1
|
Ren H, Wang YJ, Wang XY, Li X, Han Z, Zhang G, Gu L, Bai M, Yao GD, Liu Q, Song SJ. Design of ROS-Triggered Sesquiterpene Lactone SC Prodrugs as TrxR1 Covalent Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2025. [PMID: 39869029 DOI: 10.1021/acs.jmedchem.4c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for nonsmall cell lung cancer (NSCLC) treatment due to its overexpression in NSCLC cells. In this work, to address the deficiency that sesquiterpene lactone containing α-methylene-γ-lactone moiety was rapidly metabolized by endogenous nucleophiles, series of novel thioether derivatives were designed and synthesized based on a reactive oxygen species (ROS)-triggered prodrug strategy. Among them, prodrug 5u exhibited potent cytotoxicity against NSCLC cells and better release rates in response to ROS. The active compound 6a released from 5u covalently binds to Cys475 and Sec498 sites on TrxR1, resulting in inhibition on TrxR1 activity, which led to redox homeostasis disorder, and caused apoptosis and ferroptosis. Moreover, prodrug 5u exhibited significant antitumor efficiency in nude mice and NSCLC organoids. Our results deliver ROS-triggered prodrug 5u as a novel TrxR1 inhibitor for the treatment of NSCLC and provide a promising strategy of ROS-activated prodrug for covalent compounds in cancer therapy.
Collapse
Affiliation(s)
- Hui Ren
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiangyun Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zheng Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guxue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liwei Gu
- Institute of Chinese Materia Medica, Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
2
|
Martínez-Mendiola CA, Estrada JA, Zapi-Colín LÁ, Contreras-Chávez GG, Contreras I. Effect of pyridoxine or cobalamin supplementation on apoptosis and cell cycle progression in a human glioblastoma cell line. Int J Neurosci 2024; 134:1320-1331. [PMID: 37750905 DOI: 10.1080/00207454.2023.2263815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/04/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Glioblastoma is the most aggressive type of brain tumor, with current therapies failing to significantly improve patient survival. Vitamins have important effects on cellular processes that are relevant for tumor development and progression. AIM The present study explored the effect of pyridoxine or cobalamin supplementation on the viability and cell cycle progression of human glioblastoma cell line U-87 MG. METHOD Cell cultures were treated with increasing concentrations of pyridoxine or cobalamin for 24-72 h. After supplementation, cell viability and cell cycle progression were assessed by spectrophotometry and flow cytometry. Analysis of Bcl-2 and active caspase 3 expression in supplemented cells was performed by western blot. RESULT The results show that pyridoxine supplementation decreases cell viability in a dose and time dependent manner. Loss of viability in pyridoxin-supplemented cells is probably related to less cell cycle progression, higher active caspase 3 expression and apoptosis. In addition, Bcl-2 expression did not appear to be altered by vitamin supplementation, but active caspase 3 expression was significantly increased in pyridoxine-, but not cobalamin-supplemented cells, furthermore, cobalamin inhibited the pyridoxine cytotoxicity in the cell viability assay when combined. CONCLUSION The results suggest that pyridoxine supplementation promotes apoptosis in human glioblastoma-derived cells and may be useful to enhance the effect of cytotoxic therapies in vivo.
Collapse
Affiliation(s)
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Luis Á Zapi-Colín
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Gerson G Contreras-Chávez
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
3
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
4
|
Long S, Wang Y, Chen Y, Fang T, Yao Y, Fu K. Pan-cancer analysis of cuproptosis regulation patterns and identification of mTOR-target responder in clear cell renal cell carcinoma. Biol Direct 2022; 17:28. [PMID: 36209249 PMCID: PMC9548146 DOI: 10.1186/s13062-022-00340-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mechanism of cuproptosis, a novel copper-induced cell death by regulating tricarboxylic acid cycle (TCA)-related genes, has been reported to regulate oxidative phosphorylation system (OXPHOS) in cancers and can be regarded as potential therapeutic strategies in cancer; however, the characteristics of cuproptosis in pan-cancer have not been elucidated. METHODS The multi-omics data of The Cancer Genome Atlas were used to evaluate the cuproptosis-associated characteristics across 32 tumor types. A cuproptosis enrichment score (CEScore) was established using a single sample gene enrichment analysis (ssGSEA) in pan-cancer. Spearman correlation analysis was used to identify pathway most associated with CEScore. Lasso-Cox regression was used to screen prognostic genes associated with OXPHOS and further construct a cuproptosis-related prognostic model in clear cell renal cell carcinoma (ccRCC). RESULTS We revealed that most cuproptosis-related genes (CRGs) were differentially expressed between tumors and normal tissues, and somatic copy number alterations contributed to their aberrant expression. We established a CEScore index to indicate cuproptosis status which was associated with prognosis in most cancers. The CEScore was negatively correlated with OXPHOS and significantly featured prognosis in ccRCC. The ccRCC patients with high-risk scores show worse survival outcomes and bad clinical benefits of Everolimus (mTOR inhibitor). CONCLUSIONS Our findings indicate the importance of abnormal CRGs expression in cancers. In addition, identified several prognostic CRGs as potential markers for prognostic distinction and drug response in the specific tumor. These results accelerate the understanding of copper-induced death in tumor progression and provide cuproptosis-associated novel therapeutic strategies.
Collapse
Affiliation(s)
- Shichao Long
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Ya Wang
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yuqiao Chen
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Tianshu Fang
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yuanbing Yao
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Differences in the Formation of Reactive Oxygen Species and Their Cytotoxicity between Thiols Combined with Aqua- and Cyanocobalamins. Int J Mol Sci 2022; 23:ijms231911032. [PMID: 36232333 PMCID: PMC9569724 DOI: 10.3390/ijms231911032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Cobalamin is an essential nutrient required for the normal functioning of cells. Its deficiency can lead to various pathological states. Hydroxocobalamin (HOCbl) and cyanocobalamin (CNCbl) are the forms of vitamin B12 that are most commonly used for supplementation. There is substantial evidence indicating that cobalamins can both suppress and promote oxidative stress; however, the mechanisms underlying these effects are poorly understood. Here, it was shown that the oxidation of thiols catalyzed by HOCbl and CNCbl is accompanied by reactive oxygen species (ROS) production and induces, under certain conditions, oxidative stress and cell death. The form of vitamin B12 and the structure of thiol play a decisive role in these processes. It was found that the mechanisms and kinetics of thiol oxidation catalyzed by HOCbl and CNCbl differ substantially. HOCbl increased the rate of oxidation of thiols to a greater extent than CNCbl, but quenched ROS in combination with certain thiols. Oxidation catalyzed by CNCbl was generally slower. Yet, the absence of ROS quenching resulted in their higher accumulation. The aforementioned results might explain a more pronounced cytotoxicity induced by combinations of thiols with CNCbl. On the whole, the data obtained provide a new insight into the redox processes in which cobalamins are involved. Our results might also be helpful in developing new approaches to the treatment of some cobalamin-responsive disorders in which oxidative stress is an important component.
Collapse
|
6
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Lomovskaya Y, Pankratov A, Pankratova N, Buneeva O, Kopylov A, Medvedev A, Akatov V. Disulfiram Oxy-Derivatives Suppress Protein Retrotranslocation across the ER Membrane to the Cytosol and Initiate Paraptosis-like Cell Death. MEMBRANES 2022; 12:845. [PMID: 36135864 PMCID: PMC9506514 DOI: 10.3390/membranes12090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Disulfiram (DSF) and its derivatives were here investigated as antineoplastic agents, and their important feature is the ability to influence the UPS. We have recently shown that hydroxocobalamin catalyzes the aerobic oxidation of diethyldithiocarbamate to form disulfiram and its oxy-derivatives (DSFoxy; i.e., sulfones and sulfoxides), which induce cytoplasm vacuolization and paraptosis-like cancer cell death. We used LC-MS/MS and bioinformatics analysis to determine the key points in these processes. DSFoxy was found to induce an increase in the number of ubiquitinated proteins, including oxidized ones, and a decrease in the monomeric ubiquitin. Enhanced ubiquitination was revealed for proteins involved in the response to exogenous stress, regulation of apoptosis, autophagy, DNA damage/repair, transcription and translation, folding and ubiquitination, retrograde transport, the MAPK cascade, and some other functions. The results obtained indicate that DSF oxy-derivatives enhance the oxidation and ubiquitination of many proteins regulating proteostasis (including E3 ligases and deubiquitinases), which leads to inhibition of protein retrotranslocation across the ER membrane into the cytosol and accumulation of misfolded proteins in the ER followed by ER swelling and initiates paraptosis-like cell death. Our results provide new insight into the role of protein ubiquitination/deubiquitination in regulating protein retrotranslocation across the ER membrane into the cytosol and paraptosis-like cell death.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anton Pankratov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Pankratova
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga Buneeva
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Arthur Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Alexei Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Mishukov A, Lomovskaya Y, Pavlik L, Mikheeva I, Holmuhamedov E, Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim Biophys Acta Gen Subj 2022; 1866:130184. [PMID: 35660414 DOI: 10.1016/j.bbagen.2022.130184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Artem Mishukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Laboratory of Biorheology and Biomechanics, Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russian Federation
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Liubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
8
|
Rieber M. Cancer Pro-oxidant Therapy Through Copper Redox Cycling: Repurposing Disulfiram and Tetrathiomolybdate. Curr Pharm Des 2020; 26:4461-4466. [DOI: 10.2174/1381612826666200628022113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Background:
Copper (Cu) is a transition metal active in Fenton redox cycling from reduced Cu+ and
H2O2, to oxidized Cu2+ and the hydroxyl radical (·OH) highly reactive oxygen species (ROS). At homeostatic Cu
levels, ROS promote cell proliferation, migration, angiogenesis, and wound repair. To limit ROS toxicity, cells
use Cu-dependent chaperone proteins, Cu-binding ceruloplasmin, and Cu-modulated enzymes like superoxide
dismutases (SOD) like SOD1 and SOD3 to scavenge excess superoxide anions which favour Cu+ reduction, and
mitochondrial cytochrome c oxidase, important in aerobic energy production. Because Cu helps drive tumor cell
proliferation by promoting growth factor-independent receptor tyrosine kinase signaling, and Cu-dependent
MEK1 involved in oncogenic BRAF-V600E signaling, further augmenting bioavailable Cu may promote ROS overproduction,
cancer progression and eventually tumor cell death. For these reasons, the following clinically approved
copper chelators are being repurposed as anti-cancer agents: a) ammonium tetrathiomolybdate (TTM)
used to treat Wilson’s disease (copper overload) and Menkes disease (copper deficiency); b) Disulfiram (DSF),
used against alcoholism, since it inhibits Aldehyde Dehydrogenase (ALDH1) enzyme, important in ethanol detoxification,
and a key target against cancer stem cells. Moreover, TTM and DSF are also relevant in cancer clinical
trials, because they increase the uptake of both Cu and Platinum (Pt)-containing anti-cancer drugs, since Pt
and Cu share the same CTR1 copper transporter.
Purpose:
The majority of reports on Cu chelators dealt separately with either TTM, DSF or others. Here, we
compare in parallel, the anti-cancer efficacy of low doses of TTM and DSF, asking whether they can be synergistic
or antagonistic. The relevance of their unequal ROS inducing abilities and their different behavior as ionophores
is also addressed.
Significance:
The potential of Cu chelators as repurposed anti-cancer drugs, should be greater in patients with
higher endogenous Cu levels. Since platinum and Cu share uptake receptors, the synergism by drugs containing
these metals should not be under-estimated. The potential of disulfiram or its metabolically active Cu-containing
form, to inhibit ALDH1-positive tumor cells is therapeutically very important.
Collapse
Affiliation(s)
- Manuel Rieber
- IVIC, Cancer Cell Biology Laboratory, CMBC, Caracas 1020A, Venezuela
| |
Collapse
|
9
|
Zhao YZ, Lin MT, Lan QH, Zhai YY, Xu HL, Xiao J, Kou L, Yao Q. Silk Fibroin-Modified Disulfiram/Zinc Oxide Nanocomposites for pH Triggered Release of Zn 2+ and Synergistic Antitumor Efficacy. Mol Pharm 2020; 17:3857-3869. [PMID: 32833457 DOI: 10.1021/acs.molpharmaceut.0c00604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) is an FDA-approved anti-alcoholic drug that has recently proven to be effective in cancer treatment. However, the short half-life in the bloodstream and the metal ion-dependent antitumor activity significantly limited the further application of DSF in the clinical field. To this end, we constructed a silk fibroin modified disulfiram/zinc oxide nanocomposites (SF/DSF@ZnO) to solubilize and stabilize DSF, and, more importantly, achieve pH triggered Zn2+ release and subsequent synergistic antitumor activity. The prepared SF/DSF@ZnO nanocomposites were spherical and had a high drug loading. Triggered by the lysosomal pH, SF/DSF@ZnO could induce the rapid release of Zn2+ under the acidic conditions and caused nanoparticulate disassembly along with DSF release. In vitro experiments showed that cytotoxicity of DSF could be enhanced by the presence of Zn2+, and further amplified when encapsulated into SF/DSF@ZnO nanocomposites. It was confirmed that the significantly amplified cytotoxicity of SF/DSF@ZnO was resulted from pH-triggered Zn2+ release, inhibited cell migration, and increased ROS production. In vivo study showed that SF/DSF@ZnO nanocomposites significantly increased the tumor accumulation and prolonged the retention time. In vivo antitumor experiments in the xenograft model showed that SF/DSF@ZnO exerted the highest tumor-inhibition rate among all the drug treatments. Therefore, this exquisite study established silk fibroin-modified disulfiram/zinc oxide nanocomposites, SF/DSF@ZnO, where ZnO not only acted as a delivery carrier but also served as a metal ion reservoir to achieve synergistic antitumor efficacy. The established DSF nanoformulation displayed excellent therapeutic potential in future cancer treatment.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng-Ting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
10
|
Xu C, Zhang T, Lu G, Chen K, Tao J, Zhang Y, Teng Z, Yang B. Disulfiram-gold-nanorod integrate for effective tumor targeting and photothermal-chemical synergistic therapy. Biomater Sci 2020; 8:3310-3319. [PMID: 32400782 DOI: 10.1039/d0bm00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we successfully constructed a combination therapeutic nanoplatform with high tumor targeting for cancer treatment by integrating gold nanorods with disulfiram (denoted Au-DSF). The Au-DSF integrates possess a uniform length (70 nm), excellent photothermal conversion ability and a high DSF loading content (23.2%), and the loaded DSFs show glutathione-, acid-, and laser-responsive release properties. The Au-DSF integrates show significantly enhanced cellular uptake efficiency in breast cancer cells due to the ability of DSF to chelate to the intracellular copper (Cu) which is present at high concentrations. Furthermore, the Au-DSF exhibits improved circulation time (mean residence time = 28.4 h) and increased tumor accumulation (12.0%), due to the targeting of DSF to the abundant Cu ions at the tumor site. Moreover, the DSF/Cu complexes potently elevate reactive oxygen species, which effectively induce cancer cell apoptosis. In vivo experiments show that the Au-DSF integrates dramatically decrease tumor size via photothermal therapy and chemotherapy. Hematoxylin-eosin and TUNEL staining show that the Au-DSF integrates induce necrosis and apoptosis in cancer cells. The high therapeutic efficiency of the Au-DSF integrates for breast cancer is further demonstrated by the reduced elasticity seen in ultrasound elastography, and the absence of perfusion of the contrast agent in contrast-enhanced ultrasound imaging in tumors.
Collapse
Affiliation(s)
- Chaoli Xu
- Department of Ultrasound Diagnostic, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vitamin B 12b Enhances the Cytotoxicity of Diethyldithiocarbamate in a Synergistic Manner, Inducing the Paraptosis-Like Death of Human Larynx Carcinoma Cells. Biomolecules 2020; 10:biom10010069. [PMID: 31906414 PMCID: PMC7023477 DOI: 10.3390/biom10010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
We have shown that hydroxycobalamin (vitamin B12b) increases the toxicity of diethyldithiocarbamate (DDC) to tumor cells by catalyzing the formation of disulfiram (DSF) oxi-derivatives. The purpose of this study was to elucidate the mechanism of tumor cell death induced by the combination DDC + B12b. It was found that cell death induced by DDC + B12b differed from apoptosis, autophagy, and necrosis. During the initiation of cell death, numerous vacuoles formed from ER cisterns in the cytoplasm, and cell death was partially suppressed by the inhibitors of protein synthesis and folding, the IP3 receptor inhibitor as well as by thiols. At this time, a short-term rise in the expression of ER-stress markers BiP and PERK with a steady increase in the expression of CHOP were detected. After the vacuolization of the cytoplasm, functional disorders of mitochondria and an increase in the generation of superoxide anion in them occurred. Taken together, the results obtained indicate that DDC and B12b used in combination exert a synergistic toxic effect on tumor cells by causing severe ER stress, extensive ER vacuolization, and inhibition of apoptosis, which ultimately leads to the induction of paraptosis-like cell death.
Collapse
|