1
|
Van Scoyk AN, Antelope O, Franzini A, Ayer DE, Peterson RT, Pomicter AD, Owen SC, Deininger MW. Bioluminescence Assay of Lysine Deacylase Sirtuin Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552871. [PMID: 37645727 PMCID: PMC10461969 DOI: 10.1101/2023.08.10.552871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Lysine acylation can direct protein function, localization, and interactions. Sirtuins deacylate lysine towards maintaining cellular homeostasis, and their aberrant expression contributes to the pathogenesis of multiple pathological conditions, including cancer. Measuring sirtuins' activity is essential to exploring their potential as therapeutic targets, but accurate quantification is challenging. We developed 'SIRTify', a high-sensitivity assay for measuring sirtuin activity in vitro and in vivo. SIRTify is based on a split-version of the NanoLuc® luciferase consisting of a truncated, catalytically inactive N-terminal moiety (LgBiT) that complements with a high-affinity C-terminal peptide (p86) to form active luciferase. Acylation of two lysines within p86 disrupts binding to LgBiT and abates luminescence. Deacylation by sirtuins reestablishes p86 and restores binding, generating a luminescence signal proportional to sirtuin activity. Measurements accurately reflect reported sirtuin specificity for lysine acylations and confirm the effects of sirtuin modulators. SIRTify effectively quantifies lysine deacylation dynamics and may be adaptable to monitoring additional post-translational modifications.
Collapse
Affiliation(s)
| | | | - Anca Franzini
- University of Utah, Department of Oncological Sciences
| | - Donald E Ayer
- University of Utah, Department of Oncological Sciences
| | | | | | - Shawn C Owen
- University of Utah, Department of Molecular Pharmaceutics
- University of Utah, Department of Medicinal Chemistry; Department of Biomedical Engineering
| | - Michael W Deininger
- Blood Research Institute, Versiti
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| |
Collapse
|
2
|
Enkhjargal B, De Leon SSP, Tsukahara Y, Liu H, Huangfu Y, Wang Y, Seabra PM, Yang X, Goodman J, Wan X, Chitalia V, Han J, Seta F. Redox Dysregulation of Vascular Smooth Muscle Sirtuin-1 in Thoracic Aortic Aneurysm in Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e339-e357. [PMID: 37288573 PMCID: PMC10524979 DOI: 10.1161/atvbaha.123.319145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFβ (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Yuko Tsukahara
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hanxiao Liu
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yuhao Huangfu
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yu Wang
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Pedro Maria Seabra
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoqiu Yang
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jena Goodman
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xueping Wan
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Zessin M, Meleshin M, Hilscher S, Schiene-Fischer C, Barinka C, Jung M, Schutkowski M. Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines. Int J Mol Sci 2023; 24:ijms24087416. [PMID: 37108579 PMCID: PMC10138348 DOI: 10.3390/ijms24087416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
4
|
Zhou J, Chen H, Wang Q, Chen S, Wang R, Wang Z, Yang C, Chen A, Zhao J, Zhou Z, Mao Z, Zuo G, Miao D, Jin J. Sirt1 overexpression improves senescence-associated pulmonary fibrosis induced by vitamin D deficiency through downregulating IL-11 transcription. Aging Cell 2022; 21:e13680. [PMID: 35906886 PMCID: PMC9381906 DOI: 10.1111/acel.13680] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
Determining the mechanism of senescence-associated pulmonary fibrosis is crucial for designing more effective treatments for chronic lung diseases. This study aimed to determine the following: whether Sirt1 and serum vitamin D decreased with physiological aging, promoting senescence-associated pulmonary fibrosis by activating TGF-β1/IL-11/MEK/ERK signaling, whether Sirt1 overexpression prevented TGF-β1/IL-11/MEK/ERK signaling-mediated senescence-associated pulmonary fibrosis in vitamin D-deficient (Cyp27b1-/- ) mice, and whether Sirt1 downregulated IL-11 expression transcribed by TGF-β1/Smad2 signaling through deacetylating histone at the IL-11 promoter in pulmonary fibroblasts. Bioinformatics analysis with RNA sequencing data from pulmonary fibroblasts of physiologically aged mice was conducted for correlation analysis. Lungs from young and physiologically aged wild-type (WT) mice were examined for cell senescence, fibrosis markers, and TGF-β1/IL-11/MEK/ERK signaling proteins, and 1,25(OH)2 D3 and IL-11 levels were detected in serum. Nine-week-old WT, Sirt1 mesenchymal transgene (Sirt1Tg ), Cyp27b1-/- , and Sirt1Tg Cyp27b1-/- mice were observed the pulmonary function, aging, and senescence-associated secretory phenotype and TGF-β1/IL-11/MEK/ERK signaling. We found that pulmonary Sirt1 and serum vitamin D decreased with physiological aging, activating TGF-β1/IL-11/MEK/ERK signaling, and promoting senescence-associated pulmonary fibrosis. Sirt1 overexpression improved pulmonary dysfunction, aging, DNA damage, senescence-associated secretory phenotype, and fibrosis through downregulating TGF-β1/IL-11/MEK/ERK signaling in Cyp27b1-/- mice. Sirt1 negatively regulated IL-11 expression through deacetylating H3K9/14ac mainly at the region from -871 to -724 of IL-11 promoter, also the major binding region of Smad2 which regulated IL-11 expression at the transcriptional level, and subsequently inhibiting TGF-β1/IL-11/MEK/ERK signaling in pulmonary fibroblasts. This signaling in aging fibroblasts could be a therapeutic target for preventing senescence-associated pulmonary fibrosis induced by vitamin D deficiency.
Collapse
Affiliation(s)
- Jiawen Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Haiyun Chen
- Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Qiuyi Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Sihan Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyang Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Cuicui Yang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ao Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingyu Zhao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zihao Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiyuan Mao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Guoping Zuo
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,The Laboratory Centre for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Xia DY, Yuan JL, Jiang XC, Qi M, Lai NS, Wu LY, Zhang XS. SIRT1 Promotes M2 Microglia Polarization via Reducing ROS-Mediated NLRP3 Inflammasome Signaling After Subarachnoid Hemorrhage. Front Immunol 2021; 12:770744. [PMID: 34899720 PMCID: PMC8653696 DOI: 10.3389/fimmu.2021.770744] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Mounting evidence has suggested that modulating microglia polarization from pro-inflammatory M1 phenotype to anti-inflammatory M2 state might be a potential therapeutic approach in the treatment of subarachnoid hemorrhage (SAH) injury. Our previous study has indicated that sirtuin 1 (SIRT1) could ameliorate early brain injury (EBI) in SAH by reducing oxidative damage and neuroinflammation. However, the effects of SIRT1 on microglial polarization and the underlying molecular mechanisms after SAH have not been fully illustrated. In the present study, we first observed that EX527, a potent selective SIRT1 inhibitor, enhanced microglial M1 polarization and nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation in microglia after SAH. Administration of SRT1720, an agonist of SIRT1, significantly enhanced SIRT1 expression, improved functional recovery, and ameliorated brain edema and neuronal death after SAH. Moreover, SRT1720 modulated the microglia polarization shift from the M1 phenotype and skewed toward the M2 phenotype. Additionally, SRT1720 significantly decreased acetylation of forkhead box protein O1, inhibited the overproduction of reactive oxygen species (ROS) and suppressed NLRP3 inflammasome signaling. In contrast, EX527 abated the upregulation of SIRT1 and reversed the inhibitory effects of SRT1720 on ROS-NLRP3 inflammasome activation and EBI. Similarly, in vitro, SRT1720 suppressed inflammatory response, oxidative damage, and neuronal degeneration, and improved cell viability in neurons and microglia co-culture system. These effects were associated with the suppression of ROS-NLRP3 inflammasome and stimulation of SIRT1 signaling, which could be abated by EX527. Altogether, these findings indicate that SRT1720, an SIRT1 agonist, can ameliorate EBI after SAH by shifting the microglial phenotype toward M2 via modulation of ROS-mediated NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Jin-Long Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiao-Chun Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Min Qi
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Nian-Sheng Lai
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Zessin M, Meleshin M, Simic Z, Kalbas D, Arbach M, Gebhardt P, Melesina J, Liebscher S, Bordusa F, Sippl W, Barinka C, Schutkowski M. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg Chem 2021; 117:105425. [PMID: 34695733 DOI: 10.1016/j.bioorg.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Zeljko Simic
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Miriam Arbach
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Philip Gebhardt
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
7
|
肖 珊, 马 郁, 李 婧, 张 彦, 何 泓, 方 春, 王 万. [Angiotensin Ⅱ inhibits AMPK/SIRT1 pathway by inducing oxidative stress in RAW264.7 macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:384-390. [PMID: 33849829 PMCID: PMC8075794 DOI: 10.12122/j.issn.1673-4254.2021.03.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanism by which angiotensin Ⅱ-induced oxidative stress response inhibits AMPK/ SIRT1 signaling in RAW264.7 macrophages. OBJECTIVE RAW264.7 cells were treated with 0.5, 1, 3, 10, or 20 μmol/L angiotensin Ⅱ for 24 h, and the changes in the expressions of AMPK, p-AMPK, and SIRT1 proteins were detected using Western blotting. The intracellular ROS release level was measured and the levels of SOD and MDA were detected. The effects of angiotensin Ⅱ type 1 receptor (AT1R) gene silencing on the cell response to angiotensin Ⅱ treatment were examined by detecting the changes in AMPK, p-AMPK and SIRT1 protein levels. The effects of a ROS inhibitor on cellular AMPK and SIRT1 were also examined. OBJECTIVE Angiotensin Ⅱ stimulation at 20 μmol/L significantly inhibited the phosphorylation of AMPK protein and increased cellular ROS release (P < 0.05). Treatment with 0.5-10 μmol/L angiotensin Ⅱ did not cause significant changes in SOD activity or MDA expression, but angiotensin Ⅱ at the dose of 20 μmol/L significantly inhibited SOD activity in the cells (P < 0.05). In the macrophages with AT1R gene silencing, treatment with angiotensin Ⅱ did not obviously inhibit AMPK phosphorylation or down- regulate SIRT1 expression. In cells treated with the ROS inhibitor, angiotensin Ⅱ failed to lower the level of AMPK phosphorylation or the expression of SIRT1. OBJECTIVE Angiotensin Ⅱ induces oxidative stress to cause disturbance of AMPK/ SIRT1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- 珊 肖
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 郁文 马
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 婧 李
- 广 州中医药大学中药学院,广东 广州 511400School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 511400, China
| | - 彦红 张
- 广州市第一人民医院中医科,广东 广州 511400Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, Guangzhou 511400, China
| | - 泓 何
- 广州医科大学第三附属医院妇产科,广东 广 州 511400Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - 春香 方
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 万铭 王
- 长江航运总医院,湖北 武汉 430000General Hospital of the Yangtze River Shipping, Wuhan 430000, China
- 武汉脑科医院,湖北 武汉 430000Wuhan Brain Hospital, Wuhan 430000, China
| |
Collapse
|
8
|
Favero G, Franco C, Stacchiotti A, Rodella LF, Rezzani R. Sirtuin1 Role in the Melatonin Protective Effects Against Obesity-Related Heart Injury. Front Physiol 2020; 11:103. [PMID: 32218740 PMCID: PMC7078333 DOI: 10.3389/fphys.2020.00103] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Obesity is a worldwide epidemic disease that induces important structural and functional changes to the heart and predisposes a patient to devastating cardiac complications. Sirtuin1 (SIRT1) has been found to have roles in regulating cardiac function, but whether it can help in cardioprotection is not clear. The aim of the present study was to determine whether melatonin, by modulating SIRT1 and in turn mitochondria signaling, may alleviate obesity-induced cardiac injuries. We investigated 10 lean control mice and 10 leptin-deficient obese mice (ob/ob) orally supplemented with melatonin for 8 weeks, as well as equal numbers of age-matched lean and ob/ob mice that did not receive melatonin. Hearts were evaluated using multiple parameters, including biometric values, morphology, SIRT1 activity and expression of markers of mitochondria biogenesis, oxidative stress, and inflammation. We observed that ob/ob mice experienced significant heart hypertrophy, infiltration by inflammatory cells, reduced SIRT1 activity, altered mitochondrial signaling and oxidative balance, and overexpression of inflammatory markers. Notably, melatonin supplementation in ob/ob mice reverted these obesogenic heart alterations. Melatonin prevented heart remodeling caused by obesity through SIRT1 activation, which, together with mitochondrial pathways, reduced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, Brescia, Italy
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Stacchiotti A, Grossi I, García-Gómez R, Patel GA, Salvi A, Lavazza A, De Petro G, Monsalve M, Rezzani R. Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy. Cells 2019; 8:cells8091053. [PMID: 31500354 PMCID: PMC6770964 DOI: 10.3390/cells8091053] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Melatonin, an indole produced by pineal and extrapineal tissues, but also taken with a vegetarian diet, has strong anti-oxidant, anti-inflammatory and anti-obesogenic potentials. Non-alcoholic fatty liver disease (NAFLD) is the hepatic side of the metabolic syndrome. NAFLD is a still reversible phase but may evolve into steatohepatitis (NASH), cirrhosis and carcinoma. Currently, an effective therapy for blocking NAFLD staging is lacking. Silent information regulator 1 (SIRT1), a NAD+ dependent histone deacetylase, modulates the energetic metabolism in the liver. Micro-RNA-34a-5p, a direct inhibitor of SIRT1, is an emerging indicator of NAFLD grading. Thus, here we analyzed the effects of oral melatonin against NAFLD and underlying molecular mechanisms, focusing on steatosis, ER stress, mitochondrial shape and autophagy. Male C57BL/6J (WT) and SIRT1 heterozygous (HET) mice were placed either on a high-fat diet (58.4% energy from lard) (HFD) or on a standard maintenance diet (8.4% energy from lipids) for 16 weeks, drinking melatonin (10 mg/kg) or not. Indirect calorimetry, glucose tolerance, steatosis, inflammation, ER stress, mitochondrial changes, autophagy and microRNA-34a-5p expression were estimated. Melatonin improved hepatic metabolism and steatosis, influenced ER stress and mitochondrial shape, and promoted autophagy in WT HFD mice. Conversely, melatonin was ineffective in HET HFD mice, maintaining NASH changes. Indeed, autophagy was inconsistent in HET HFD or starved mice, as indicated by LC3II/LC3I ratio, p62/SQSTM1 and autophagosomes estimation. The beneficial role of melatonin in dietary induced NAFLD/NASH in mice was related to reduced expression of microRNA-34a-5p and sterol regulatory element-binding protein (SREBP1) but only in the presence of full SIRT1 availability.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Raquel García-Gómez
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain.
| | | | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonio Lavazza
- Instituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna (IZSLER), 25124 Brescia, Italy.
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain.
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|