatory phase. Ultrasound (US) triggered the rapid release of Ebselen (Eb), eliminating the accumulation of reactive oxygen species (ROS) in BMSCs, and reversing apoptosis under oxidative stress. Continued US treatment accelerated the degradation of the materials, thereby providing Ca2+ for the osteogenic differentiation of BMSCs. Altogether, our study highlights the prospects of US-controlled intelligent system, that provides a novel strategy for addressing the complexities of multistage bone repair.
Collapse
Affiliation(s)
- Wenyi Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Li Ma
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xueshi Luo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Renhao Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zhiying Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Yanzhou Chang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan You
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China; Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Hongmei Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
2
|
He K, Tan B, Lu A, Bai L, Song C, Miao Y, Liu B, Chen Q, Teng X, Dai J, Wu Y. Asynchronous changes of hydrogen sulfide and its generating enzymes in most tissues with the aging process. Biosci Rep 2024; 44:BSR20240320. [PMID: 39312181 PMCID: PMC11473966 DOI: 10.1042/bsr20240320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Aging is an inevitable and irreversible biological process that gradually heightens the risks of various diseases and death. As a newly discovered endogenous gasotransmitter, hydrogen sulfide (H2S) has been identified to exert multiple beneficial impacts on the regulation of aging and age-related pathologies. This study was aimed at systematically exploring the relationship between asynchronous aging processes and H2S concentrations in various tissues of aging mice. Samples of plasma and 13 tissues were collected from four cross-sectional age groups (3, 6, 12 and 18 months of age) covering the lifespan of male C57BL/6J mice. The H2S concentration was quantified by a reported liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with monobromobimane derivatization. Additionally, the expressions of cystathionine γ-lyase (CSE), cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase, in those tissues were analyzed by Western blotting. We discovered that the H2S concentrations decreased asynchronously with the aging process in plasma, heart, liver, kidney, spleen, subcutaneous fat and brown fat and increased in brain and lung. At least one of the three H2S-generating enzymes expressions was compensatorily up-regulated with the aging process in most tissues, among which the up-regulation of CSE was the most prominent.
Collapse
Affiliation(s)
- Kaichuan He
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Center for Clinical Medical Research, Hebei Genral Hospital, Hebei 050051, China
- Hebei Key Laboratory of Metabolic Diseases, Hebei Genral Hospital, Hebei 050051, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao Lu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lu Bai
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Chengqing Song
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuxin Miao
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Biyu Liu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Qian Chen
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Shijiazhuang 050017, China
| |
Collapse
|
3
|
Li-Yang M, Ma C, Wang X, You J. OSBPL2 inhibition leads to apoptosis of cochlea hair cells in age-related hearing loss by inhibiting the AKT/FOXG1 signaling pathway. Aging (Albany NY) 2024; 16:13132-13144. [PMID: 39475791 PMCID: PMC11552636 DOI: 10.18632/aging.206138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/19/2024] [Indexed: 11/07/2024]
Abstract
Age-related hearing loss (AHL) is a prevalent and multifaceted condition that significantly impacts a substantial portion of the aging population. Oxysterol Binding Protein-like 2 (OSBPL2) has been identified as a causal gene for hearing loss. However, its role in AHL is still unclear. In this study, we investigated the effect of OSBPL2 on the survival of cochlea hair cells. To simulate AHL in vitro, hair cell-like inner ear cells (HEI-OC1) were exposed to H2O2 treatment. OSBPL2 expression was significantly increased in HEI-OC1 cells after H2O2 treatment. OSBPL2 knockdown augmented cell death and apoptosis in H2O2-induced HEI-OC1 cells. Besides, H2O2 treatment also led to the inactivation of the AKT and FOXG1 signaling pathways in HEI-OC1 cells. Mechanistically, OSBPL2 silencing reinforced the inactivation of the FOXG1 signaling pathway in H2O2-treated HEI-OC1 cells by inhibiting the AKT signaling pathway. Under H2O2 treatment, AKT inhibition by MK2206 augmented the apoptosis of HEI-OC1 cells; on the contrary, AKT activation by SC79 treatment partially rescued the apoptosis of OSBPL2-knockdown HEI-OC1 cells. In addition, FOXG1 silencing significantly reversed the effects of AKT activation on OSBPL2-knockdown HEI-OC1 cells. Moreover, OSBPL2 expression and the activation status of the AKT/FOXG1 signaling pathway were confirmed in the cochleae of young and old C57BL/6 mice. In conclusion, our study provides evidence that OSBPL2 inhibition sensitizes HEI-OC1 cells to H2O2-induced apoptosis via inactivation of the AKT/FOXG1 signaling pathway, suggesting that OSBPL2 acts as an important regulator in AHL.
Collapse
Affiliation(s)
- Meina Li-Yang
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Chao Ma
- Department of Cardiothoracic Surgery, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Xiaoye Wang
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Jianqiang You
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| |
Collapse
|
4
|
Ma J, Yang P, Zhou Z, Song T, Jia L, Ye X, Yan W, Sun J, Ye T, Zhu L. GYY4137-induced p65 sulfhydration protects synovial macrophages against pyroptosis by improving mitochondrial function in osteoarthritis development. J Adv Res 2024:S2090-1232(24)00223-6. [PMID: 38844123 DOI: 10.1016/j.jare.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is the most common arthritis that is characterized by the progressive synovial inflammation and loss of articular cartilage. Although GYY4137 is a novel and slow-releasing hydrogen sulfide (H2S) donor with potent anti-inflammatory properties that may modulate the progression of OA, its underlying mechanism remains unclear. OBJECTIVES In this study, we validated the protective role of GYY4137 against OA pathological courses and elucidated its underlying regulatory mechanisms. METHODS Cell transfection, immunofluorescence staining, EdU assay, transmission electron microscopy, mitochondrial membrane potential measurement, electrophoretic mobility shift assay, sulfhydration assay, qPCR and western blot assays were performed in the primary mouse chondrocytes or the mouse macrophage cell line raw 264.7 for in vitro study. DMM-induced OA mice model and Macrophage-specific p65 knockout (p65f/f LysM-CreERT2) mice on the C57BL/6 background were used for in vivo study. RESULTS We found that GYY4137 can alleviate OA progress by suppressing synovium pyroptosis in vivo. Moreover, our in vitro data revealed that GYY4137 attenuates inflammation-induced NLRP3 and caspase-1 activation and results in a decrease of IL-1β production in macrophages. Mechanistically, GYY4137 increased persulfidation of NF-kB p65 in response to inflammatory stimuli that results in a decrease of cellular reactive oxygen species (ROS) accumulation and ameliorates mitochondrial dysfunctions. Using site-directed mutagenesis, we showed that H2S persulfidates cysteine38 in p65 protein and hampers p65 transcriptional activity, and p65 mutant impaired macrophage responses to GYY4137. CONCLUSION These findings suggest a mechanism by which GYY4137 through redox modification of p65 participates in inhibiting NLRP3 activation by OA to regulate inflammatory responses. Thus, we propose that GYY4137 represents a promising novel therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Health Statistics, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Yang
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Tengfei Song
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Jia
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Naval Medical University, Shanghai, China
| | - Wei Yan
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Jiuyi Sun
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China.
| | - Tianwen Ye
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Lei Zhu
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Wu L, Ye S, Deng X, Fu Z, Li J, Yang C. Conjugated Linoleic Acid Ameliorates High Fat-Induced Insulin Resistance via Regulating Gut Microbiota-Host Metabolic and Immunomodulatory Interactions. Nutrients 2024; 16:1133. [PMID: 38674824 PMCID: PMC11053735 DOI: 10.3390/nu16081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Interaction between gut microbiota, host immunity and metabolism has been suggested to crucially affect the development of insulin resistance (IR). This study aims to investigate how gut microbiota, inflammatory responses and metabolism in individuals with IR are affected by the supplementation of conjugated linoleic acid (CLA) and how this subsequently affects the pathophysiology of IR by using a high-fat diet-induced IR mouse model. Serum biochemical indices showed that 400 mg/kg body weight of CLA effectively attenuated hyperglycemia, hyperlipidemia, glucose intolerance and IR, while also promoting antioxidant capacities. Histomorphology, gene and protein expression analysis revealed that CLA reduced fat deposition and inflammation, and enhanced fatty acid oxidation, insulin signaling and glucose transport in adipose tissue or liver. Hepatic transcriptome analysis confirmed that CLA inhibited inflammatory signaling pathways and promoted insulin, PI3K-Akt and AMPK signaling pathways, as well as linoleic acid, arachidonic acid, arginine and proline metabolism. Gut microbiome analysis further revealed that these effects were highly associated with the enriched bacteria that showed positive correlation with the production of short-chain fatty acids (SCFAs), as well as the improved SCFAs production simultaneously. This study highlights the therapeutic actions of CLA on ameliorating IR via regulating microbiota-host metabolic and immunomodulatory interactions, which have important implications for IR control.
Collapse
Affiliation(s)
- Linjun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Jinjun Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| |
Collapse
|
6
|
Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective Effects of H 2S Donor Treatment in Experimental Colitis: A Focus on Antioxidants. Antioxidants (Basel) 2023; 12:antiox12051025. [PMID: 37237891 DOI: 10.3390/antiox12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders of the gastrointestinal (GI) system, which have become a global disease over the past few decades. It has become increasingly clear that oxidative stress plays a role in the pathogenesis of IBD. Even though several effective therapies exist against IBD, these might have serious side effects. It has been proposed that hydrogen sulfide (H2S), as a novel gasotransmitter, has several physiological and pathological effects on the body. Our present study aimed to investigate the effects of H2S administration on antioxidant molecules in experimental rat colitis. As a model of IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used intracolonically (i.c.) to induce colitis in male Wistar-Hannover rats. Animals were orally treated (2 times/day) with H2S donor Lawesson's reagent (LR). Our results showed that H2S administration significantly decreased the severity of inflammation in the colons. Furthermore, LR significantly suppressed the level of oxidative stress marker 3-nitrotyrosine (3-NT) and caused a significant elevation in the levels of antioxidant GSH, Prdx1, Prdx6, and the activity of SOD compared to TNBS. In conclusion, our results suggest that these antioxidants may offer potential therapeutic targets and H2S treatment through the activation of antioxidant defense mechanisms and may provide a promising strategy against IBD.
Collapse
Affiliation(s)
- Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
7
|
Irisin ameliorates D-galactose-induced skeletal muscle fibrosis via the PI3K/Akt pathway. Eur J Pharmacol 2023; 939:175476. [PMID: 36539073 DOI: 10.1016/j.ejphar.2022.175476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Primary sarcopenia is a multicausal skeletal muscle disease associated with muscle strength and mass loss. Skeletal muscle fibrosis is one of the significant pathological manifestations associated with the development of age-related sarcopenia. Irisin, which is cleaved by the extracellular domain of fibronectin type Ⅲ domain-containing protein 5 (FNDC5), has previously been reported to exert antifibrotic effects on the heart, liver, and pancreas, but whether it can rescue skeletal muscle fibrosis remains unknown. In this study, we examined the effects of irisin on D-galactose (D-gal)-induced skeletal muscle fibroblasts. We found that D-gal-induced senescence, fibrosis, and redox imbalance were inhibited by irisin treatment. Mechanistically, irisin or FNDC5 overexpression attenuated D-gal-induced senescence, redox imbalance, and fibrosis by regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Overall, irisin might be a promising therapeutic candidate for age-related skeletal muscle fibrosis.
Collapse
|
8
|
Anti-Aging Effects of Anthocyanin Extracts of Sambucus canadensis Caused by Targeting Mitochondrial-Induced Oxidative Stress. Int J Mol Sci 2023; 24:ijms24021528. [PMID: 36675036 PMCID: PMC9861870 DOI: 10.3390/ijms24021528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Anthocyanin is a natural antioxidant agent extracted from the fruits of Sambucus canadensis, which has been considered to have potential anti-aging effects. Cell senescence is the primary cause of aging and related diseases. Recently, research on the development of compounds for eliminating senescent cells or damaged organs have shown prospects. The compounds which promote the clearing of senescent cells are called "senolytics". Though anthocyanin is considered to have potential anti-aging effects owing to its anti-inflammatory and antioxidant activities, the mechanism of the elimination of senescent cells remains unclear. In this study, we prepared anthocyanins extracted from the fruits of Sambucus canadensis and evaluated their anti-aging effects in vivo and in vitro. We found that anthocyanin could significantly reduce cell senescence and aging of the lens by inhibiting the activity of the PI3K/AKT/mTOR signaling pathway, consequently promoting the apoptosis of senescent cells, increasing the autophagic and mitophagic flux, and enhancing the renewal of mitochondria and the cell to maintain cellular homeostasis, leading to attenuating aging. Therefore, our study provided a basis for anthocyanin to be used as new "senolytics" in anti-aging.
Collapse
|
9
|
Hydrogen Sulfide and Its Donors: Keys to Unlock the Chains of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232012202. [PMID: 36293058 PMCID: PMC9603526 DOI: 10.3390/ijms232012202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has emerged as the third “gasotransmitters” and has a crucial function in the diversity of physiological functions in mammals. In particular, H2S is considered indispensable in preventing the development of liver inflammation in the case of excessive caloric ingestion. Note that the concentration of endogenous H2S was usually low, making it difficult to discern the precise biological functions. Therefore, exogenous delivery of H2S is conducive to probe the physiological and pathological roles of this gas in cellular and animal studies. In this review, the production and metabolic pathways of H2S in vivo, the types of donors currently used for H2S release, and study evidence of H2S improvement effects on nonalcoholic fatty liver disease are systematically introduced.
Collapse
|
10
|
Zhang T, Yang S, Ge Y, Wan X, Zhu Y, Li J, Yin L, Pu Y, Liang G. Polystyrene Nanoplastics Induce Lung Injury via Activating Oxidative Stress: Molecular Insights from Bioinformatics Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193507. [PMID: 36234635 PMCID: PMC9565894 DOI: 10.3390/nano12193507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2023]
Abstract
(1) Background: Increasing evidence reveals that airborne plastic particles will continue to degrade into nanoplastics which are then inhaled by humans, causing injury to the respiratory system with controversial molecular mechanisms. (2) Methods: We used polystyrene nanoplastics (PS-NPs) as the representative pollutants to explore the inhalation toxicology of nanoplastics and identified the potential mechanism through high-throughput sequencing. (3) Results: PS-NPs inhibited cell viability in a dose-dependent manner and 0 μg/cm2, 7.5 μg/cm2 and 30 μg/cm2 PS-NP-treated groups were selected for RNA-seq. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that lung injuries caused by PS-NPs were mediated via redox imbalance, which was verified by reactive oxygen species (ROS) staining. Additionally, we obtained ten key transcription factors (TFs) governing differentially expressed genes (DEGs), nine of which were involved in the regulation of oxidative stress. An oxidative stress-associated TF-mRNA regulatory network was constructed on account of the findings above. Further joint analysis with animal experiment data from the GEO database identified a crucial oxidative stress-related molecule, TNFRSF12A. qRT-PCR was performed to confirm the results of RNA-seq. (4) Conclusions: Our study indicates the potential role of oxidative stress in the mechanism of nanoplastics-induced lung injuries, with several key genes being promising targets to analyze in future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Geyu Liang
- Correspondence: ; Tel.: +86-25-83272572; Fax: +86-25-83324322
| |
Collapse
|
11
|
Zhang Y, Wu Q, Liu J, Zhang Z, Ma X, Zhang Y, Zhu J, Thring RW, Wu M, Gao Y, Tong H. Sulforaphane alleviates high fat diet-induced insulin resistance via AMPK/Nrf2/GPx4 axis. Biomed Pharmacother 2022; 152:113273. [PMID: 35709656 DOI: 10.1016/j.biopha.2022.113273] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes. Sulforaphane (SFN) is a natural antioxidant extracted from the cruciferous vegetables. Recent study reported that SFN exhibits excellent anti-diabetic effects, however, the underlying mechanism is still unclear. This study aimed to investigate the therapeutic effects of SFN on a high-fat diet (HFD)-induced insulin resistance and potential mechanism. SFN was found to effectively reduce body weight, fasting blood glucose and hyperlipidemia, and improve liver function in HFD-fed mice. Furthermore, SFN effectively increased glucose uptake and improved insulin signaling in palmitic acid (PA)-induced HepG2 cells. SFN also led to increased expression of antioxidant genes downstream of Nrf2 and decreased accumulation of lipid peroxides MDA and 4-HNE, both in vivo and in vitro. Further studies revealed that SFN significantly reduced glutathione peroxidase 4 (GPx4) inactivation-mediated oxidative stress by activating the AMPK and Nrf2 signaling pathways. In PA-induced HepG2 cells and flies, the alleviation of insulin resistance by SFN was diminished by GPx4 inhibitor. Taken together, SFN ameliorated HFD-induced insulin resistance by activating the AMPK-Nrf2-GPx4 pathway, providing new insights into SFN as a therapeutic compound for the alleviation of insulin resistance.
Collapse
Affiliation(s)
- Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhongshan Zhang
- Zhejiang Province Key Laboratory of Vector Biology and Pathogen Control, Huzhou University, Huzhou Cent Hosp, Huzhou 313000, China
| | - Xiaojing Ma
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaoyue Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiawen Zhu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ronald W Thring
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Guo D, Zhang A, Zou T, Ding R, Chen K, Pan Y, Ji P, Ye B, Xiang M. The influence of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction. Front Aging Neurosci 2022; 14:930105. [PMID: 35966796 PMCID: PMC9372463 DOI: 10.3389/fnagi.2022.930105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/12/2022] [Indexed: 12/06/2022] Open
Abstract
With the increase in life expectancy in the global population, aging societies have emerged in many countries, including China. As a common sensory defect in the elderly population, the prevalence of age-related hearing loss and its influence on society are increasing yearly. Metabolic syndrome is currently one of the main health problems in the world. Many studies have demonstrated that metabolic syndrome and its components are correlated with a variety of age-related diseases of the peripheral sensory system, including age-related hearing loss. Both age-related hearing loss and metabolic syndrome are high-prevalence chronic diseases, and many people suffer from both at the same time. In recent years, more and more studies have found that mitochondrial dysfunction occurs in both metabolic syndrome and age-related hearing loss. Therefore, to better understand the impact of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction, we reviewed the literature related to the relationship between age-related hearing loss and metabolic syndrome and their components to discern the possible role of mitochondria in both conditions.
Collapse
Affiliation(s)
- Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Bin Ye,
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Mingliang Xiang,
| |
Collapse
|
13
|
The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sci 2022; 305:120732. [PMID: 35760093 DOI: 10.1016/j.lfs.2022.120732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), proposed in 2020 is a novel term for non-alcoholic fatty liver disease (NAFLD) which was coined for the first time in 1980. It is a leading cause of the most chronic liver disease and hepatic failure all over the world, and unfortunately, with no licensed drugs for treatment yet. The progress of the disease is driven by the triggered inflammatory process, oxidative stress, and insulin resistance in many pathways, starting with simple hepatic steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and liver cancer. Protein kinases (PKs), such as MAPK, ErbB, PKC, PI3K/Akt, and mTOR, govern most of the pathological pathways by acting on various downstream key points in MAFLD and regulating both hepatic gluco- lipo-neogenesis and inflammation. Therefore, modulating the function of those potential protein kinases that are effectively involved in MAFLD might be a promising therapeutic approach for tackling this disease. In the current review, we have discussed the key role of protein kinases in the pathogenesis of MAFLD and performed a protein-protein interaction (PPI) network among the main proteins of each kinase pathway with MAFLD-related proteins to predict the most likely targets of the PKs in MAFLD. Moreover, we have reported the experimental, pre-clinical, and clinical data for the most recent investigated molecules that are activating p38-MAPK and AMPK proteins and inhibiting the other PKs to improve MAFLD condition by regulating oxidation and inflammation signalling.
Collapse
|
14
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
15
|
Nakladal D, Lambooy SPH, Mišúth S, Čepcová D, Joschko CP, Buiten A, Goris M, Hoogstra‐Berends F, Kloosterhuis NJ, Huijkman N, Sluis B, Diercks GF, Buikema JH, Henning RH, Deelman LE. Homozygous whole body
Cbs
knockout in adult mice features minimal pathology during ageing despite severe homocysteinemia. FASEB J 2022; 36:e22260. [DOI: 10.1096/fj.202101550r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- D. Nakladal
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - S. P. H. Lambooy
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - S. Mišúth
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pharmacology & Toxicology Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| | - D. Čepcová
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pharmacology & Toxicology Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| | - C. P. Joschko
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - A. Buiten
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - M. Goris
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - F. Hoogstra‐Berends
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - N. J. Kloosterhuis
- Department of Pediatrics University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - N. Huijkman
- iPSC/CRISPR Center Groningen University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - B. Sluis
- Department of Pediatrics University of Groningen University Medical Center Groningen Groningen The Netherlands
- iPSC/CRISPR Center Groningen University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - G. F. Diercks
- Department of Dermatology Center for Blistering Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - J. H. Buikema
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - R. H. Henning
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - L. E. Deelman
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
16
|
Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:823945. [PMID: 35309994 PMCID: PMC8924288 DOI: 10.3389/fbioe.2022.823945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar spondylosis. Over the past few years, the relevance between cellular senescence and IVDD has been widely studied, and the senescence-associated secretory phenotype (SASP) produced by senescent cells is found to remodel extracellular matrix (ECM) metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and suppression of SASP production by senomorphics/senostatics are effective strategies to alleviate degenerative diseases including IVDD. Here, we review the involvement of senescence in the process of IVDD; we also discuss the potential of senolytics on eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in the future.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| |
Collapse
|
17
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
18
|
McCarty MF, Lerner A, DiNicolantonio JJ, Benzvi C. Nutraceutical Aid for Allergies - Strategies for Down-Regulating Mast Cell Degranulation. J Asthma Allergy 2021; 14:1257-1266. [PMID: 34737578 PMCID: PMC8558634 DOI: 10.2147/jaa.s332307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Interactions of antigens with the mast cell FcεRI-IgE receptor complex induce degranulation and boost synthesis of pro-inflammatory lipid mediators and cytokines. Activation of spleen tyrosine kinase (Syk) functions as a central hub in this signaling. The tyrosine phosphatase SHP-1 opposes Syk activity; stimulation of NADPH oxidase by FcεRI activation results in the production of oxidants that reversibly inhibit SHP-1, up-regulating the signal from Syk. Activated AMPK can suppress Syk activation by the FcεRI receptor, possibly reflecting its ability to phosphorylate the FcεRI beta subunit. Cyclic GMP, via protein kinase G II, enhances the activity of SHP-1 by phosphorylating its C-terminal region; this may explain its inhibitory impact on mast cell activation. Hydrogen sulfide (H2S) likewise opposes mast cell activation; H2S can boost AMPK activity, up-regulate cGMP production, and trigger Nrf2-mediated induction of Phase 2 enzymes - including heme oxygenase-1, whose generation of bilirubin suppresses NADPH oxidase activity. Phycocyanobilin (PCB), a chemical relative of bilirubin, shares its inhibitory impact on NADPH oxidase, rationalizing reported anti-allergic effects of PCB-rich spirulina ingestion. Phase 2 inducer nutraceuticals can likewise oppose the up-regulatory impact of NADPH oxidase on FcεRI signaling. AMPK can be activated with the nutraceutical berberine. High-dose biotin can boost cGMP levels in mast cells via direct stimulation of soluble guanylate cyclase. Endogenous generation of H2S in mast cells can be promoted by administering N-acetylcysteine and likely by taurine, which increases the expression of H2S-producing enzymes in the vascular system. Mast cell stabilization by benifuuki green tea catechins may reflect the decreased surface expression of FcεRI.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| | - James J DiNicolantonio
- Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA
- Advanced Ingredients for Dietary Products, AIDP, City of Industry, CA, USA
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|
19
|
A Genome-Wide Association Study of Age-Related Hearing Impairment in Middle- and Old-Aged Chinese Twins. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3629624. [PMID: 34337005 PMCID: PMC8314043 DOI: 10.1155/2021/3629624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
Background Age-related hearing impairment (ARHI) is considered an unpreventable disorder. We aimed to detect specific genetic variants that are potentially related to ARHI via genome-wide association study (GWAS). Methods A sample of 131 dizygotic twins was genotyped for single-nucleotide polymorphism- (SNP-) based GWAS. Gene-based test was performed using VEGAS2. Pathway enrichment analysis was conducted by PASCAL. Results The twins are with a median age of 49 years, of which 128 were females and 134 were males. rs6633657 was the only SNP that reached the genome-wide significance level for better ear hearing level (BEHL) at 2.0 kHz (P = 1.19 × 10-8). Totally, 9, 10, 42, 7, 17, and 5 SNPs were suggestive evidence level for (P < 1 × 10-5) BEHLs at 0.5, 1.0, 2.0, 4.0, and 8.0 kHz and pure tone average (PTA), respectively. Several promising genetic regions in chromosomes (near the C20orf196, AQPEP, UBQLN3, OR51B5, OR51I2, OR52D1, GLTP, GIT2, and PARK2) nominally associated with ARHI were identified. Gene-based analysis revealed 165, 173, 77, 178, 170, and 145 genes nominally associated with BEHLs at 0.5, 1.0, 2.0, 4.0, and 8.0 kHz and PTA, respectively (P < 0.05). For BEHLs at 0.5, 1.0, and 2.0 kHz, the main enriched pathways were phosphatidylinositol signaling system, regulation of ornithine decarboxylase, eukaryotic translation initiation factor (EIF) pathway, amine compound solute carrier (SLC) transporters, synthesis of phosphoinositides (PIPS) at the plasma membrane, and phosphatidylinositols (PI) metabolism. Conclusions The genetic variations reported herein are significantly involved in functional genes and regulatory domains that mediate ARHI pathogenesis. These findings provide clues for the further unraveling of the molecular physiology of hearing functions and identifying novel diagnostic biomarkers and therapeutic targets of ARHI.
Collapse
|
20
|
Zheng Y, Liu T, Li Q, Li J. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNA expression profiles identifies lncRNA PRKG1-AS1 playing important roles in skeletal muscle aging. Aging (Albany NY) 2021; 13:15044-15060. [PMID: 34051073 PMCID: PMC8221296 DOI: 10.18632/aging.203067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to identify long non-coding RNAs (lncRNAs) involving in the skeletal muscle aging process. Skeletal muscle samples from old and young subjects were collected for lncRNA-sequencing. Differentially expressed genes (DEGs) and DElncRNAs between young and old groups were identified and a co-expression network was built. Further, a dexamethasone-induced muscle atrophy cell model was established to characterize the function of a critical lncRNA. A total of 424 DEGs, including 271 upregulated genes and 153 downregulated genes as well as 152 DElncRNAs including 76 up-regulated and 76 down-regulated lncRNAs were obtained. Functional analysis demonstrated that the DEGs were significantly related to immune response. Coexpression network demonstrated lncRNA AC004797.1, PRKG1-AS1 and GRPC5D-AS1 were crucial lncRNAs. Their expressions were further validated by qRT-PCR in human skeletal muscle and the muscle atrophy cell model. Further in vitro analysis suggested that knock-down of PRKG1-AS1 could significantly increase cell viability and decrease cell apoptosis. qRT-PCR and western blot analyses demonstrated that knock-down of PRKG1-AS1 could increase the expression of MyoD, MyoG and Mef2c. This study demonstrated that lncRNAs of GPRC5D-AS1, AC004797.1 and PRKG1-AS1 might involve the aging-associated disease processes.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Qun Li
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| |
Collapse
|
21
|
Li T, Li J, Li T, Zhao Y, Ke H, Wang S, Liu D, Wang Z. L-Cysteine Provides Neuroprotection of Hypoxia-Ischemia Injury in Neonatal Mice via a PI3K/Akt-Dependent Mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:517-529. [PMID: 33603342 PMCID: PMC7886094 DOI: 10.2147/dddt.s293025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 01/15/2023]
Abstract
Background Previous work within our laboratory has revealed that hydrogen sulfide (H2S) can serve as neuroprotectant against brain damage caused by hypoxia-ischemia (HI) exposure in neonatal mice. After HI insult, activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been shown to be implicated in neuro-restoration processes. The goal of the current study was to determine whether the neuroprotective effects of H2S were mediated by the PI3K/Akt signaling pathway. Methods The mouse HI model was built at postnatal day 7 (P7), and the effects of L-Cysteine treatment on acute brain damage (72 h post-HI) and long-term neurological responses (28 days post-HI) were evaluated. Nissl staining and Transmission electron microscopy were used to evaluate the neuronal loss and apoptosis. Immunofluorescence imaging and dihydroethidium staining were utilized to determine glial cell activation and ROS content, respectively. Results Quantitative results revealed that L-Cysteine treatment significantly prevented the acute effects of HI on apoptosis, glial cell activation and oxidative injury as well as the long-term effects upon memory impairment in neonatal mice. This protective effect of L-Cysteine was found to be associated with the phosphorylation of Akt and phosphatase and a tensin homolog deletion on chromosome 10 (PTEN). Following treatment with the PI3K inhibitor, LY294002, the neuroprotective effects of L-Cysteine were attenuated. Conclusion PTEN/PI3K/Akt signaling was involved in mediating the neuroprotective effects of exogenous H2S against HI exposure in neonatal mice.
Collapse
Affiliation(s)
- Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jiangbing Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Tong Li
- Department of Neurosurgery Surgery, Qingdao Municipal Hospital, Shandong Province, People's Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuanglian Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
22
|
Wang C, Wan H, Li M, Zhang C. Celastrol attenuates ischemia/reperfusion-mediated memory dysfunction by downregulating AK005401/MAP3K12. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153441. [PMID: 33387968 DOI: 10.1016/j.phymed.2020.153441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Oxidative stress induces mitochondrial dysfunction, causing memory loss. Long noncoding RNAs influence mitochondrial function and suppress oxidative stress by regulating target protein expression and gene transcription. Celastrol, a natural antioxidant extracted from Tripterygium wilfordii Hook F. ("Thunder of God Vine"), effectively alleviates oxidative stress-mediated tissue injury. In the present study, we examined the effects of celastrol on memory dysfunction induced by ischemia/reperfusion (I/R) and elucidated the mechanisms underlying these effects. METHODS C57BL/6 mice were used to mimic I/R using the bilateral common carotid clip reperfusion method, and a hippocampal cell line (HT-22) cells were used to establish a model of oxygen-glucose deprivation/reoxygenation (OGD/R). We observed changes in behavior and mitochondrial structure. Cell activity, cell respiration, and antioxidant capacity were measured. MAP3K12, p-JNK, p-c-Jun, p-Akt/Akt, PI3K, Bcl-2, and Bax expression were evaluated. RESULTS I/R or OGD/R significantly increased AK005401 and MAP3K12 expression, further attenuating PI3K/Akt activation, promoting reactive oxygen species generation and causing mitochondrial dysfunction and cell apoptosis, thereby resulting in memory dysfunction. Celastrol increased antioxidant capacity, inhibited cell apoptosis, and improved mitochondrial function, effectively improving learning and memory by downregulating AK005401 and MAP3K12 and activating PI3K/Akt. CONCLUSIONS The AK005401/MAP3K12 signaling pathway has an important role in I/R-mediated hippocampal injury, and celastrol can potentially reduce or possibly prevent I/R-induced neuronal injury by downregulating AK005401/MAP3K12 signaling.
Collapse
Affiliation(s)
- Chaoyun Wang
- Basic Medical School, Binzhou Medical University, Yantai, P. R. China.
| | - Hongzhi Wan
- School of Pharmacy, Binzhou Medical University, Yantai, P. R. China
| | - Miao Li
- School of Pharmacy, Binzhou Medical University, Yantai, P. R. China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
McCarty MF, Iloki Assanga SB, Lewis Luján L, O’Keefe JH, DiNicolantonio JJ. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2020; 13:E47. [PMID: 33375692 PMCID: PMC7823562 DOI: 10.3390/nu13010047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are intracellular protein complexes that form in response to a variety of stress signals and that serve to catalyze the proteolytic conversion of pro-interleukin-1β and pro-interleukin-18 to active interleukin-1β and interleukin-18, central mediators of the inflammatory response; inflammasomes can also promote a type of cell death known as pyroptosis. The NLRP3 inflammasome has received the most study and plays an important pathogenic role in a vast range of pathologies associated with inflammation-including atherosclerosis, myocardial infarction, the complications of diabetes, neurological and autoimmune disorders, dry macular degeneration, gout, and the cytokine storm phase of COVID-19. A consideration of the molecular biology underlying inflammasome priming and activation enables the prediction that a range of nutraceuticals may have clinical potential for suppressing inflammasome activity-antioxidants including phycocyanobilin, phase 2 inducers, melatonin, and N-acetylcysteine, the AMPK activator berberine, glucosamine, zinc, and various nutraceuticals that support generation of hydrogen sulfide. Complex nutraceuticals or functional foods featuring a number of these agents may find utility in the prevention and control of a wide range of medical disorders.
Collapse
Affiliation(s)
| | - Simon Bernard Iloki Assanga
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | - Lidianys Lewis Luján
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | | | | |
Collapse
|
24
|
Metformin Prevents Follicular Atresia in Aging Laying Chickens through Activation of PI3K/AKT and Calcium Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3648040. [PMID: 33294120 PMCID: PMC7718058 DOI: 10.1155/2020/3648040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
Increased follicular atresia occurs with aging and results in reduced fecundity in laying chickens. Therefore, relieving follicular atresia of aging poultry is a crucial measure to maintain sustained high laying performance. As an antiaging agent, metformin was reported to play important roles in preventing aging in diverse animals. In this study, the physiological state of the prehierarchical follicles in the peak-laying hens (D280) and aged hens (D580) was compared, followed with exploration for the possible capacity of metformin in delaying atresia of the prehierarchical follicles in the aged D580 hens. Results showed that the capacity of yolk deposition within follicles declined with aging, and the point of endoplasmic reticulum- (ER-) mitochondrion contact decreased in the ultrastructure of the follicular cells. Meanwhile, the expression of apoptosis signaling genes was increased in the atretic small white follicles. Subsequently, the H2O2-induced follicular atresia model was established to evaluate the enhancing capacity of metformin on yolk deposition and inhibition of apoptosis in the atretic small white follicles. Metformin inhibited apoptosis through regulating cooperation of the mitochondrion-associated ER membranes and the insulin (PI3K/AKT) signaling pathway. Furthermore, metformin regulated calcium ion homeostasis to relieve ER-stress and inhibited release of mitochondrion apoptosis factors (BAD and caspase). Additionally, metformin activated PI3K/AKT that suppressed activation of BAD (downstream of the insulin signaling pathway) in the atretic follicles. Further, serum estrogen level and liver estrogen receptor-α expression were increased after dietary metformin supplementation in D580 hens. These results indicated that administration of dietary metformin activated the PI3K/AKT and calcium signaling pathway and enhanced yolk deposition to prevent chicken follicular atresia.
Collapse
|
25
|
Wang S, Liu Y, Liu Y, Li C, Wan Q, Yang L, Su Y, Cheng Y, Liu C, Wang X, Wang Z. Reversed Senescence of Retinal Pigment Epithelial Cell by Coculture With Embryonic Stem Cell via the TGFβ and PI3K Pathways. Front Cell Dev Biol 2020; 8:588050. [PMID: 33324644 PMCID: PMC7726211 DOI: 10.3389/fcell.2020.588050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Retinal pigment epithelium (RPE) cellular senescence is an important etiology of age-related macular degeneration (AMD). Aging interventions based on the application of stem cells to delay cellular senescence have shown good prospects in the treatment of age-related diseases. This study aimed to investigate the potential of the embryonic stem cells (ESCs) to reverse the senescence of RPE cells and to elucidate its regulatory mechanism. The hydrogen peroxide (H2O2)-mediated premature and natural passage-mediated replicative senescent RPE cells were directly cocultured with ESCs. The results showed that the proliferative capacity of premature and replicative senescent RPE cells was increased, while the positive rate of senescence-associated galactosidase (SA-β-GAL) staining and levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were decreased. The positive regulatory factors of cellular senescence (p53, p21WAF1/CIP1, p16INK4a) were downregulated, while the negative regulatory factors of cellular senescence (Cyclin A2, Cyclin B1, Cyclin D1) were upregulated. Furthermore, replicative senescent RPE cells entered the S and G2/M phases from the G0/G1 phase. TGFβ (TGFB1, SMAD3, ID1, ID3) and PI3K (PIK3CG, PDK1, PLK1) pathway-related genes were upregulated in premature and replicative senescent RPE cells after ESCs application, respectively. We further treated ESCs-cocultured premature and replicative senescent RPE cells with SB531542 and LY294002 to inhibit the TGFβ and PI3K pathways, respectively, and found that p53, p21WAF1/CIP1 and p16INK4a were upregulated, while Cyclin A2, Cyclin B1, Cyclin D1, TGFβ, and PI3K pathway-related genes were downregulated, accompanied by decreased proliferation and cell cycle transition and increased positive rates of SA-β-GAL staining and levels of ROS and MMP. In conclusion, we demonstrated that ESCs can effectively reverse the senescence of premature and replicative senescent RPE cells by a direct coculture way, which may be achieved by upregulating the TGFβ and PI3K pathways, respectively, providing a basis for establishing a new therapeutic option for AMD.
Collapse
Affiliation(s)
- Shoubi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yurun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
The role of AMPK in metabolism and its influence on DNA damage repair. Mol Biol Rep 2020; 47:9075-9086. [PMID: 33070285 PMCID: PMC7674386 DOI: 10.1007/s11033-020-05900-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
One of the most complex health disproportions in the human body is the metabolic syndrome (MetS). It can result in serious health consequences such as type 2 diabetes mellitus, atherosclerosis or insulin resistance. The center of energy regulation in human is AMP-activated protein kinase (AMPK), which modulates cells' metabolic pathways and protects them against negative effects of metabolic stress, e.g. reactive oxygen species. Moreover, recent studies show the relationship between the AMPK activity and the regulation of DNA damage repair such as base excision repair (BER) system, which is presented in relation to the influence of MetS on human genome. Hence, AMPK is studied not only in the field of counteracting MetS but also prevention of genetic alterations and cancer development. Through understanding AMPK pathways and its role in cells with damaged DNA it might be possible to improve cell's repair processes and develop new therapies. This review presents AMPK role in eukaryotic cells and focuses on the relationship between AMPK activity and the regulation of BER system through its main component-8-oxoguanine glycosylase (OGG1).
Collapse
|
27
|
Wang Y, Yu R, Wu L, Yang G. Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide 2020; 103:9-19. [PMID: 32682981 DOI: 10.1016/j.niox.2020.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Recent advances in the biomedical importance of H2S have help us understand various cellular functions and pathophysiological processes from a new aspect. Specially, H2S has been demonstrated to play multiple roles in regulating cell behaviors, including cell survival, cell differentiation, cell senescence, cell hypertrophy, cell atrophy, cell metaplasia, and cell death, etc. H2S contributes to cell behavior changes via various mechanisms, such as histone modification, DNA methylation, non-coding RNA changes, DNA damage repair, transcription factor activity, and post-translational modification of proteins by S-sulfhydration, etc. In this review, we summarized the recent research progress on H2S signaling in control of cell behaviors and discussed the ways of H2S regulation of gene expressions. Given the key roles of H2S in both health and diseases, a better understanding of the regulation of H2S on cell behavior change and the underlying molecular mechanisms will help us to develop novel and more effective strategies for clinical therapy.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ruihuan Yu
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; School of Human Kinetics, Laurentian University, Sudbury, Canada; Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
28
|
Liu TH, Tu WQ, Tao WC, Liang QE, Xiao Y, Chen LG. Verification of Resveratrol Inhibits Intestinal Aging by Downregulating ATF4/Chop/Bcl-2/Bax Signaling Pathway: Based on Network Pharmacology and Animal Experiment. Front Pharmacol 2020; 11:1064. [PMID: 32754039 PMCID: PMC7366860 DOI: 10.3389/fphar.2020.01064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is one of the most well-known drugs used in the treatment of aging. However, the potential mechanisms of resveratrol on intestinal aging have not yet been fully investigated. Herein, we aimed to further explore the pharmacological mechanisms of resveratrol as a therapy for intestinal aging. We performed network construction and enrichment analysis via network pharmacology. Then a further animal experimental validation containing 20 female C57BL/6J (wild type, WT) and 16 female ATF4+/- (knock down, KD) naturally aging mice and oral supplementary resveratrol (44 mg/kg/day) for 30 days were conducted. The expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), linear alkylethoxylate (AE), and malondialdehyde (MDA) were measured by ELISA, the observation of pathological changes and apoptosis in intestinal tissue were performed by HE, PAS, and TUNEL staining, the ATF4/Chop/Bcl-2/Bax signaling pathway-related proteins and mRNAs expression were measured by western blotting and real-time PCR. The network pharmacology showed 132 targets of resveratrol on aging. The enrichment analysis showed resveratrol antiaging involved mainly included protein heterodimerization activity, apoptosis, etc. Then ATF4/Chop/Bcl-2/Bax signaling pathway in biological process of apoptosis was selected to verify the potential mechanisms. Animal studies showed resveratrol upregulated the relative expression of SOD, GSH-Px, CAT, AE, whereas it downregulated the relative expression of MDA in intestine compared with the control group. There was also higher relative expression of SOD, GSH-Px, CAT, AE, and lower relative expression of MDA in KD mice than that in WT mice. Moreover, there was higher relative expression of SOD, GSH-Px, CAT, AE, and lower relative expression of MDA in KD mice than that in WT mice after resveratrol treatment. Decreased ATF4, Chop, Bax but increased Bcl-2 proteins and mRNAs expression were determined after resveratrol treatment compared with the control group; lower ATF4, Chop, Bax but higher Bcl-2 proteins and mRNAs expression were found in KD mice than that in WT mice. Additionally, lower relative proteins and mRNAs expression of ATF4, Chop, Bax and higher relative expression of Bcl-2 in KD mice than that in WT mice after resveratrol treatment. These findings demonstrated that resveratrol substantially inhibited intestinal aging via downregulating ATF4/Chop/Bcl-2/Bax signaling pathway.
Collapse
Affiliation(s)
- Tian-Hao Liu
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Wan-Qing Tu
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Wen-Cong Tao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiu-Er Liang
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Guo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Activation of AK005401 aggravates acute ischemia/reperfusion mediated hippocampal injury by directly targeting YY1/FGF21. Aging (Albany NY) 2020; 11:5108-5123. [PMID: 31336365 PMCID: PMC6682521 DOI: 10.18632/aging.102106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Ischemia exerts a negative impact on mitochondrial function, which ultimately results in neuronal damage via alterations in gene transcription and protein expression. Long non- coding RNAs (LncRNAs) play pivotal roles in the regulation of target protein expression and gene transcription. In the present study, we observed the effect of an unclassical LncRNA AK005401on ischemia/reperfusion (I/R) ischemia-mediated hippocampal injury and investigated the regulatory role of fibroblast growth factor 21 (FGF21) and Yin Yang 1 (YY1). C57Black/6 mice were subjected to I/R using the bilateral common carotid clip reperfusion method, and AK005401 siRNA oligos were administered via intracerebroventricular injection. HT22 cells were used to establish a model of oxygen-glucose deprivation/reoxygenation (OGD/R). We observed pathological morphology and mitochondrial structure. Neuronal apoptosis was evident. Cell activity, cell respiration, FGF21, YY1, and antioxidant capacity were evaluated. I/R or OGD/R significantly increased the expressions of AK005401and YY1 and decreased FGF21expression, which further attenuated the activation of PI3K/Akt, promoted reactive oxygen species (ROS) generation, and then caused mitochondria dysfunction and cell apoptosis, which were reversed by AK005401 siRNA oligos and were aggravated by overexpression of AK005401 and YY1. We conclude that AK005401/YY1/FGF21 signaling pathway has an important role in I/R-mediated hippocampal injury.
Collapse
|
30
|
Wu H, Sun H, He Z, Chen X, Li Y, Zhao X, Kong W, Kong W. The effect and mechanism of 19S proteasome PSMD11/Rpn6 subunit in D-Galactose induced mimetic aging models. Exp Cell Res 2020; 394:112093. [PMID: 32450067 DOI: 10.1016/j.yexcr.2020.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
Abstract
Regulating proteasome activity is a potent therapeutic aspect of age-related hearing loss, which has been proven to protect neurons from age-related damaging. PSMD11, subunit of the 19S proteasome regulatory particle, is known to mainly up-regulate proteasome activity and prolong aging. However, the mechanism of PSMD11 in age-related hearing loss has not been deeply explored. In the present study, we explore the function and mechanism of PSMD11 protecting neurons in d-Galactose (D-Gal) mimetic aging models. Age-related pathologies were detected by Taq-PCR, ABR, Transmission electron microscopy, toluidine blue and β-galactosidase staining. The relative expressions of the proteins were explored by Western blotting, oxyblot, immunoprecipitation and immunofluorescence. Flow cytometry was used to manifest the oxidative state. We discovered that proteasome activity was impaired with aging, and that ROS and toxic protein accumulated in D-Gal induced aging models. PSMD11 changed with aging, and was associated with the metabolism of proteasome activity in the D-Gal treated models. Moreover, the knockdown or overexpression of PSMD11 was sufficient to change the oxidative state caused by D-Gal. Our results also demonstrated that PSMD11 could bond to AMPKα1/2 in the auditory cortex and PC12 cells, and AMPKα2 but not AMPKα1 was efficient to regulate the function of PSMD11. Deeper insights into the mechanisms of regulating PSMD11 for the anti-aging process are needed, and may offer novel therapeutic methods for central presbycusis.
Collapse
Affiliation(s)
- Han Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xi Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yongqin Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xueyan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wen Kong
- Departments of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
31
|
Chen X, Li D, Sun H, Wang W, Wu H, Kong W, Kong W. Relieving ferroptosis may partially reverse neurodegeneration of the auditory cortex. FEBS J 2020; 287:4747-4766. [PMID: 32112499 DOI: 10.1111/febs.15266] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/31/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xi Chen
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Li
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hai‐Ying Sun
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wen‐Wen Wang
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Han Wu
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wen Kong
- Department of Endocrinology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei‐Jia Kong
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
32
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
33
|
Sun Y, Lu F, Yu X, Wang B, Chen J, Lu F, Peng S, Sun X, Yu M, Chen H, Wang Y, Zhang L, Liu N, Du H, Zhao D, Zhang W. Exogenous H 2S Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db Mice. Aging Dis 2020; 11:269-285. [PMID: 32257541 PMCID: PMC7069468 DOI: 10.14336/ad.2019.0524] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Hydrogen sulfide (H2S), an important gasotransmitter, regulates cardiovascular functions. Mitochondrial damage induced by the overproduction of reactive oxygen species (ROS) results in myocardial injury with a diabetic state. The purpose of this study was to investigate the effects of exogenous H2S on mitophagy formation in diabetic cardiomyopathy. In this study, we found that exogenous H2S could improve cardiac functions, reduce mitochondrial fragments and ROS levels, enhance mitochondrial respiration chain activities and inhibit mitochondrial apoptosis in the hearts of db/db mice. Our results showed that exogenous H2S facilitated parkin translocation into mitochondria and promoted mitophagy formation in the hearts of db/db mice. Our studies further revealed that the ubiquitination level of cytosolic parkin was increased and the expression of USP8, a deubiquitinating enzyme, was decreased in db/db cardiac tissues. S-sulfhydration is a novel posttranslational modification of specific cysteine residues on target proteins by H2S. Our results showed that the S-sulfhydration level of USP8 was obviously decreased in vivo and in vitro under hyperglycemia and hyperlipidemia, however, exogenous H2S could reverse this effect and promote USP8/parkin interaction. Dithiothreitol, a reducing agent that reverses sulfhydration-mediated covalent modification, increased the ubiquitylation level of parkin, abolished the effects of exogenous H2S on USP8 deubiquitylation and suppressed the interaction of USP8 with parkin in neonatal rat cardiomyocytes treated with high glucose, oleate and palmitate. Our findings suggested that H2S promoted mitophagy formation by increasing S-sulfhydration of USP8, which enhanced deubiquitination of parkin through the recruitment of parkin in mitochondria.
Collapse
Affiliation(s)
- Yu Sun
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fanghao Lu
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xiangjing Yu
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Bingzhu Wang
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jian Chen
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fangping Lu
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuo Peng
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xiaojiao Sun
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Miao Yu
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - He Chen
- 2Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Yan Wang
- 3Department of Urologic Surgery, First affiliated hospital of Harbin Medical University, Harbin, China
| | - Linxue Zhang
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Haining Du
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- 4Department of Cardiology, First affiliated hospital of Harbin Medical University, Harbin, China
| | - Weihua Zhang
- 1Department of Pathophysiology, Harbin Medical University, Harbin, China.,5Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|
34
|
Yang WR, Li BB, Hu Y, Zhang L, Wang XZ. Oxidative stress mediates heat-induced changes of tight junction proteins in porcine sertoli cells via inhibiting CaMKKβ-AMPK pathway. Theriogenology 2019; 142:104-113. [PMID: 31586867 DOI: 10.1016/j.theriogenology.2019.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Heat stress causes reversible changes in tight junction proteins in immature Sertoli cells via inhibition of the AMPK signaling pathway; these effects are accompanied by an increase in the early apoptotic rate and decrease in the cell viability of Sertoli cells. Since heat stress is known to also cause oxidative damage, in the present study, we investigated whether the earlier mentioned effects of heat stress were brought about via the induction of oxidative stress in boar Sertoli cells. Immature Sertoli cells obtained from 3-week-old piglets were subjected to heat treatment (43 °C, 30 min), and the percentage of ROS-positive cells, the malonaldehyde (MDA) concentration, and the activity of the antioxidases, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were measured. Next, the Sertoli cells were treated with N-acetyl-l-cysteine (NAC) (1 mmol/L, 2 h), an antioxidant agent, before they were exposed to heat stress. The effects of NAC on ROS accumulation, MDA levels, antioxidase activity, the CaMKKβ-AMPK signaling pathway and expression of tight junction proteins were assessed. The results showed that heat stress reversibly increased the percentage of ROS-positive cells and MDA levels, and decreased the activity of SOD, GSH-Px, and CAT. Pretreatment with NAC abrogated these effects of heat stress. Additionally, NAC reversed the heat stress-induced decrease in the expression of CaMKKβ and dephosphorylation of AMPK. NAC also obviously rescued the heat stress-induced downregulation of tight junction proteins (claudin-11, JAM-A, occludin, and ZO-1) both at the mRNA and protein level. In conclusion, the findings indicate that oxidative damage participates in heat stress-induced downregulation of tight junction proteins in Sertoli cells by inhibiting the CaMKKβ-AMPK axis. Further, NAC reversed the effects of heat stress on tight junction proteins; this means that it has potential as a protective agent that can prevent reproductive dysfunction in boars under conditions of heat stress.
Collapse
Affiliation(s)
- Wei-Rong Yang
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China; Institute of Ecological Research, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637002, PR China
| | - Bin-Bin Li
- Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yu Hu
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China
| | - Long Zhang
- Institute of Ecological Research, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637002, PR China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
35
|
He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019; 415:215-229. [DOI: 10.1016/j.neuroscience.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
36
|
Wang S, Yang FJ, Shang LC, Zhang YH, Zhou Y, Shi XL. Puerarin protects against high-fat high-sucrose diet-induced non-alcoholic fatty liver disease by modulating PARP-1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother Res 2019; 33:2347-2359. [PMID: 31273855 DOI: 10.1002/ptr.6417] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/27/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
As yet, there was no effective pharmacological therapy approved for non-alcoholic fatty liver disease (NAFLD). Here, we aimed to evaluate the therapeutic potential of puerarin against NAFLD and explored the underlying mechanisms. C57BL/6J mice were fed with a high-fat high-sucrose (HFHS) diet with or without puerarin coadministration intragastrically. The levels of hepatocellular injury, steatosis, fibrosis, and mitochondrial and metabolism alteration were detected. First, puerarin ameliorated histopathologic abnormalities due to HFHS. We observed a marked increase in hepatic lipid content, inflammation, and fibrosis level, which were attenuated by puerarin. Possible mechanisms were related to puerarin-mediated activation of PI3K/AKT pathway and further improvement in fatty acid metabolism. Puerarin restored the NAD+ content and beneficially affected the hepatic mitochondrial function, which attenuated HFHS-induced steatosis and metabolic disturbances. Finally, hepatic PARP-1 was activated due to excessive fat intake. Puerarin attenuated the PARP-1 expression in HFHS-fed mice, and PJ34, the PARP inhibitor, could mimic these protections of puerarin. However, pharmacological inhibition of PI3K disabled the protection of puerarin or PJ34 toward NAD+ refilling and mitochondrial homeostasis. In conclusion, our findings indicated that puerarin could be a promising and practical therapeutic strategy in NAFLD through modulating PARP-1/PI3K/AKT signaling pathway and further facilitating mitochondrial function.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fa-Ji Yang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Long-Cheng Shang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu-Heng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
37
|
Wang S, Kandadi MR, Ren J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: Role of autophagy and mitophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1865-1875. [PMID: 31109453 PMCID: PMC6530587 DOI: 10.1016/j.bbadis.2018.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Increased age often leads to a gradual deterioration in cardiac geometry and contractile function although the precise mechanism remains elusive. Both Akt and AMPK play an essential role in the maintenance of cardiac homeostasis. This study examined the impact of ablation of Akt2 (the main cardiac isoform of Akt) and AMPKα2 on development of cardiac aging and the potential mechanisms involved with a focus on autophagy. Cardiac geometry, contractile, and intracellular Ca2+ properties were evaluated in young (4-month-old) and old (12-month-old) wild-type (WT) and Akt2-AMPK double knockout mice using echocardiography, IonOptix® edge-detection and fura-2 techniques. Levels of autophagy and mitophagy were evaluated using western blot. Our results revealed that increased age (12 months) did not elicit any notable effects on cardiac geometry, contractile function, morphology, ultrastructure, autophagy and mitophagy, although Akt2-AMPK double knockout predisposed aging-related unfavorable changes in geometry (heart weight, LVESD, LVEDD, cross-sectional area and interstitial fibrosis), TEM ultrastructure, and function (fractional shortening, peak shortening, maximal velocity of shortening/relengthening, time-to-90% relengthening, intracellular Ca2+ release and clearance rate). Double knockout of Akt2 and AMPK unmasked age-induced cardiac autophagy loss including decreased Atg5, Atg7, Beclin1, LC3BII-to-LC3BI ratio and increased p62. Double knockout of Akt2 and AMPK also unmasked age-related loss in mitophagy markers PTEN-induced putative kinase 1 (Pink1), Parkin, Bnip3, and FundC1, the mitochondrial biogenesis cofactor PGC-1α, and lysosomal biogenesis factor TFEB. In conclusion, our data indicate that Akt2-AMPK double ablation predisposes cardiac aging possibly related to compromised autophagy and mitophagy. This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China
| | - Machender R Kandadi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Sun X, Zhao D, Lu F, Peng S, Yu M, Liu N, Sun Y, Du H, Wang B, Chen J, Dong S, Lu F, Zhang W. Hydrogen sulfide regulates muscle RING finger-1 protein S-sulfhydration at Cys 44 to prevent cardiac structural damage in diabetic cardiomyopathy. Br J Pharmacol 2019; 177:836-856. [PMID: 30734268 DOI: 10.1111/bph.14601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/04/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S) plays important roles as a gasotransmitter in pathologies. Increased expression of the E3 ubiquitin ligase, muscle RING finger-1 (MuRF1), may be involved in diabetic cardiomyopathy. Here we have investigated whether and how exogenous H2 S alleviates cardiac muscle degradation through modifications of MuRF1 S-sulfhydration in db/db mice. EXPERIMENTAL APPROACH Neonatal rat cardiomyocytes were treated with high glucose (40 mM), oleate (100 μM), palmitate (400 μM), and NaHS (100 μM) for 72 hr. MuRF1 was silenced with siRNA technology and mutation at Cys44 . Endoplasmic reticulum stress markers, MuRF1 expression, and ubiquitination level were measured. db/db mice were injected with NaHS (39 μmol·kg-1 ) for 20 weeks. Echocardiography, cardiac ultrastructure, cystathionine-γ-lyase, cardiac structure proteins expression, and S-sulfhydration production were measured. KEY RESULTS H2 S levels and cystathionine-γ-lyase protein expression in myocardium were decreased in db/db mice. Exogenous H2 S reversed endoplasmic reticulum stress, including impairment of the function of cardiomyocytes and structural damage in db/db mice. Exogenous H2 S could suppress the levels of myosin heavy chain 6 and myosin light chain 2 ubiquitination in cardiac tissues of db/db mice, and MuRF1 was modified by S-sulfhydration, following treatment with exogenous H2 S, to reduce the interaction between MuRF1 and myosin heavy chain 6 and myosin light chain 2. CONCLUSIONS AND IMPLICATIONS Our findings suggest that H2 S regulates MuRF1 S-sulfhydration at Cys44 to prevent myocardial degradation in the cardiac tissues of db/db mice. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Xiaojiao Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuo Peng
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Miao Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Haining Du
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Bingzhu Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jian Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University Ministry of Education, Harbin, China
| |
Collapse
|
39
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018; 42:3371-3385. [PMID: 30272261 PMCID: PMC6202109 DOI: 10.3892/ijmm.2018.3907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022] Open
Abstract
Central presbycusis is the most common sensory disorder in the elderly population, however, the underlying molecular mechanism remains unclear. NF‑E2‑related factor 2 (Nrf2) is a key transcription factor in the cellular response to oxidative stress, however, the role of Nrf2 in central presbycusis remains to be elucidated. The aim of the present study was to investigate the pathogenesis of central presbycusis using a mimetic aging model induced by D‑galactose (D‑gal) in vivo and in vitro. The degeneration of the cell was determined with transmission electron microscopy, terminal deoxynucleotidyl transferase‑mediated deoxyuridine 5'‑triphosphate nick‑end labeling staining, and senescence‑associated β‑galactosidase staining. The expression of protein was detected by western blotting and immunofluorescence. The quantification of the mitochondrial DNA (mtDNA) 4,834‑base pair (bp) deletion and mRNA was detected by TaqMan quantitative polymerase chain reaction (qPCR) and reverse transcription‑qPCR respectively. Cell apoptosis and intracellular ROS in vitro were determined with flow cytometry. The levels of nuclear Nrf2, and the mRNA levels of Nrf2‑regulated antioxidant genes, were downregulated in the auditory cortex of aging rats, which was accompanied by an increase in 8‑hydroxy‑2'‑deoxyguanosine formation, an accumulation of mtDNA 4,834‑bp deletion, and neuron degeneration. In addition, oltipraz, a typical Nrf2 activator, was found to protect cells against D‑gal‑induced mtDNA damage and mitochondrial dysfunction by activating Nrf2 target genes in vitro. It was also observed that activating Nrf2 with oltipraz inhibited cell apoptosis and delayed senescence. Taken together, the data of the present study suggested that the age‑associated decline in Nrf2 signaling activity and the associated mtDNA damage in the auditory cortex may be implicated in the degeneration of the auditory cortex. Therefore, the restoration of Nrf2 signaling activity may represent a potential therapeutic strategy for central presbycusis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cai
- Department of Otolaryngology
| | - Yu Sun
- Department of Otolaryngology
| | | | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | |
Collapse
|
40
|
Shen Y, Ye B, Chen P, Wang Q, Fan C, Shu Y, Xiang M. Cognitive Decline, Dementia, Alzheimer's Disease and Presbycusis: Examination of the Possible Molecular Mechanism. Front Neurosci 2018; 12:394. [PMID: 29937713 PMCID: PMC6002513 DOI: 10.3389/fnins.2018.00394] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
The incidences of presbycusis and dementia are high among geriatric diseases. Presbycusis is the general term applied to age-related hearing loss and can be caused by many risk factors, such as noise exposure, smoking, medication, hypertension, family history, and other factors. Mutation of mitochondrial DNA in hair cells, spiral ganglion cells, and stria vascularis cells of the cochlea is the basic mechanism of presbycusis. Dementia is a clinical syndrome that includes the decline of cognitive and conscious states and is caused by many neurodegenerative diseases, of which Alzheimer’s disease (AD) is the most common. The amyloid cascade hypothesis and tau hypothesis are the two major hypotheses that describe the AD pathogenic mechanism. Recent studies have shown that deposition of Aβ and hyperphosphorylation of the tau protein may cause mitochondrial dysfunction. An increasing number of papers have reported that, on one hand, the auditory system function in AD patients is damaged as their cognitive ability declines and that, on the other hand, hearing loss may be a risk factor for dementia and AD. However, the relationship between presbycusis and AD is still unknown. By reviewing the relevant literature, we found that the SIRT1-PGC1α pathway and LKB1 (or CaMKKβ)-AMPK pathway may play a role in the preservation of cerebral neuron function by taking part in the regulation of mitochondrial function. Then vascular endothelial growth factor signal pathway is activated to promote vascular angiogenesis and maintenance of the blood–brain barrier integrity. Recently, experiments have also shown that their expression levels are altered in both presbycusis and AD mouse models. Therefore, we propose that exploring the specific molecular link between presbycusis and AD may provide new ideas for their prevention and treatment.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otolaryngology & Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yilai Shu
- Department of Otolaryngology & Head and Neck Surgery, EENT Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
41
|
Zhang J, Ye J, Yuan C, Fu Q, Zhang F, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Exogenous H 2 S exerts biphasic effects on porcine mammary epithelial cells proliferation through PI3K/Akt-mTOR signaling pathway. J Cell Physiol 2018; 233:7071-7081. [PMID: 29744857 DOI: 10.1002/jcp.26630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the effects of exogenous H2 S on the proliferation of porcine mammary gland epithelial cells (PMECs) and explore the underlying mechanisms. We found that exposure of PMECs to NaHS, at concentrations ranging from 10 to 200 µM, stimulated cell proliferation. However, high concentration of NaHS (600 µM) inhibited PMECs proliferation. Accordingly, 10 µM NaHS significantly increased the percentage of cells undergoing DNA replication, elevated the mRNA and/or protein expression of Cyclin A2, Cyclin D1/3, Cyclin E2 and PCNA, and decreased p21 mRNA expression. In contrast, 600 µM NaHS elicited the opposite effects to that of 10 µM NaHS. In addition, PI3 K/Akt and mTOR signaling pathways were activated or inhibited in response to 10 or 600 µM NaHS, respectively. Furthermore, the promotion of PMECs proliferation, the change of proliferative genes expression, and the activation of mTOR signaling pathway induced by 10 µM NaHS were effectively blocked by PI3 K inhibitor Wortmannin. Similarly, inhibition of mTOR with Rapamycin totally abolished the 10 µM NaHS-induced stimulation of PMECs proliferation and alteration of proliferative genes expression, with no influence on PI3 K/Akt signaling pathway. Moreover, constitutive activation of Akt pathway via transfection of Akt-CA completely eliminated the inhibition of PMECs proliferation and mTOR signaling pathway, and the change of proliferative genes expression induced by 600 µM NaHS. In conclusion, our findings provided evidence that exogenous H2 S supplied by NaHS exerted biphasic effects on PMECs proliferation, with stimulation at lower doses and suppression at high dose, through the intracellular PI3 K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Jiayi Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
42
|
Clinical and Experimental Evidences of Hydrogen Sulfide Involvement in Lead-Induced Hypertension. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4627391. [PMID: 29789795 PMCID: PMC5896357 DOI: 10.1155/2018/4627391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Lead- (Pb-) induced hypertension has been shown in humans and experimental animals and cardiovascular effects of hydrogen sulfide (H2S) have been reported previously. However, no studies examined involvement of H2S in Pb-induced hypertension. We found increases in diastolic blood pressure and mean blood pressure in Pb-intoxicated humans followed by diminished H2S plasmatic levels. In order to expand our findings, male Wistar rats were divided into four groups: Saline, Pb, NaHS, and Pb + NaHS. Pb-intoxicated animals received intraperitoneally (i.p.) 1st dose of 8 μg/100 g of Pb acetate and subsequent doses of 0.1 μg/100 g for seven days and sodium hydrosulfide- (NaHS-) treated animals received i.p. NaHS injections (50 μmol/kg/twice daily) for seven days. NaHS treatment blunted increases in systolic blood pressure, increased H2S plasmatic levels, and diminished whole-blood lead levels. Treatment with NaHS in Pb-induced hypertension seems to induce a protective role in rat aorta which is dependent on endothelium and seems to promote non-NO-mediated relaxation. Pb-intoxication increased oxidative stress in rats, while treatment with NaHS blunted increases in plasmatic MDA levels and increased antioxidant status of plasma. Therefore, H2S pathway may be involved in Pb-induced hypertension and treatment with NaHS exerts antihypertensive effect, promotes non-NO-mediated relaxation, and decreases oxidative stress in rats with Pb-induced hypertension.
Collapse
|
43
|
Ng LT, Gruber J, Moore PK. Is there a role of H 2S in mediating health span benefits of caloric restriction? Biochem Pharmacol 2018; 149:91-100. [PMID: 29360438 DOI: 10.1016/j.bcp.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR) is a dietary regimen that aims to reduce the intake of total calories while maintaining adequate supply of key nutrients so as to avoid malnutrition. CR is one of only a small number of interventions that show promising outcomes on health span and lifespan across different species. There is growing interest in the development of compounds that might replicate CR-related benefits without actually restricting food intake. Hydrogen sulfide (H2S) is produced inside the bodies of many animals, including humans, by evolutionarily conserved H2S synthesizing enzymes. Endogenous H2S is increasingly recognized as an important gaseous signalling molecule involved in diverse cellular and molecular processes. However, the specific role of H2S in diverse biological processes remains to be elucidated and not all its biological effects are beneficial. Nonetheless, recent evidence suggests that the biological functions of H2S intersect with the network of evolutionarily conserved nutrient sensing and stress response pathways that govern organismal responses to CR. Induction of H2S synthesizing enzymes appears to be a conserved and essential feature of the CR response in evolutionarily distant organisms, including nematodes and mice. Here we review the evidence for a role of H2S in CR and lifespan modulation. H2S releasing drugs, capable of controlled delivery of exogenous H2S, are currently in clinical development. These findings suggest such H2S releasing drugs as a promising novel avenue for the development of CR mimetic compounds.
Collapse
Affiliation(s)
- Li Theng Ng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Yale-NUS College, Science Division, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Yale-NUS College, Science Division, Singapore.
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
44
|
Xiao Y, Ye J, Zhou Y, Huang J, Liu X, Huang B, Zhu L, Wu B, Zhang G, Cai Y. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Arch Biochem Biophys 2018; 640:37-46. [PMID: 29331689 DOI: 10.1016/j.abb.2018.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is a central regulator of multiple metabolic pathways. It has been shown that activation of AMPK could inhibit fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby suppressing cardiac fibrosis. Baicalin, the major component found in skullcap, possesses multiple protective effects on the cardiovascular system. However, little is known about the effect of baicalin on cardiac fibrosis and the molecular mechanism by which baicalin exerts its anti-fibrotic effects has not been investigated. In this study, we revealed that baicalin could inhibit cell proliferation, collagen synthesis, fibronectin (FN) and Connective tissue growth factor (CTGF) protein expression in cardiac fibroblasts induced by angiotensin Ⅱ (Ang Ⅱ). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, baicalin inhibited transforming growth factor-β (TGF-β)/Smads signaling pathway stimulated with Ang Ⅱ through activating AMPK. Subsequently, we also demonstrated that baicalin attenuated Ang Ⅱ-induced Smad3 nuclear translocation, and interaction with transcriptional coactivator p300, but promoted the interaction of p300 and AMPK. Taken together, these results provide the first evidence that the effect of baicalin against cardiac fibrosis may be attributed to its regulation on AMPK/TGF-β/Smads signaling, suggesting the therapeutic potential of baicalin on the prevention of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yichuan Xiao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Ying Zhou
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Junjun Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Xiawen Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Biyun Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Liu Zhu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| | - Genshui Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| |
Collapse
|
45
|
Wang L, Du J, Zhao F, Chen Z, Chang J, Qin F, Wang Z, Wang F, Chen X, Chen N. Trillium tschonoskii maxim saponin mitigates D-galactose-induced brain aging of rats through rescuing dysfunctional autophagy mediated by Rheb-mTOR signal pathway. Biomed Pharmacother 2017; 98:516-522. [PMID: 29287199 DOI: 10.1016/j.biopha.2017.12.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
During the expansion of aging population, the study correlated with brain aging is one of the important research topics. Developing novel and effective strategies for delaying brain aging is highly desired. Brain aging is characteristics of impaired cognitive capacity due to dysfunctional autophagy regulated by Rheb-mTOR signal pathway in hippocampal tissues. In the present study, we have established a rat model with brain aging through subcutaneous injection of D-galactose (D-gal). Upon the intervention of Trillium tschonoskii Maxim (TTM) saponin, one of bioactive components from local natural herbs in China, the learning and memory capacity of D-gal-induced aging rats was evaluated through Morris water maze test, and the regulation of Rheb-mTOR signal pathway and functional status of autophagy in hippocampal tissues of D-gal-induced aging rats was explored by Western blot. TTM saponin revealed an obvious function to improve learning and memory capacity of D-gal-induced aging rats through up-regulating Rheb and down-regulating mTOR, thereby rescuing dysfunctional autophagy to execute anti-aging role. Meanwhile, this study confirmed the function of TTM saponin for preventing and treating brain aging, and provided a reference for the development and utilization of natural products in health promotion and aging-associated disease treatment.
Collapse
Affiliation(s)
- Lingjie Wang
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China
| | - Junlong Du
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China
| | - Fangyu Zhao
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China
| | - Zonghai Chen
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China
| | - Jingru Chang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, 430079, China
| | - Furong Qin
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China
| | - Zili Wang
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China
| | - Fengjie Wang
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China
| | - Xianbing Chen
- College of Medicine, Hubei University for Nationalities, Enshi, 445000, China; Key Laboratory of Biological Resource Prevention and Utilization of Hubei Province, Enshi, 445000, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
46
|
Wang M, Tang W, Zhu YZ. An Update on AMPK in Hydrogen Sulfide Pharmacology. Front Pharmacol 2017; 8:810. [PMID: 29167642 PMCID: PMC5682294 DOI: 10.3389/fphar.2017.00810] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022] Open
Abstract
Hydrogen sulfide (H2S), the third bio-active gasotransmitter, is produced endogenously and tightly involved in the pathogenesis and treatment for various diseases. Adenosine 5′-monophosphate-activated protein kinase (AMPK) plays a paramount role in maintaining cellular energetic balance. Increasing evidences have also suggested AMPK as a novel modulator in multiple pathological conditions. In this paper, we will review the biological principles of H2S and AMPK, and most importantly, the recent discoveries regarding AMPK-mediated pharmacological actions of H2S. Emphasis will be laid on AMPK/H2S interactions in the cardiovascular system, autophagy, diabetic complications, and inflammation. In most cases described in this article, by promoting AMPK activation, H2S exerts cytoprotective effects or therapeutic potentials, though there remain some controversies before we can fully understand the involved mechanisms. Further researches are in need to investigate more closely any relationship between H2S and AMPK, and to put forward the development of H2S donors for clinical application.
Collapse
Affiliation(s)
- Minjun Wang
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Macau, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenbo Tang
- Department of Oncology, School of Medicine, Fudan University, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Macau, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Gao Y, Ma H, Qu G, Su L, Ye Q, Jiang F, Zhao B, Miao J. A hydrogen sulfide probe activates Nrf2, inhibits cancer cell growth and induces cell apoptosis. RSC Adv 2017. [DOI: 10.1039/c7ra06501a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Application of a probe for hydrogen sulfide, HF-NBD.
Collapse
Affiliation(s)
- YuanDi Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - HanLin Ma
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - GuoJing Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Qing Ye
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan
| | - Fan Jiang
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan
| | - BaoXiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| |
Collapse
|