1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Seiva FRF, Agneis MLG, de Almeida MR, Caputo WL, de Souza MC, das Neves KA, Oliveira ÉN, Justulin LA, Chuffa LGDA. In Silico Analysis of Non-Conventional Oxidative Stress-Related Enzymes and Their Potential Relationship with Carcinogenesis. Antioxidants (Basel) 2024; 13:1279. [PMID: 39594421 PMCID: PMC11591236 DOI: 10.3390/antiox13111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Carcinogenesis is driven by complex molecular events, often involving key enzymes that regulate oxidative stress (OS). While classical enzymes such as SOD, catalase, and GPx have been extensively studied, other, non-classical oxidative stress-related enzymes (OSRE) may play critical roles in cancer progression. We aimed to explore the role of OSRE involved in an OS scenario and to assess their potential contribution to carcinogenesis in some of the most prevalent cancer types. Through data mining and bioinformatic analysis of gene and protein expression and mutation data, we identified OSRE with altered expression and mutations across cancer types. Functional pathways involving EGFR, MT-ND, GST, PLCG2, PRDX6, SRC, and JAK2 were investigated. Our findings reveal that enzymes traditionally considered peripheral to OS play significant roles in tumor progression. Those OSRE may contribute to cancer initiation and progression, as well as be involved with cancer hallmarks, such as EMT and invasion, proliferation, and ROS production. In addition, enzymes like SRC and JAK2 were found to have dual roles in both promoting ROS generation and being modulated by OS. OSRE also interact with key oncogenic signaling pathways, including Wnt/β-catenin and JAK2/STAT3, linking them to cancer aggressiveness and therapeutic resistance. Future research should focus on translating these findings into clinical applications, including the development of novel inhibitors or drugs targeting these non-classical enzymes.
Collapse
Affiliation(s)
- Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (M.L.G.A.); (M.R.d.A.); (W.L.C.); (K.A.d.N.); (É.N.O.)
| | - Maria Luisa Gonçalves Agneis
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (M.L.G.A.); (M.R.d.A.); (W.L.C.); (K.A.d.N.); (É.N.O.)
| | - Matheus Ribas de Almeida
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (M.L.G.A.); (M.R.d.A.); (W.L.C.); (K.A.d.N.); (É.N.O.)
| | - Wesley Ladeira Caputo
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (M.L.G.A.); (M.R.d.A.); (W.L.C.); (K.A.d.N.); (É.N.O.)
| | - Milena Cremer de Souza
- Biological Science Center, North of Paraná State University (UENP), Bandeirantes 86360-000, PR, Brazil;
| | - Karoliny Alves das Neves
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (M.L.G.A.); (M.R.d.A.); (W.L.C.); (K.A.d.N.); (É.N.O.)
| | - Érika Novais Oliveira
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (M.L.G.A.); (M.R.d.A.); (W.L.C.); (K.A.d.N.); (É.N.O.)
| | - Luis Antônio Justulin
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (L.A.J.J.); (L.G.d.A.C.)
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Bioscience, Botucatu 18610-034, SP, Brazil; (L.A.J.J.); (L.G.d.A.C.)
| |
Collapse
|
3
|
Ajani TA, Magwebu ZE, Chauke CG, Obikeze K. Advances in Cathepsin S Inhibition: Challenges and Breakthroughs in Drug Development. PATHOPHYSIOLOGY 2024; 31:471-487. [PMID: 39311309 PMCID: PMC11417842 DOI: 10.3390/pathophysiology31030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Cathepsin S (CatS) is a proteolytic enzyme and a member of the cysteine protease family of proteolytic enzymes. Cathepsins S, K, and L are particularly similar in terms of their amino acid sequences and interactions with substrates, and this has made it difficult to develop inhibitors with specificity for either CatS, CatK, or CatL. The involvement of CatS in various disease pathophysiologies (autoimmune disorders, cardiovascular diseases, cancer, etc.) has made it a very important target in drug development. Efforts have been made since the early 1990s to develop a specific CatS inhibitor without any major success. Following many failed efforts to develop an inhibitor for CatS, it was discovered that interactions with the amino acid residues at the S2 and S3 pockets of CatS are critical for the identification of CatS-specific inhibitors. Amino acid residues at these pockets have been the target of recent research focused on developing a non-covalent, reversible, and specific CatS inhibitor. Methods applied in the identification of CatS inhibitors include molecular modeling, in-vitro screening, and in-vivo studies. The molecular modeling process has proven to be very successful in the identification of CatS-specific inhibitors, with R05459072 (Hoffmann-La Roche) and LY3000328 (Eli Lilly Company) which has completed phase 1 clinical trials. CatS inhibitors identified from 2011 to 2023 with promising prospects are discussed in this article.
Collapse
Affiliation(s)
- Temitope A. Ajani
- School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| | - Zandisiwe E. Magwebu
- South African Medical Research Council, Primate Unit and Delft Animal Centre (PUDAC), Cape Town 7100, South Africa; (Z.E.M.); (C.G.C.)
| | - Chesa G. Chauke
- South African Medical Research Council, Primate Unit and Delft Animal Centre (PUDAC), Cape Town 7100, South Africa; (Z.E.M.); (C.G.C.)
| | - Kenechukwu Obikeze
- School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
4
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
6
|
Kim JH, Lee J, Im SS, Kim B, Kim EY, Min HJ, Heo J, Chang EJ, Choi KC, Shin DM, Son J. Glutamine-mediated epigenetic regulation of cFLIP underlies resistance to TRAIL in pancreatic cancer. Exp Mol Med 2024; 56:1013-1026. [PMID: 38684915 PMCID: PMC11058808 DOI: 10.1038/s12276-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.
Collapse
MESH Headings
- Humans
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- CASP8 and FADD-Like Apoptosis Regulating Protein/genetics
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- Epigenesis, Genetic
- Glutamine/metabolism
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Jumonji Domain-Containing Histone Demethylases/genetics
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Apoptosis/drug effects
- Ketoglutaric Acids/metabolism
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Animals
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinyoung Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Se Seul Im
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Boyun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinbeom Heo
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jaekyoung Son
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
7
|
Egbujor MC, Tucci P, Buttari B, Nwobodo DC, Marini P, Saso L. Phenothiazines: Nrf2 activation and antioxidant effects. J Biochem Mol Toxicol 2024; 38:e23661. [PMID: 38369721 DOI: 10.1002/jbt.23661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Phenothiazines (PTZs) are an emerging group of molecules showing effectiveness toward redox signaling and reduction of oxidative injury to cells, via the activation on Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Nrf2). Although several electrophilic and indirect Nrf2 activators have been reported, the risk of "off-target" effect due to the complexity of their molecular mechanisms of action, has aroused research interest toward non-electrophilic and direct modulators of Nrf2 pathway, such as PTZs. This review represents the first overview on the roles of PTZs as non-electrophilic Nrf2 activator and free radical scavengers, as well as on their potential therapeutic effects in oxidative stress-mediated diseases. Here, we provide a collective and comprehensive information on the PTZs ability to scavenge free radicals and activate the Nrf2 signaling pathway, with the aim to broaden the knowledge of their therapeutic potentials and to stimulate innovative research ideas.
Collapse
Affiliation(s)
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - David C Nwobodo
- Department of Microbiology, Renaissance University Ugbawka, Ugbawka, Nigeria
| | - Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill Campus, University of Aberdeen, Aberdeen, UK
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Li Y, Zhu J, Yang Y, Chen Y, Liu L, Tao J, Chen H, Deng Y. Long-Acting Nanohybrid Hydrogel Induces Persistent Immunogenic Chemotherapy for Suppressing Postoperative Tumor Recurrence and Metastasis. Mol Pharm 2023; 20:6345-6357. [PMID: 37942616 DOI: 10.1021/acs.molpharmaceut.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Despite the continuous advancement of surgical resection techniques, postoperative tumor recurrence and metastasis remain a huge challenge. Here, we constructed an injectable curcumin/doxorubicin-loaded nanoparticle (NanoCD) hydrogel, which could effectively inhibit tumor regrowth and metastasis via reshaping the tumor immune microenvironment (TIME) for highly effective postsurgical cancer treatment. NanoCD was prepared by the controlled assembly of curcumin (CUR) and doxorubicin (DOX) via π-π stacking and hydrogen bonding in the presence of human serum albumin. To facilitate prolonged treatment of postsurgical tumors, NanoCD was further incorporated into the temperature-sensitive Poloxamer 407 gel (NanoCD@Gel) for intracavity administration. Mechanistically, DOX induced the generation of intracellular reactive oxygen species (ROS) and CUR reduced the ROS metabolism by inhibiting thioredoxin reductase (TrxR). The synergy of DOX and CUR amplified intracellular ROS levels and thus resulted in enhanced immunogenic cell death (ICD) of tumor cells. Upon being injected into the tumor cavity after resection, the in situ-generated NanoCD@Gel allowed the local release of CUR and DOX in a controlled manner to induce local chemotherapy and persistently activate the antitumor immune response, thereby achieving enhanced immunogenic chemotherapy with reduced systemic toxicity. Our work provides an elegant strategy for persistently stimulating effective antitumor immunity to prevent postsurgical tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Yaoqi Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lishan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Wang X, Li J, Chen R, Li T, Chen M. Active Ingredients from Chinese Medicine for Combination Cancer Therapy. Int J Biol Sci 2023; 19:3499-3525. [PMID: 37497002 PMCID: PMC10367560 DOI: 10.7150/ijbs.77720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/26/2023] [Indexed: 07/28/2023] Open
Abstract
Combination therapy against cancer has gained increasing attention because it can help to target multiple pathways to tackle oncologic progression and improve the limited antitumor effect of single-agent therapy. Chinese medicine has been studied extensively in cancer therapy and proven to be efficacious in many cases due to its wide spectrum of anticancer activities. In this review, we aim to summarize the recent progress of active ingredients from Chinese medicine (AIFCM) in combination with various cancer therapeutic modalities, including chemotherapy, gene therapy, radiotherapy, phototherapy and immunotherapy. In addition to highlighting the potential contribution of AIFCM in combination cancer therapy, we also elucidate the underlying mechanisms behind their synergistic effect and improved anticancer efficacy, thereby encouraging the inclusion of these AIFCM as part of effective armamentarium in fighting intractable cancers. Finally, we present the challenges and future perspectives of AIFCM combination therapy as a feasible and promising strategy for the optimization of cancer treatment and better clinical outcomes.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jing Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Ruie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, 999078, China
| |
Collapse
|
10
|
Ma DJ, Hwang JS, Noh KB, Oh SH, Kim KW, Shin YJ. Role of NADPH Oxidase 4 in Corneal Endothelial Cells Is Mediated by Endoplasmic Reticulum Stress and Autophagy. Antioxidants (Basel) 2023; 12:1228. [PMID: 37371958 DOI: 10.3390/antiox12061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Human corneal-endothelial cells (hCEnCs) are located on the inner layer of the cornea. Injury to CEnCs leads to permanent corneal edema, requiring corneal transplantation. NADPH oxidase 4 (NOX4) has been reported to be implicated in the pathogenesis of CEnCs diseases. Thus, we investigated the role of NOX4 in CEnCs in this study. In an animal study, siRNA for NOX4 (siNOX4) or plasmid for NOX4 (pNOX4) was introduced into the corneal endothelium of rats by electroporation, using a square-wave electroporator (ECM830, Havard apparatus) to decrease or increase the expression of NOX4, respectively, and the rat corneas were cryoinjured through contact with a metal rod of 3 mm diameter frozen in liquid nitrogen for 10 min. The immunofluorescence staining of NOX4 and 8-OHdG showed that the levels of NOX4 and 8-OHdG were decreased in the siNOX4 group compared to the siControl, and increased in the pNOX4 group compared to the pControl at one week after treatment. Without cryoinjury, corneal opacity was more severe, and the density of CEnCs was lower, in pNOX4-treated rats compared to pControl. After cryoinjury, the corneas were more transparent, and the CEnC density was higher, in siNOX4-treated rats. The hCEnCs were cultured and transfected with siNOX4 and pNOX4. The silencing of NOX4 in hCEnCs resulted in a normal cell shape, higher viability, and higher proliferation rate than those transfected with the siControl, while NOX4 overexpression had the opposite effect. NOX4 overexpression increased the number of senescent cells and intracellular oxidative stress levels. NOX4 overexpression increased ATF4 and ATF6 levels, and nuclear translocation of XBP-1, which is the endoplasmic reticulum (ER) stress marker, while the silencing of NOX4 had the opposite effect. Additionally, the mitochondrial membrane potential was hyperpolarized by the silencing of NOX4, and depolarized by NOX4 overexpression. The LC3II levels, a marker of autophagy, were decreased by the silencing of NOX4, and increased by NOX4 overexpression. In conclusion, NOX4 plays a pivotal role in the wound-healing and senescence of hCEnCs, by modulating oxidative stress, ER stress, and autophagy. The regulation of NOX4 may be a potential therapeutic strategy for regulating the homeostasis of CEnCs, and treating corneal-endothelial diseases.
Collapse
Affiliation(s)
- Dae Joong Ma
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Kyoung Wook Kim
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| |
Collapse
|
11
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
12
|
Liu X, Qi M, Li X, Wang J, Wang M. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. J Ovarian Res 2023; 16:47. [PMID: 36859398 PMCID: PMC9976389 DOI: 10.1186/s13048-023-01120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Curcumin, a natural organic component obtained from Curcuma longa's rhizomes, shows abundant anti-tumor, antioxidant and anti-inflammatory pharmacological activities, among others. Notably the anti-tumor activity has aroused widespread attention from scholars worldwide. Numerous studies have reported that curcumin can delay ovarian cancer (OC), increase its sensitivity to chemotherapy, and reduce chemotherapy drugs' side effects. It has been shown considerable anticancer potential by promoting cell apoptosis, suppressing cell cycle progression, inducing autophagy, inhibiting tumor metastasis, and regulating enzyme activity. With an in-depth study of curcumin's anti-OC mechanism, its clinical application will have broader prospects. This review summarizes the latest studies on curcumin's anti-OC activities, and discusses the specific mechanism, hoping to provide references for further research and applications.
Collapse
Affiliation(s)
- Xiaoping Liu
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Mingming Qi
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Xidie Li
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Jingjin Wang
- Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan, China.
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China. .,Department of Geriatric Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
13
|
Kim TW. Nodakenin Induces ROS-Dependent Apoptotic Cell Death and ER Stress in Radioresistant Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12020492. [PMID: 36830050 PMCID: PMC9952086 DOI: 10.3390/antiox12020492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Angelica gigas exerts powerful anti-tumor and anti-cancer effects in various cancer cell types. However, there have been few studies regarding the anti-cancer effect of nodakenin, a bioactive compound of Angelica gigas, in vivo and in vitro on breast cancers. I found that nodakenin, in a concentration-dependent manner, inhibits breast cancer cell viability and decreases the tumor volume in mice. Additionally, nodakenin induces caspase-3-dependent apoptosis in breast cancer cells; however, the combination of Z-VAD-FMK and nodakenin suppresses the caspase-3-dependent apoptotic cell death. Furthermore, nodakenin mediates apoptotic cell death via the PERK-mediated signaling pathway and calcium (Ca2+) release, and nodakenin combined with thapsigargin induces synergistic cell death by inhibiting sarco/endoplasmic reticulum (ER) Ca2+-ATPase. However, knockdown of PERK or CHOP inhibits Ca2+ generation and caspase-dependent apoptosis in nodakenin-treated breast cancer cells. Nodakenin induces ROS and Ca2+ generation, ER stress, and apoptotic cell death; however, the knockdown of Nox4 inhibits ROS generation and ER stress- and caspase-dependent apoptotic cell death. In addition, nodakenin combined with radiation overcomes radioresistance in radioresistant breast cancer cells by suppressing epithelial-mesenchymal transition phenotypes, including the decrease in E-cadherin and the increase in N-cadherin and vimentin. Therefore, these findings indicate that nodakenin may be a novel therapeutic strategy for breast cancers.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, 123 Dongdae-ro, Gyeongju 38066, Gyeongbuk, Republic of Korea
| |
Collapse
|
14
|
Short-Term In Vitro ROS Detection and Oxidative Stress Regulators in Epiretinal Membranes and Vitreous from Idiopathic Vitreoretinal Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7497816. [PMID: 36567907 PMCID: PMC9788888 DOI: 10.1155/2022/7497816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Background A plethora of inflammatory, angiogenic, and tissue remodeling factors has been reported in idiopathic epiretinal membranes (ERMs). Herein we focused on the expression of a few mediators (oxidative, inflammatory, and angiogenic/vascular factors) by means of short-term vitreal cell cultures and biomolecular analysis. Methods Thirty-nine (39) ERMs and vitreal samples were collected at the time of vitreoretinal surgery and biomolecular analyses were performed in clear vitreous, vitreal cell pellets, and ERMs. ROS products and iNOS were investigated in adherent vitreal cells and/or ERMs, and iNOS, VEGF, Ang-2, IFNγ, IL18, and IL22 were quantified in vitreous (ELISA/Ella, IF/WB); transcripts specific for iNOS, p65NFkB, KEAP1, NRF2, and NOX1/NOX4 were detected in ERMs (PCR). Biomolecular changes were analyzed and correlated with disease severity. Results The higher ROS production was observed in vitreal cells at stage 4, and iNOS was found in ERMs and increased in the vitreous as early as at stage 3. Both iNOS and NOX4 were upregulated at all stages, while p65NFkB was increased at stage 3. iNOS and NOX1 were positively and inversely related with p65NFkB. While NOX4 transcripts were always upregulated, NRF2 was upregulated at stage 3 and inverted at stage 4. No significant changes occurred in the release of angiogenic (VEGF, Ang-2) and proinflammatory (IL18, IL22 and IFNγ) mediators between all stages investigated. Conclusions ROS production was strictly associated with iNOS and NOX4 overexpression and increased depending on ERM stadiation. The higher iNOS expression occurred as early as stage 3, with respect to p65NFkB and NRF2. These last mediators might have potential prognostic values in ERMs as representative of an underneath retinal damage.
Collapse
|
15
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
16
|
Ji Z, Fang Z, Dong X, Wang J, Wan X, Yan A. Potential ferroptosis-related diagnostic and prognostic biomarkers in laryngeal cancer. Eur Arch Otorhinolaryngol 2022; 279:5277-5288. [PMID: 35829804 DOI: 10.1007/s00405-022-07433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Laryngeal cancer (LC) is a common malignant tumor of the head and neck. However, the relationship between ferroptosis and LC is still unclear. The aim of this study was to identify potential ferroptosis-related biomarkers for diagnosis and prognosis in LC. METHODS We screened differentially expressed genes (DEGs) related to ferroptosis in LC from the TCGA and FerrDb database. DEGs were identified and enrichment by GO/KEGG, GSEA, GSVA analysis. PPI analysis was performed using String and Cytoscape, then hub genes were extracted. Furthermore, ROC analysis, pan-cancer analysis, gene mutation analysis, immune infiltration correlation analysis and clinical correlation analysis of hub genes were performed. RESULTS A total of 59 DEGs were screened, which were more significantly enriched in biological processes and involved in HIF-1 signaling pathway, serotonergic synapse and ferroptosis. A total of 29 significant gene set pathways of LC data were performed by GSEA analysis. The GSVA analysis obtained 53 significant differential gene set pathways. The top 20 genes were identified by PPI. ROC curves revealed four of the top20 genes had a good performance, which were CA9 (AUC = 0.930), MAPK3 (AUC = 0.915), MUC1 (AUC = 0.945), and NOX4 (AUC = 0.933). Subsequent analysis found that CDKN2A has the highest mutation frequency in the top 20 gene, and IFNG had a significant correlation with age, tumor stage, degree of tumor differentiation and lymphatic clearance surgery. CONCLUSION Our study identified key genes closely related to ferroptosis in LC, which still need more studies to explore the mechanisms involved and may become effective clinical diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Zao Ji
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhiyao Fang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xue Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
| | - Aihui Yan
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
17
|
Lu F, Zhou J, Chen Q, Zhu J, Zheng X, Fang N, Qiao L. PSMA5 contributes to progression of lung adenocarcinoma in association with the JAK/STAT pathway. Carcinogenesis 2022; 43:624-634. [PMID: 35605971 DOI: 10.1093/carcin/bgac046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/29/2022] [Accepted: 05/21/2022] [Indexed: 11/12/2022] Open
Abstract
Proteasome dysregulation is a common feature of cancer and a critical risk for tumorigenesis. However, the characteristics of proteasome components in tumor development and metastasis are poorly understood. PSMA5, an α5 subunit of the 20S core proteasome, is associated with the degradation of intracellular proteins. Increasing evidence indicated it is involved in tumor development, but the underlying mechanism has remained unknown. Here, we show that PSMA5 is up-regulated in lung adenocarcinoma (LUAD) cells and clinical LUAD tissues. Moreover, its up-regulation is positively associated with lymph node metastasis and the poor prognosis of LUAD patients. PSMA5 knockdown inhibited the proliferation, invasion and metastasis of LUAD cells in vitro and in vivo, induced apoptosis of LUAD cells and sensitized LUAD cells to cisplatin. Further investigations revealed that PSMA5 overexpression inhibited cell apoptosis by activating the janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway in LUAD cells. In total, our results demonstrate that PSMA5 may function as a prognostic factor in LUAD. In addition, PSMA5 is a promising therapeutic target for LUAD, as its depletion induces cell apoptosis by inhibiting the JAK/STAT pathway.
Collapse
Affiliation(s)
- Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jing Zhou
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaowei Zheng
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Department of Clinical Laboratory, Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ling Qiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
18
|
Myeloid cell leukemia-1 expression in cancers of the oral cavity: a scoping review. Cancer Cell Int 2022; 22:182. [PMID: 35524332 PMCID: PMC9074253 DOI: 10.1186/s12935-022-02603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background B cell lymphoma-2 (Bcl-2) family members play important roles in cell survival as well as cell death. The role of myeloid cell leukemia-1 (Mcl-1), an important member of the Bcl-2 family, is well established in hematopoietic malignancies. However, the association between Mcl-1 and oral cavity, cancers is not clearly defined. Methods A scoping review was conducted until June 30, 2021, using four major databases, PubMed, Scopus, Web of Science, and Embase. Medical subject headings keywords for Mcl-1, along with its other identifiers, and head and neck cancers (only oral cavity tumors) were used to evaluate the expression, function, molecular association, and therapeutic approach of Mcl-1 in oral cavity cancers and precancers. Findings Mcl-1 expression was associated with the progression of oral cavity cancers. The molecular mechanism and pathways of Mcl-1 in oral cavity cancers established via experimental results have been highlighted in this review. Moreover, the various synthetic and naturally derived therapeutic agents targeting Mcl-1 have been documented. Novelty/Improvement Based on our present review, Mcl-1 appears to be an effective anticancer target that can be used in the therapeutic management of oral cancers.
Collapse
|
19
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
20
|
Chu J, Sun N, Hu W, Chen X, Yi N, Shen Y. Bayesian hierarchical lasso Cox model: A 9-gene prognostic signature for overall survival in gastric cancer in an Asian population. PLoS One 2022; 17:e0266805. [PMID: 35421138 PMCID: PMC9009599 DOI: 10.1371/journal.pone.0266805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Objective
Gastric cancer (GC) is one of the most common tumour diseases worldwide and has poor survival, especially in the Asian population. Exploration based on biomarkers would be efficient for better diagnosis, prediction, and targeted therapy.
Methods
Expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Survival-related genes were identified by gene set enrichment analysis (GSEA) and univariate Cox. Then, we applied a Bayesian hierarchical lasso Cox model for prognostic signature screening. Protein-protein interaction and Spearman analysis were performed. Kaplan–Meier and receiver operating characteristic (ROC) curve analysis were applied to evaluate the prediction performance. Multivariate Cox regression was used to identify prognostic factors, and a prognostic nomogram was constructed for clinical application.
Results
With the Bayesian lasso Cox model, a 9-gene signature included TNFRSF11A, NMNAT1, EIF5A, NOTCH3, TOR2A, E2F8, PSMA5, TPMT, and KIF11 was established to predict overall survival in GC. Protein-protein interaction analysis indicated that E2F8 was likely related to KIF11. Kaplan-Meier analysis showed a significant difference between the high-risk and low-risk groups (P<0.001). Multivariate analysis demonstrated that the 9-gene signature was an independent predictor (HR = 2.609, 95% CI 2.017–3.370), and the C-index of the integrative model reached 0.75. Function enrichment analysis for different risk groups revealed the most significant enrichment pathway/term, including pyrimidine metabolism and respiratory electron transport chain.
Conclusion
Our findings suggested that a novel prognostic model based on a 9-gene signature was developed to predict GC patients in high-risk and improve prediction performance. We hope our model could provide a reference for risk classification and clinical decision-making.
Collapse
Affiliation(s)
- Jiadong Chu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Na Sun
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Wei Hu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Xuanli Chen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Nengjun Yi
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yueping Shen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
- * E-mail:
| |
Collapse
|
21
|
Shirmanova MV, Gavrina AI, Kovaleva TF, Dudenkova VV, Zelenova EE, Shcheslavskiy VI, Mozherov AM, Snopova LB, Lukyanov KA, Zagaynova EV. Insight into redox regulation of apoptosis in cancer cells with multiparametric live-cell microscopy. Sci Rep 2022; 12:4476. [PMID: 35296739 PMCID: PMC8927414 DOI: 10.1038/s41598-022-08509-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells. Two-photon excitation fluorescence lifetime imaging microscopy (FLIM) was applied to monitor simultaneously apoptosis using the genetically encoded sensor of caspase-3, mKate2-DEVD-iRFP, and the autofluorescence of redox cofactors in colorectal cancer cells upon stimulation of apoptosis with staurosporine, cisplatin or hydrogen peroxide. We found that, irrespective of the apoptotic stimulus used, ROS accumulation correlated well with both the elevated pool of mitochondrial, enzyme-bound NADH and caspase-3 activation. Meanwhile, a shift in the contribution of bound NADH could develop independently of the apoptosis, and this was observed in the case of cisplatin. An increase in the proportion of bound NADPH was detected only in staurosporine-treated cells, this likely being associated with a high level of ROS production and their resulting detoxification. The results of the study favor the discovery of new therapeutic strategies based on manipulation of the cellular redox balance, which could help improve the anti-tumor activity of drugs and overcome apoptotic resistance.
Collapse
Affiliation(s)
- Marina V Shirmanova
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia.
| | - Alena I Gavrina
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia
| | - Tatiana F Kovaleva
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia
| | - Varvara V Dudenkova
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia
| | - Ekaterina E Zelenova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky proezd, 3, Moscow, Russia, 125284
| | - Vladislav I Shcheslavskiy
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia.,Becker&Hickl GmbH, Nunsdorfer Ring 7-9, 12277, Berlin, Germany
| | - Artem M Mozherov
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia
| | - Ludmila B Snopova
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia
| | - Konstantin A Lukyanov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Elena V Zagaynova
- Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005, Nizhny Novgorod, Russia.,Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Nizhny Novgorod, Russia, 603950
| |
Collapse
|
22
|
Seo SU, Woo SM, Im SS, Jang Y, Han E, Kim SH, Lee H, Lee HS, Nam JO, Gabrielson E, Min KJ, Kwon TK. Cathepsin D as a potential therapeutic target to enhance anticancer drug-induced apoptosis via RNF183-mediated destabilization of Bcl-xL in cancer cells. Cell Death Dis 2022; 13:115. [PMID: 35121737 PMCID: PMC8816936 DOI: 10.1038/s41419-022-04581-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Cathepsin D (Cat D) is well known for its roles in metastasis, angiogenesis, proliferation, and carcinogenesis in cancer. Despite Cat D being a promising target in cancer cells, effects and underlying mechanism of its inhibition remain unclear. Here, we investigated the plausibility of using Cat D inhibition as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis. Inhibition of Cat D markedly enhanced anticancer drug-induced apoptosis in human carcinoma cell lines and xenograft models. The inhibition destabilized Bcl-xL through upregulation of the expression of RNF183, an E3 ligase of Bcl-xL, via NF-κB activation. Furthermore, Cat D inhibition increased the proteasome activity, which is another important factor in the degradation of proteins. Cat D inhibition resulted in p62-dependent activation of Nrf2, which increased the expression of proteasome subunits (PSMA5 and PSMB5), and thereby, the proteasome activity. Overall, Cat D inhibition sensitized cancer cells to anticancer drugs through the destabilization of Bcl-xL. Furthermore, human renal clear carcinoma (RCC) tissues revealed a positive correlation between Cat D and Bcl-xL expression, whereas RNF183 and Bcl-xL expression indicated inverse correlation. Our results suggest that inhibition of Cat D is promising as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis in cancer cells.
Collapse
|
23
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
24
|
Fu X, He Y, Li M, Huang Z, Najafi M. Targeting of the tumor microenvironment by curcumin. Biofactors 2021; 47:914-932. [PMID: 34375483 DOI: 10.1002/biof.1776] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is made up of several cells and molecules that affect the survival of cancer cells. Indeed, certain (immunosuppressive) cells which promote tumors can promote the growth of tumors by stimulating the proliferation of cancer cells and promoting angiogenesis. During tumor growth, antitumoral immunity includes natural killer cells and CD8+ T cells cannot overcome immunosuppressive responses and cancer cell proliferation. In order to achieve the appropriate therapeutic response, we must kill cancer cells and suppress the release of immunosuppressive molecules. The balance between anti-tumor immunity and immunosuppressive cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts, tumor-associated macrophages, and myeloid-derived suppressor cells plays a key role in the suppression or promotion of cancer cells. Curcumin is a plant-derived agent that has shown interesting properties for cancer therapy. It has shown that not only directly inhibit the growth of cancer cells, but can also modulate the growth and activity of immunosuppressant and tumor-promoting cells. In this review, we explain how curcumin modulates interactions within TME in favor of tumor treatment. The potential modulating effects of curcumin on the responses of cancer cells to treatment modalities such as immunotherapy will also be discussed.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Yingni He
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Mu Li
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Qi L, Jiang J, Zhang J, Zhang L, Wang T. Maternal curcumin supplementation ameliorates placental function and fetal growth in mice with intrauterine growth retardation†. Biol Reprod 2021; 102:1090-1101. [PMID: 31930336 DOI: 10.1093/biolre/ioaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Intrauterine growth retardation (IUGR) is a serious reproductive problem in humans. The objective of this study was to investigate the effects of daily maternal curcumin supplementation during pregnancy on placental function and fetal growth in a mouse model of IUGR fed the low-protein (LP) diet. Pregnant mice were divided into four groups: (1) normal protein (19% protein) diet (NP); (2) LP (8% protein) diet; (3) LP diet + 100 mg/kg curcumin (LPL); (4) LP diet +400 mg/kg curcumin (LPH). The results showed that the LP group decreased fetal weight, placental weight, placental efficiency, serum progesterone level, placental glutathione peroxidase activity activity, blood sinusoids area, and antioxidant gene expression of placenta. In addition, in comparison with the NP group, LP diet increased serum corticosterone level, placental malondialdehyde content, and apoptotic index. Daily curcumin administration decreased the placental apoptosis, while it increased placental efficiency, placental redox balance, blood sinusoids area, and antioxidant-related protein expression in fetal liver. The antioxidant gene expression of placenta and fetal liver was normalized to the NP level after curcumin administration. In conclusion, daily curcumin supplementation could improve maternal placental function and fetal growth in mice with IUGR.
Collapse
Affiliation(s)
- Lina Qi
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jingle Jiang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jingfei Zhang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lili Zhang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tian Wang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Amoushahi M, Lykke-Hartmann K. Distinct Signaling Pathways Distinguish in vivo From in vitro Growth in Murine Ovarian Follicle Activation and Maturation. Front Cell Dev Biol 2021; 9:708076. [PMID: 34368158 PMCID: PMC8346253 DOI: 10.3389/fcell.2021.708076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.
Collapse
Affiliation(s)
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
27
|
Qiu N, Du X, Ji J, Zhai G. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Dev Ind Pharm 2021; 47:839-856. [PMID: 34033496 DOI: 10.1080/03639045.2021.1934869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite a potential drug with multiple pharmacological activities, curcumin has disadvantages of the poor water solubility, rapid metabolism, low bioavailability, which considerably limit its clinical application. Currently, polymeric micelles (PMs) have gained widespread concern due to their advantageous physical and chemical properties, easy preparation, and biocompatibility. They can be used to improve drug solubility, prolong blood circulation time, and allow passive targeted drug delivery to tumor through enhanced penetration and retention effect. Moreover, studies focused on tumor microenvironment offer alternatives to design stimulus-responsive smart PMs based on low pH, high levels of glutathione, altered enzyme expression, increased reactive oxygen species production, and hypoxia. There are various external stimuli, such as light, ultrasound, and temperature. These endogenous/exogenous stimuli can be used for the research of intelligent micelles. Intelligent PMs can effectively load curcumin with improved solubility, and intelligently respond to release the drug at a controlled rate at targeted sites such as tumors to avoid early release, which markedly improves the bioavailability of curcumin. The present review is aimed to discuss and summarize recent developments in research of curcumin-loaded intelligent PMs based on endogenous and exogenous stimuli, and facilitates the development of novel delivery systems for future research.
Collapse
Affiliation(s)
- Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| |
Collapse
|
28
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
29
|
Piktel E, Ościłowska I, Suprewicz Ł, Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Wollny T, Janion M, Parlinska-Wojtan M, Bucki R. ROS-Mediated Apoptosis and Autophagy in Ovarian Cancer Cells Treated with Peanut-Shaped Gold Nanoparticles. Int J Nanomedicine 2021; 16:1993-2011. [PMID: 33727811 PMCID: PMC7955786 DOI: 10.2147/ijn.s277014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Background Even with considerable improvement in treatment of epithelial ovarian cancer achieved in recent years, an increasing chemotherapy resistance and disease 5-year relapse is recorded for a majority part of patients that encourages the search for better therapeutic options. Gold nanoparticles (Au NPs) due to plethora of unique physiochemical features are thoroughly tested as drug delivery, radiosensitizers, as well as photothermal and photodynamic therapy agents. Importantly, due to highly controlled synthesis, it is possible to obtain nanomaterials with directed size and shape. Methods In this work, we developed novel elongated-type gold nanoparticles in the shape of nanopeanuts (AuP NPs) and investigated their cytotoxic potential against ovarian cancer cells SKOV-3 using colorimetric and fluorimetric methods, Western blot, flow cytometry, and fluorescence microscopy. Results Peanut-shaped gold nanoparticles showed high anti-cancer activity in vitro against SKOV-3 cells at doses of 1–5 ng/mL upon 72 hours treatment. We demonstrate that AuP NPs decrease the viability and proliferation capability of ovarian cancer cells by triggering cell apoptosis and autophagy, as evidenced by flow cytometry and Western blot analyses. The overproduction of reactive oxygen species (ROS) was noted to be a critical mediator of AuP NPs-mediated cell death. Conclusion These data indicate that gold nanopeanuts might be developed as nanotherapeutics against ovarian cancer.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Ilona Ościłowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, PL-31342, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Przemysław Wolak
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland
| | - Tomasz Wollny
- Holy Cross Cancer Center in Kielce, Kielce, 25-734, Poland
| | - Marianna Janion
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland
| | | | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| |
Collapse
|
30
|
Tao W, Yu L, Shu S, Liu Y, Zhuang Z, Xu S, Bao X, Gu Y, Cai F, Song W, Xu Y, Zhu X. miR-204-3p/Nox4 Mediates Memory Deficits in a Mouse Model of Alzheimer's Disease. Mol Ther 2021; 29:396-408. [PMID: 32950103 PMCID: PMC7791017 DOI: 10.1016/j.ymthe.2020.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/25/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly, and the mechanisms of AD are not fully defined. MicroRNAs (miRNAs) have been shown to contribute to memory deficits in AD. In this study, we identified that miR-204-3p was downregulated in the hippocampus and plasma of 6-month-old APPswe/PS1dE9 (APP/PS1) mice. miR-204-3p overexpression attenuated memory and synaptic deficits in APP/PS1 mice. The amyloid levels and oxidative stress were decreased in the hippocampus of APP/PS1 mice after miR-204-3p overexpression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) was a target of miR-204-3p, and Nox4 inhibition by GLX351322 protected neuronal cells against Aβ1-42-induced neurotoxicity. Furthermore, GLX351322 treatment rescued synaptic and memory deficits, and decreased oxidative stress and amyloid levels in the hippocampus of APP/PS1 mice. These results revealed that miR-204-3p attenuated memory deficits and oxidative stress in APP/PS1 mice by targeting Nox4, and miR-204-3p overexpression and/or Nox4 inhibition might be a potential therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Wenyuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Ying Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Zi Zhuang
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Siyi Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
31
|
Woo SM, Min KJ, Kwon TK. Inhibition of Drp1 Sensitizes Cancer Cells to Cisplatin-Induced Apoptosis through Transcriptional Inhibition of c-FLIP Expression. Molecules 2020; 25:molecules25245793. [PMID: 33302576 PMCID: PMC7764428 DOI: 10.3390/molecules25245793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial fragmentation occurs during the apoptosis. Dynamin-related protein 1 (Drp1) acts as an important component in mitochondrial fission machinery and can regulate various biological processes including apoptosis, cell cycle, and proliferation. The present study demonstrates that dysfunction of mitochondrial dynamics plays a pivotal role in cisplatin-induced apoptosis. Inhibiting the mitochondrial fission with the specific inhibitor (Mdivi-1) did not affect apoptotic cell death in low concentrations (<10 μM). Interestingly, mdivi-1 enhanced cisplatin-induced apoptosis in cancer cells, but not in normal cells. Particularly in the presence of mdivi-1, several human cancer cell lines, including renal carcinoma cell line Caki-1, became vulnerable to cisplatin by demonstrating the traits of caspase 3-dependent apoptosis. Combined treatment induced downregulation of c-FLIP expression transcriptionally, and ectopic expression of c-FLIP attenuated combined treatment-induced apoptotic cell death with mdivi-1 plus cisplatin. Collectively, our data provide evidence that mdivi-1 might be a cisplatin sensitizer.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (K.-j.M.)
| | - Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (K.-j.M.)
- New Drug Development Center, Deagu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro, Dong-gu, Daegu 41061, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (K.-j.M.)
- Center for Forensic Pharmaceutical Science, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-258-7358
| |
Collapse
|
32
|
Pharmacological targeting of c-FLIP L and Bcl-2 family members promotes apoptosis in CD95L-resistant cells. Sci Rep 2020; 10:20823. [PMID: 33257694 PMCID: PMC7705755 DOI: 10.1038/s41598-020-76079-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022] Open
Abstract
The development of efficient combinatorial treatments is one of the key tasks in modern anti-cancer therapies. An apoptotic signal can either be induced by activation of death receptors (DR) (extrinsic pathway) or via the mitochondria (intrinsic pathway). Cancer cells are characterized by deregulation of both pathways. Procaspase-8 activation in extrinsic apoptosis is controlled by c-FLIP proteins. We have recently reported the small molecules FLIPinB/FLIPinBγ targeting c-FLIPL in the caspase-8/c-FLIPL heterodimer. These small molecules enhanced caspase-8 activity in the death-inducing signaling complex (DISC), CD95L/TRAIL-induced caspase-3/7 activation and subsequent apoptosis. In this study to increase the pro-apoptotic effects of FLIPinB/FLIPinBγ and enhance its therapeutic potential we investigated costimulatory effects of FLIPinB/FLIPinBγ in combination with the pharmacological inhibitors of the anti-apoptotic Bcl-2 family members such as ABT-263 and S63845. The combination of these inhibitors together with FLIPinB/FLIPinBγ increased CD95L-induced cell viability loss, caspase activation and apoptosis. Taken together, our study suggests new approaches for the development of combinatorial anti-cancer therapies specifically targeting both intrinsic and extrinsic apoptosis pathways.
Collapse
|
33
|
PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance. Anticancer Drugs 2020; 30:e0773. [PMID: 30807553 DOI: 10.1097/cad.0000000000000773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteasome α5 subunit (PSMA5) is related to poor prognosis in various cancers. The first therapeutic proteasome inhibitor, bortezomib, induces apoptosis, suppressing cell growth in many tumor types. However, the effects of PSMA5 and bortezomib in prostate cancer (PCa) are still unknown. In this study, we investigated whether PSMA5 is associated with the tumorigenic progression and the interaction of PSMA5 with bortezomib in PCa. We knocked down PSMA5 with siRNA and studied the changes in cell viability and motility with Cell Counting Kit-8, quantitative PCR, fluorescence-activated cell sorting, scratch, and invasion assays. We also investigated the effect of PSMA5 in PCa cells treated with bortezomib and in those that are resistant to bortezomib. We found that silencing PSMA5 inhibited cell proliferation, induced apoptosis, restricted cell migration and invasion, and demonstrated a coordinated effect with bortezomib. Cells resistant to bortezomib gained sensitivity to bortezomib after PSMA5 was knocked down. Our results show, for the first time, that PSMA5 promotes the tumorigenic process of PCa and is linked to bortezomib resistance.
Collapse
|
34
|
Kaboli PJ, Ling KH. Lapatinib as a Dual Tyrosine Kinase Inhibitor Unexpectedly Activates Akt in MDA-MB-231 Triple-Negative Breast Cancer Cells. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200212125658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
MDA-MB-231 is a Triple-Negative Breast Cancer (TNBC) cell line, which
is resistant to tyrosine kinase inhibitors, such as lapatinib. Lapatinib is well-recognized as an anti-
EGFR and anti-Her2 compound. Here, we report one of the possible explanations for lapatinibresistance
in TNBC cells, the most incurable type of breast cancer.
Methods:
Using western blotting, we have observed that lapatinib-treated cells enhanced activation
of Akt, an oncogenic protein activated at downstream of EGFR signaling.
Results:
Anti-EGFR activity of Lapatinib would be counteracted with sustained activation of Akt.
We found lapatinib-resistance in TNBC can be managed by administering Akt inhibitors. Further,
lapatinib enhanced PI3K/Akt signaling is an alternative pathway to ensure the viability of MDAMB-
231 cells. There might also be unknown targets for lapatinib, which needs further investigation.
Conclusion:
This observation opens up a new discussion on overcoming resistance to tyrosine kinase
inhibitors, a key challenge in treating TNBC.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
35
|
Chong SJF, Marchi S, Petroni G, Kroemer G, Galluzzi L, Pervaiz S. Noncanonical Cell Fate Regulation by Bcl-2 Proteins. Trends Cell Biol 2020; 30:537-555. [PMID: 32307222 DOI: 10.1016/j.tcb.2020.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Bcl-2 proteins are widely known as key controllers of mitochondrial outer membrane permeabilization, arguably the most important step of intrinsic apoptosis. Accumulating evidence indicate that most, if not all, members of the Bcl-2 protein family also mediate a number of apoptosis-unrelated functions. Intriguingly, many of these functions ultimately impinge on cell fate decisions via apoptosis-dependent or -independent mechanisms, delineating a complex network through which Bcl-2 family members regulate cell survival and death. Here, we critically discuss the mechanisms through which Bcl-2 proteins influence cell fate as they regulate autophagy, cellular senescence, inflammation, bioenergetic metabolism, Ca2+ fluxes, and redox homeostasis.
Collapse
Affiliation(s)
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Université de Paris, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Université de Paris, Paris, France; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Shazib Pervaiz
- Université de Paris, Paris, France; Department of Physiology, YLL School of Medicine and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
36
|
Arylquin 1, a potent Par-4 secretagogue, induces lysosomal membrane permeabilization-mediated non-apoptotic cell death in cancer cells. Toxicol Res 2020; 36:167-173. [PMID: 32257929 DOI: 10.1007/s43188-019-00025-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Arylquin 1, a small-molecule prostate-apoptosis-response-4 (Par-4) secretagogue, targets vimentin to induce Par-4 secretion. Secreted Par-4 binds to its receptor, 78-kDa glucose-regulated protein (GRP78), on the cancer cell surface and induces apoptosis. In the present study, we investigated the molecular mechanisms of arylquin 1 in cancer cell death. Arylquin 1 induces morphological changes (cell body shrinkage and cell detachment) and decreases cell viability in various cancer cells. Arylquin 1-induced cell death is not inhibited by apoptosis inhibitors (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitors (necrostatin-1), and paraptosis inhibitors. Furthermore, arylquin 1 significantly induces reactive oxygen species levels, but antioxidants [N-acetyl-l-cysteine and glutathione ethyl ester] do not inhibit arylquin 1-induced cell death. Furthermore, Par-4 knock-down by small interfering RNA confers no effect on cytotoxicity in arylquin 1-treated cells. Interestingly, arylquin 1 induces lysosomal membrane permeabilization (LMP), and cathepsin inhibitors and overexpression of 70-kDa heat shock protein (HSP70) markedly prevent arylquin 1-induced cell death. Therefore, our results suggest that arylquin 1 induces non-apoptotic cell death in cancer cells through the induction of LMP.
Collapse
|
37
|
Kaboli PJ, Chen Y, Xiang S, Xiao Z. Genetic Analysis of Triple‐Negative Breast Cancer Cell Lines and the Therapeutic Role of Akt/Nrf2 Crosstalk in Resistance to EGFR Inhibitors. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
The X-linked trichothiodystrophy-causing gene RNF113A links the spliceosome to cell survival upon DNA damage. Nat Commun 2020; 11:1270. [PMID: 32152280 PMCID: PMC7062854 DOI: 10.1038/s41467-020-15003-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Prolonged cell survival occurs through the expression of specific protein isoforms generated by alternate splicing of mRNA precursors in cancer cells. How alternate splicing regulates tumor development and resistance to targeted therapies in cancer remain poorly understood. Here we show that RNF113A, whose loss-of-function causes the X-linked trichothiodystrophy, is overexpressed in lung cancer and protects from Cisplatin-dependent cell death. RNF113A is a RNA-binding protein which regulates the splicing of multiple candidates involved in cell survival. RNF113A deficiency triggers cell death upon DNA damage through multiple mechanisms, including apoptosis via the destabilization of the prosurvival protein MCL-1, ferroptosis due to enhanced SAT1 expression, and increased production of ROS due to altered Noxa1 expression. RNF113A deficiency circumvents the resistance to Cisplatin and to BCL-2 inhibitors through the destabilization of MCL-1, which thus defines spliceosome inhibitors as a therapeutic approach to treat tumors showing acquired resistance to specific drugs due to MCL-1 stabilization. Alternate splicing of mRNA precursors has been linked to tumor development. Here the authors reveal a role of the E3 ligase RNF113A in spliceosome regulation affecting cell survival upon DNA damage.
Collapse
|
39
|
Honokiol Enhances TRAIL-Mediated Apoptosis through STAMBPL1-Induced Survivin and c-FLIP Degradation. Biomolecules 2019; 9:biom9120838. [PMID: 31817770 PMCID: PMC6995549 DOI: 10.3390/biom9120838] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Honokiol is a natural biphenolic compound extracted from traditional Chinese medicine Magnolia species, which have been known to display various biological effects including anti-cancer, anti-proliferative, anti-angiogenic, and anti-metastatic activities in cancer cells. Here, we found that honokiol sensitizes cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through downregulation of anti-apoptotic proteins survivin and c-FLIP. Ectopic expression of survivin and c-FLIP markedly abolished honokiol and TRAIL-induced apoptosis. Mechanistically, honokiol induced protein degradation of c-FLIP and survivin through STAMBPL1, a deubiquitinase. STAMBPL1 interacted with survivin and c-FLIP, resulted in reduction of ubiquitination. Knockdown of STAMBPL1 reduced survivin and c-FLIP protein levels, while overexpression of STAMBPL1 inhibited honokinol-induced survivin and c-FLIP degradation. Our findings provided that honokiol could overcome TRAIL resistance through survivin and c-FLIP degradation induced by inhibition of STAMBPL1 expression.
Collapse
|
40
|
Chen YY, Yu XY, Chen L, Vaziri ND, Ma SC, Zhao YY. Redox signaling in aging kidney and opportunity for therapeutic intervention through natural products. Free Radic Biol Med 2019; 141:141-149. [PMID: 31199964 DOI: 10.1016/j.freeradbiomed.2019.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Kidney diseases are serious public problems with high morbidity and mortality in the general population and heavily retard renal function with aging regardless of the cause. Although myriad strategies have been assigned to prevent or harness disease progression, unfortunately, thus far, there is a paucity of effective therapies partly due to an insufficient knowledge of underlying pathological mechanisms, indicating deeper studies are urgently needed. Additionally, natural products are increasingly recognized as an alternative source for disease intervention owing to the potent safety and efficacy, which might be exploited for novel drug discovery. In this review, we primarily expatiate the new advances on mediators that might be amenable to targeting aging kidney and kidney diseases, including nicotinamide adenine dinucleotide phosphate oxidase (NOX), transforming growth factor-β (TGF-β), renin-angiotensin system (RAS), nuclear factor-erythroid 2 related factor 2 (Nrf2), peroxisome proliferator-activated γ receptor (PPARγ), advanced glycation endproducts (AGEs) as well as microRNAs and vitagenes. Of note, we conclude by highlighting some natural products which have the potential to facilitate the development of novel treatment for patients with myriad renal diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
41
|
Lacombe J, Brengues M, Mangé A, Bourgier C, Gourgou S, Pèlegrin A, Ozsahin M, Solassol J, Azria D. Quantitative proteomic analysis reveals AK2 as potential biomarker for late normal tissue radiotoxicity. Radiat Oncol 2019; 14:142. [PMID: 31399108 PMCID: PMC6688300 DOI: 10.1186/s13014-019-1351-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Biomarkers for predicting late normal tissue toxicity to radiotherapy are necessary to personalize treatments and to optimize clinical benefit. Many radiogenomic studies have been published on this topic. Conversely, proteomics approaches are not much developed, despite their advantages. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach to analyze differences in protein expression levels in ex-vivo irradiated (8 Gy) T lymphocytes from patients with grade ≥ 2 radiation-induced breast fibrosis (grade ≥ 2 bf+) and patients with grade < 2 bf + after curative intent radiotherapy. Patients were selected from two prospective clinical trials (COHORT and PHRC 2005) and were used as discovery and confirmation cohorts. Results Among the 1979 quantified proteins, 23 fulfilled our stringent biological criteria. Immunoblotting analysis of four of these candidate proteins (adenylate kinase 2, AK2; annexin A1; heat shock cognate 71 kDa protein; and isocitrate dehydrogenase 2) confirmed AK2 overexpression in 8 Gy-irradiated T lymphocytes from patients with grade ≥ 2 bf + compared with patients with grade < 2 bf+. As these candidate proteins are involved in oxidative stress regulation, we also evaluated radiation-induced reactive oxygen species (ROS) production in peripheral blood mononuclear cells from patients with grade ≥ 2 bf + and grade < 2 bf+. Total ROS level, and especially superoxide anion level, increased upon ex-vivo 8 Gy-irradiation in all patients. Analysis of NADPH oxidases (NOXs), a major source of superoxide ion in the cell, showed a significant increase of NOX4 mRNA and protein levels after irradiation in both patient groups. Conversely, only NOX4 mRNA level was significantly different between groups (grade ≥ 2 bf + and grade < 2 bf+). Conclusion These findings identify AK2 as a potential radiosensitivity candidate biomarker. Overall, our proteomic approach highlights the important role of oxidative stress in late radiation-induced toxicity, and paves the way for additional studies on NOXs and superoxide ion metabolism. Electronic supplementary material The online version of this article (10.1186/s13014-019-1351-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérôme Lacombe
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Alain Mangé
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - Jérôme Solassol
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France.,Department of Pathology and Onco-Biology, CHU Montpellier, Montpellier, France
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France. .,Department of Radiation Oncology, ICM, 34298, Montpellier Cedex 5, France.
| |
Collapse
|
42
|
Axl Inhibitor R428 Enhances TRAIL-Mediated Apoptosis Through Downregulation of c-FLIP and Survivin Expression in Renal Carcinoma. Int J Mol Sci 2019; 20:ijms20133253. [PMID: 31269715 PMCID: PMC6651098 DOI: 10.3390/ijms20133253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
R428, a selective small molecule Axl inhibitor, is known to have anti-cancer effects, such as inhibition of invasion and proliferation and induction of cell death in cancer cells. The Axl receptor tyrosine kinase is highly expressed in cancer cells and the level of Axl expression is associated with survival, metastasis, and drug resistance of many cancer cells. However, the effect of Axl inhibition on overcoming anti-cancer drugs resistance is unclear. Therefore, we investigated the capability of Axl inhibition as a therapeutic agent for the induction of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) sensitivity. In this study, R428 markedly sensitized cancer cells to TRAIL-induced apoptotic cell death, but not in normal human skin fibroblast (HSF) and human umbilical vein cells (EA.hy926). Moreover, knockdown of Axl by siRNA also increased TRAIL-induced apoptosis. R428 decreased c-FLIP proteins levels via induction of miR-708 expression and survivin protein levels at the post-translational level, and we found that knockdown of Axl also decreased both c-FLIP and survivin protein expression. Overexpression of c-FLIP and survivin markedly inhibited R428 plus TRAIL-induced apoptosis. Furthermore, R428 sensitized cancer cells to multiple anti-cancer drugs-mediated cell death. Our results provide that inhibition of Axl could improve sensitivity to TRAIL through downregulation of c-FLIP and survivin expression in renal carcinoma cells. Taken together, Axl may be a tempting target to overcome TRAIL resistance.
Collapse
|
43
|
Poursina Z, Mohammadi A, Yazdi SZ, Humpson I, Vakili V, Boostani R, Rafatpanah H. Curcumin increased the expression of c-FLIP in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. J Cell Biochem 2019; 120:15740-15745. [PMID: 31074052 DOI: 10.1002/jcb.28843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) disease is a chronic neuroinflammatory disease, which is associated with HTLV-1 infection. There is no effective and satisfactory treatment of HAM/TSP. It has been shown that curcumin exhibits modulatory effects on apoptosis and cytotoxicity-related molecules in HAM/TSP patients. In the present study, we examined the effect of curcumin on the gene expression of caspase-8, caspase-10, and anti-apoptotic protein c-FLIP, in HAM/TSP patients. Furthermore, we compared the expression of these molecules between HAM/TSP and asymptomatic carriers. Real-time PCR was performed to examine the mRNA expression of caspase-8, caspase-10, and c-FLIP in studied groups. The mRNA expression of caspase-8 and caspase-10 was similar before and after curcumin treatment in HAM/TSP patients (P > 0.05). The mRNA expression of c-FLIPL and c-FLIPs was higher after curcumin treatment compared with before treatment and significant differences were observed between the two groups (P = 0.004 and P = 0.044, respectively). The mRNA expression levels of caspase-8, caspase-10, c-FLIPL, and c-FLIPs were not statistically significant between HAM/TSP patients and asymptomatic carriers (P < 0.05). In conclusion, our results showed that curcumin increased the expression of c-FLIP in HAM/TSP patients which might suggest that, this molecule is involved in the apoptosis of HTLV-1-infected cells. Further studies with large sample size could be useful to clarify the role of this supplement in HAM/TSP patients.
Collapse
Affiliation(s)
- Zohreh Poursina
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shadi Zamanian Yazdi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ian Humpson
- Division of Cancer Sciences, Manchester University, Manchester, UK
| | - Veda Vakili
- Community Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Tang C, Zhang W, Cai H, Ye Z, Zhang X, Tan W. Resveratrol improves ex vivo expansion of CB-CD34 + cells via downregulating intracellular reactive oxygen species level. J Cell Biochem 2019; 120:7778-7787. [PMID: 30485505 DOI: 10.1002/jcb.28052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Intracellular reactive oxygen species (ROS) play important roles in the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). In this study, the effects of resveratrol (RES), on the ex vivo expansion of HSPCs were investigated by analyzing CD34+ cells expansion and biological functions, with the objective to optimize ex vivo culture conditions for CD34 + cells. Among the five tested doses (0, 0.1, 1, 10, 20, and 50 μM), 10 μM RES was demonstrated to be the most favorable for ex vivo CD34 + cells expansion. In the primary cultures, 10 μM RES favored higher expansion folds of CD34 + cells, CD34 + CD38 - cells, and colony-forming units (CFUs) ( P < 0.05). It was found that the percentages of primitive HSPCs (CD34 + CD38 - CD45R - CD49f + CD90 + cells) in 10 μM RES cultures were higher than those without RES. Further, in the secondary cultures, expanded CD34 + cells derived from primary cultures with 10 μM RES exhibited significantly higher total cells and CD34 + cells expansion ( P < 0.05). In the semisolid cultures, the frequency of CFU-GM and total CFUs of 10 μM RES group were both higher than those of without RES group, demonstrating that CD34 + cells expanded with 10 μM RES possessed better biological function. Furthermore, the addition of 10 μM RES downregulated the intracellular ROS level via strengthening the scavenging capability of ROS, and meanwhile reducing the percentages of apoptotic cells in cultures. Collectively, RES could stimulate the ex vivo expansion of CD34 + cells, preserved more primitive HSPCs and maintain better biological function by alleviating intracellular ROS level and cell apoptosis in cultures.
Collapse
Affiliation(s)
- Chaochun Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiwei Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyang Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xu Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensong Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
45
|
WP1130 Enhances TRAIL-Induced Apoptosis through USP9X-Dependent miR-708-Mediated Downregulation of c-FLIP. Cancers (Basel) 2019; 11:cancers11030344. [PMID: 30862047 PMCID: PMC6469024 DOI: 10.3390/cancers11030344] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
WP1130, a partially selective deubiquitinases (DUB) inhibitor, inhibits the deubiquitinating activities of USP5, USP9X, USP14, USP37, and UCHL1. In this study, we investigate whether WP1130 exerts sensitizing effect on TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. Combinations of WP1130 and TRAIL significantly induced apoptosis in renal carcinoma, lung carcinoma and hepatocellular carcinoma cells, but not in normal cells (human mesangial cells (MC) and normal mouse kidney cells (TCMK-1)). The downregulation of c-FLIP protein expression was involved in combined treatment-induced apoptosis. WP1130-induced c-FLIP downregulation was regulated by microRNA (miR)-708 upregulation via inhibition of USP9X. Interestingly, knockdown of USP9X markedly induced c-FLIP downregulation, upregulation of miR-708 expression and sensitivity to TRAIL. Furthermore, ectopic expression of USP9X prevented c-FLIP downregulation and apoptosis upon combined treatment. In sum, WP1130 sensitized TRAIL-induced apoptosis through miR-708-mediated downregulation of c-FLIP by inhibition of USP9X.
Collapse
|
46
|
Li XJ, Li WT, Li ZHR, Zhang LP, Gai CC, Zhang WF, Ding DJ. Iron-Chelated Polydopamine Decorated Doxorubicin-Loaded Nanodevices for Reactive Oxygen Species Enhanced Cancer Combination Therapy. Front Pharmacol 2019; 10:75. [PMID: 30787876 PMCID: PMC6372743 DOI: 10.3389/fphar.2019.00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 01/07/2023] Open
Abstract
Combination therapy which enhances efficacy and reduces toxicity, has been increasingly applied as a promising strategy for cancer therapy. Here, a reactive oxygen species (ROS) that enhanced combination chemotherapy nanodevices was fabricated based on the Fe-chelated polydopamine (PDA) nanoparticles (NPs). The structure was characterized by dynamic light scattering-autosizer, transmission electron microscopy, energy dispersive spectroscopy, and Fourier-transform infrared (FT-IR) spectrophotometer. The in vitro drug release profile triggered by low intracellular pH indicated that the system demonstrated controlled therapeutic activity. In vitro cell uptake studies showed that doxorubicin (DOX)-loaded Fe-PDA/ folic acid (FA)- polyethylene glycol (DOX@Fe-PDA/FA-PEG) had a strong uptake capacity and can be rapidly internalized by MCF-7 cells. The in vitro experiments demonstrated that DOX@Fe-PDA/FA-PEG triggered the intracellular ROS overproduction, thereby enhancing its therapeutic effect on breast cancer. In summary, this experiment demonstrated the novel DOX-loaded composite NPs used as a potential targeted nanocarrier for breast cancer treatment, which could be a promising therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Xu-Jing Li
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Wen-Tong Li
- Department of Pathology, Weifang Medical University, Weifang, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China
| | - Zi-Hao-Ran Li
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Li-Ping Zhang
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Cheng-Cheng Gai
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Wei-Fen Zhang
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,College of Pharmacy, Weifang Medical University, Weifang, China
| | - De-Jun Ding
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,College of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
47
|
Maritoclax Enhances TRAIL-Induced Apoptosis via CHOP-Mediated Upregulation of DR5 and miR-708-Mediated Downregulation of cFLIP. Molecules 2018; 23:molecules23113030. [PMID: 30463333 PMCID: PMC6278439 DOI: 10.3390/molecules23113030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023] Open
Abstract
Maritoclax, an active constituent isolated from marine bacteria, has been known to induce Mcl-1 downregulation through proteasomal degradation. In this study, we investigated the sensitizing effect of maritoclax on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. We found that combined treatment with maritoclax and TRAIL markedly induced apoptosis in renal carcinoma (Caki, ACHN and A498), lung cancer (A549) and hepatocellular carcinoma (SK-Hep1) cells. The upregulation of death receptor 5 (DR5) and downregulation of cellular FLICE-inhibitory protein (cFLIP) were involved in maritoclax plus TRAIL-induced apoptosis. Maritoclax-induced DR5 upregulation was regulated by induction of C/EBP homologous protein (CHOP) expression. Interestingly, maritoclax induced cFLIP downregulation through the increased expression of miR-708. Ectopic expression of cFLIP prevented combined maritoclax and TRAIL-induced apoptosis. Taken together, maritoclax sensitized TRAIL-induced apoptosis through CHOP-mediated DR5 upregulation and miR-708-mediated cFLIP downregulation.
Collapse
|
48
|
Seo SU, Min KJ, Woo SM, Seo JH, Kwon TK. HSP70 Acetylation Prevents Combined mTORC1/2 Inhibitor and Curcumin Treatment-Induced Apoptosis. Molecules 2018; 23:molecules23112755. [PMID: 30356017 PMCID: PMC6278488 DOI: 10.3390/molecules23112755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022] Open
Abstract
We previously reported that PP242 (dual inhibitor of mTORC1/2) plus curcumin induced apoptotic cell death through lysosomal membrane permeabilization (LMP)-mediated autophagy. However, the relationship between ER stress and apoptotic cell death by combined PP242 and curcumin treatment remains unknown. In the present study, we found that combined PP242 and curcumin treatment induced cytosolic Ca2+ release and ER stress. Interestingly, pretreatment with the chemical chaperones (TUDCA and 4-PBA) and knockdown of CHOP and ATF4 by siRNA did not abolish combined treatment-induced apoptosis in renal carcinoma cells. These results suggest that combined treatment with mTORC1/2 inhibitor and curcumin induces ER stress which is not essential for apoptotic cell death. Furthermore, overexpression of HSP70 significantly inhibited PP242 plus curcumin-induced LMP and apoptosis, but the protective effect was abolished by K77R mutation of acetylation site of HSP70. Taken together, our results reveal that regulation of HSP70 through K77 acetylation plays role in combined PP242 and curcumin treatment-induced apoptosis.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| |
Collapse
|
49
|
Involvement of Up-Regulation of DR5 Expression and Down-Regulation of c-FLIP in Niclosamide-Mediated TRAIL Sensitization in Human Renal Carcinoma Caki Cells. Molecules 2018; 23:molecules23092264. [PMID: 30189637 PMCID: PMC6225471 DOI: 10.3390/molecules23092264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Niclosamide is used to treat intestinal parasite infections, as being an anthelmintic drug. Recently, several papers suggest the niclosamide inhibits multiple signaling pathways, which are highly activated and mutated in cancer. Here, niclosamide was evaluated for identifying strategies to overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance. Although niclosamide (100–200 nM) alone did not bring about cell death, combinations of niclosamide and TRAIL led to apoptotic cell death in carcinoma cells, but not in normal cells. Niclosamide markedly increased DR5 protein levels, including cell-surface DR5, and decreased c-FLIP protein levels. Down-regulation of DR5 by specific small interfering RNA (siRNA) and ectopic expression of c-FLIP markedly blocked niclosamide plus TRAIL-induced apoptosis. Our findings provide that niclosamide could overcome resistance to TRAIL through up-regulating DR5 on the cell surface and down-regulating c-FLIP in cancer cells. Taken together, niclosamide may be an attractive candidate to overcome TRAIL resistance.
Collapse
|
50
|
Zhang W, Zhang W, Zhang X, Lu Q, Cai H, Tan WS. Hyperoside promotes ex vivo expansion of hematopoietic stem/progenitor cells derived from cord blood by reducing intracellular ROS level. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|