1
|
Zhang JB, Wang F, Tang YT, Pang MZ, Li D, Liu CF. Inhibition of GluN2D-Containing NMDA Receptors Protects Dopaminergic Neurons against 6-OHDA-Induced Neurotoxicity via Activating ERK/NRF2/HO-1 Signaling. ACS Chem Neurosci 2024; 15:572-581. [PMID: 38277219 DOI: 10.1021/acschemneuro.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
Abnormal glutamate signaling is implicated in the heightened vulnerability of dopaminergic neurons in Parkinson's disease (PD). NMDA receptors are ion-gated glutamate receptors with high calcium permeability, and their GluN2D subunits are prominently distributed in the basal ganglia and brainstem nuclei. Previous studies have reported that dopamine depletion led to the dysfunctions of GluN2D-containing NMDA receptors in PD animal models. However, it remains unknown whether selective modulation of GluN2D could protect dopaminergic neurons against neurotoxicity in PD. In this study, we found that allosteric activation of GluN2D-containing NMDA receptors decreased the cell viability of MES23.5 dopaminergic cells and the GluN2D inhibitor, QNZ46, showed antioxidant effects and significantly relieved apoptosis in 6-OHDA-treated cells. Meanwhile, we demonstrated that QNZ46 might act via activation of the ERK/NRF2/HO-1 pathway. We also verified that QNZ46 could rescue abnormal behaviors and attenuate dopaminergic cell loss in a 6-OHDA-lesioned rat model of PD. Although the precise mechanisms underlying the efficacy of QNZ46 in vivo remain elusive, the inhibition of the GluN2D subunit should be a considerable way to treat PD. More GluN2D-selective drugs, which present minimal side effects and broad therapeutic windows, need to be developed for PD treatment in future studies.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| |
Collapse
|
2
|
Luo H, Zhang C, He L, Lin Z, Zhang JC, Qi Q, Chen JX, Yao W. 18β-glycyrrhetinic acid ameliorates MPTP-induced neurotoxicity in mice through activation of microglial anti-inflammatory phenotype. Psychopharmacology (Berl) 2023; 240:1947-1961. [PMID: 37436491 DOI: 10.1007/s00213-023-06415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
RATIONALE 18β-glycyrrhetinic acid (18β-GA) has been reported to have anti-inflammatory and neuroprotective effects. However, the therapeutic effect of 18β-GA in Parkinson's disease (PD) has not been defined. OBJECTIVE The current study aimed to evaluate the potential therapeutic effects of 18β-GA in treating PD by mitigating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. RESULTS The study showed that 18β-GA has anti-inflammatory effects by upregulating TREM2 expression in BV2 cells, which correlates with the presence of NF-E2-related factor-2 (Nrf2). 18β-GA reduced inflammation in BV2 cells treated with 1-methyl-4- phenylpyridinium (MPP+) by enhancing TREM2 expression, which promotes an anti-inflammatory microglial phenotype. Repeated administration of 18β-GA in MPTP-treated mice led to therapeutic effects by enhancing TREM2 expression, resulting in the activation of anti-inflammatory microglia. Moreover, 18β-GA attenuated the decrease in brain-derived neurotrophic factor (BDNF) levels in both MPP+-induced BV2 cells and MPTP-intoxicated mice, indicating the involvement of BDNF in the beneficial effects of 18β-GA. CONCLUSIONS It is probable that activating microglial anti-inflammatory response through TREM2 expression might serve as a novel therapeutic strategy for PD. Additionally, 18β-GA seems to hold potential as a new therapeutic agent for PD.
Collapse
Affiliation(s)
- Hanyue Luo
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- School of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lujuan He
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zefang Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Department of Pharmacology, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Cao N, Liu X, Hou Y, Deng Y, Xin Y, Xin X, Xiang X, Liu X, Yu W. 18-α-glycyrrhetinic acid alleviates oxidative damage in periodontal tissue by modulating the interaction of Cx43 and JNK/NF-κB pathways. Front Pharmacol 2023; 14:1221053. [PMID: 37538174 PMCID: PMC10394238 DOI: 10.3389/fphar.2023.1221053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Objective: Periodontitis is a common chronic inflammatory disease in which oxidative stress is one of the key pathogenic factors. Connexin43 (Cx43) is the most critical and widely distributed connexin isoform. When the organism undergoes a severe and sustained stress response, Cx43-mediated gap junctions (GJs) are believed to underlie the biology of tissue injury exacerbation and amplification. Notably, 18-α-glycyrrhetinic acid (GA) is a classical pharmacological inhibitor of GJs and has antioxidant potential. However, the regulatory role of GA in the redox signaling of periodontal tissues and the potential mechanisms of Cx43 in the pathogenesis of periodontitis remain uncertain. Methods: In this study, we evaluated the effects and mechanisms of GA in alleviating oxidative damage of periodontal tissues and cells by constructing an H2O2-induced oxidative stress model in human periodontal ligament cells (hPDLCs) and a periodontitis model in rats. Results: Cellular experiments showed that GA effectively attenuated H2O2-induced oxidative damage in hPDLCs by inhibiting the expression and function of Cx43. In addition, pretreatment of hPDLCs with either GA or SP600125 (a JNK inhibitor) inhibited the Cx43/JNK/NF-κB pathway, restored cell viability, and reduced apoptosis. Animal experiment results showed that GA intervention reduced alveolar bone resorption and periodontal tissue destruction, inhibited osteoclast differentiation, improved mitochondrial structural abnormalities and dysfunction in periodontal tissue, and decreased oxidative stress levels and apoptosis in rats with periodontitis. Conclusion: Overall, our findings suggest that the Cx43/JNK/NF-κB pathway may play a vital role to promote periodontitis progression, while GA reduces oxidative stress and apoptosis by inhibiting the interaction of Cx43 and JNK/NF-κB pathways, thus alleviating oxidative damage in the periodontal tissues.
Collapse
Affiliation(s)
- Niuben Cao
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaomeng Liu
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yubo Hou
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Deng
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Xin
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xirui Xin
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchen Xiang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Geriatric Stomatology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
4
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
5
|
Bisphenol-A (BPA) Impairs Hippocampal Neurogenesis via Inhibiting Regulation of the Ubiquitin Proteasomal System. Mol Neurobiol 2023; 60:3277-3298. [PMID: 36828952 DOI: 10.1007/s12035-023-03249-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls protein homeostasis to maintain cell functionality and survival. Neurogenesis relies on proteasome function, and a defective proteasome system during brain development leads to neurological disorders. An endocrine-disrupting xenoestrogen bisphenol-A (BPA) used in plastic products adversely affects human health and causes neurotoxicity. Previously, we reported that BPA reduces neural stem cells (NSCs) proliferation and differentiation, impairs myelination and mitochondrial protein import, and causes excessive mitochondrial fragmentation leading to cognitive impairments in rats. Herein, we examined the effect(s) of prenatal BPA exposure on UPS functions during NSCs proliferation and differentiation in the hippocampus. Rats were orally treated with 40 µg/kg body weight BPA during day 6 gestation to day 21 postnatal. BPA significantly reduced proteasome activity in a cellular extract of NSCs. Immunocytochemistry exhibited a significant reduction of 20S proteasome/Nestin+ and PSMB5/Nestin+ cells in NSCs culture. BPA decreased 20S/Tuj1+ and PSMB5/Tuj1+ cells, indicating disrupted UPS during neuronal differentiation. BPA reduced the expression of UPS genes, 20S, and PSMB5 protein levels and proteasome activity in the hippocampus. It significantly reduced overall protein synthesis by the loss of Nissl substances in the hippocampus. Pharmacological activation of UPS by a bioactive triterpenoid 18α-glycyrrhetinic acid (18α GA) caused increased proteasome activities, significantly increased neurosphere size and number, and enhanced NSCs proliferation in BPA exposed culture, while proteasome inhibition by MG132 further aggravates BPA-mediated effects. In silico studies demonstrated that BPA strongly binds to catalytic sites of UPS genes (PSMB5, TRIM11, Parkin, and PSMD4) which may result in UPS inactivation. These results suggest that BPA significantly reduces NSCs proliferation by impairing UPS, and UPS activation by 18α GA could suppress BPA-mediated neurotoxicity and exerts neuroprotection.
Collapse
|
6
|
Lin L, He YL, Liu Y, Hong P, Zhou C, Sun S, Qian ZJ. Comparative in silico and in vitro study of the stability and biological activity of an octapeptide from microalgae Isochrysis zhanjiangensis and its truncated short peptide. Food Funct 2023; 14:3659-3672. [PMID: 36967639 DOI: 10.1039/d3fo00129f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
In this study, the structural characteristics and active sites of the octapeptide (IIAVEAGC), the pentapeptide (IIAVE) and tripeptide (AGC) were studied in silica and in vitro.
Collapse
Affiliation(s)
- Liyuan Lin
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Yuan-Lin He
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Pengzhi Hong
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chunxia Zhou
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Shengli Sun
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| |
Collapse
|
7
|
Zhang M, Zhang J, Wang C, Yan JK, Yi J, Ning J, Huo XK, Yu ZL, Zhang BJ, Sun CP, Ma XC. Biotransformation of 18β-Glycyrrhetinic Acid by Human Intestinal Fungus Aspergillus niger RG13B1 and the Potential Anti-Inflammatory Mechanism of Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15104-15115. [PMID: 36414003 DOI: 10.1021/acs.jafc.2c05455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
18β-Glycyrrhetinic acid (GA) is a triterpenoid possessing an anti-inflammatory activity in vivo, while the low bioavailability limits its application due to its intestinal accumulation. In order to investigate the metabolism of GA in intestinal microbes, it was incubated with human intestinal fungus Aspergillus niger RG13B1, finally leading to the isolation and identification of three new metabolites (1-3) and three known metabolites (4-6) based on 1D and 2D NMR and high-resolution electrospray ionization mass spectroscopy spectra. Metabolite 6 could target myeloid differentiation protein 2 (MD2) to suppress the activation of nuclear factor-kappa B (NF-κB) signaling pathway via inhibiting the nuclear translocation of p65 to downregulate its target proteins and genes in lipopolysaccharide (LPS)-mediated RAW264.7 cells. Molecular dynamics suggested that metabolite 6 interacted with MD2 through the hydrogen bond of amino acid residue Arg90. These findings demonstrated that metabolite 6 could serve as a potential candidate to develop the new inhibitors of MD2.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Juan Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jian-Kun Yan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jing Yi
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Ning
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Zhen-Long Yu
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Bao-Jing Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Cheng-Peng Sun
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
8
|
Cheng A, Lei S, Zhu J, Lu J, Paine MF, Xie W, Ma X. Chemical basis of pregnane X receptor activators in the herbal supplement Gancao (licorice)☆. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Cheng Y, Wu X, Nie X, Wu Y, Zhang C, Lee SMY, Lv K, Leung GPH, Fu C, Zhang J, Li J. Natural compound glycyrrhetinic acid protects against doxorubicin-induced cardiotoxicity by activating the Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154407. [PMID: 36070662 DOI: 10.1016/j.phymed.2022.154407] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As one of the most classic antineoplastic agents, doxorubicin (Dox) is extensively used to treat a wide range of cancers. Nevertheless, the clinical outcomes of Dox-based therapies are severely hampered due to the significant cardiotoxicity. Glycyrrhetinic acid (GA) is the major biologically active compound of licorice, one of the most well-known food additives and medicinal plants in the world. We previously demonstrated that GA has the potential capability to protect mice from Dox-induced cardiac injuries. However, the underlying cardioprotective mechanism remains unexplored. PURPOSE To investigate the cardioprotective benefits of GA against Dox-induced cardiotoxicity and to elucidate its mechanisms of action. STUDY DESIGN/METHODS H9c2 cardiomyoblasts and AC16 cardiomyocytes were used as the cell models in vitro. A transgenic zebrafish model and a 4T1 mouse breast cancer model were applied to explore the cardioprotective effects of GA in vivo. RESULTS In vitro, GA inhibited Dox-induced cell death and LDH release in H9c2 and AC16 cells without affecting the anti-cancer effects of Dox. GA significantly alleviated Dox-induced ROS generation, mitochondrial dysfunction, and apoptosis in H9c2 cells. Moreover, GA abolished the expression of pro-apoptotic proteins and restored Nrf2/HO-1 signaling pathway in Dox-treated H9c2 cells. On the contrary, Nrf2 knockdown strongly abrogated the cardioprotective effects of GA on Dox-treated H9c2 cells. In vivo, GA attenuated Dox-induced cardiac dysfunction by restoring stroke volume, cardiac output, and fractional shortening in the transgenic zebrafish embryos. In a 4T1 mouse breast cancer model, GA dramatically prevented body weight loss, attenuated cardiac dysfunction, and prolonged survival rate in Dox-treated mice, without compromising Dox's anti-tumor efficacy. Consistently, GA attenuated oxidative injury, reduced cardiomyocytes apoptosis, and restored the expressions of Nrf2 and HO-1 in Dox-treated mouse hearts. CONCLUSION GA protects against Dox-induced cardiotoxicity by suppressing oxidative stress, mitochondrial dysfunction, and apoptosis via upregulating Nrf2/HO-1 signaling pathway. These findings could provide solid evidence to support the further development of GA as a feasible and safe adjuvant to Dox chemotherapy for overcoming Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
10
|
Novel 18β-glycyrrhetinic acid derivatives as a Two-in-One agent with potent antimicrobial and anti-inflammatory activity. Bioorg Chem 2022; 122:105714. [DOI: 10.1016/j.bioorg.2022.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
|
11
|
Luo YH, Wang C, Xu WT, Zhang Y, Zhang T, Xue H, Li YN, Fu ZR, Wang Y, Jin CH. 18β-Glycyrrhetinic Acid Has Anti-Cancer Effects via Inducing Apoptosis and G2/M Cell Cycle Arrest, and Inhibiting Migration of A549 Lung Cancer Cells. Onco Targets Ther 2021; 14:5131-5144. [PMID: 34712051 PMCID: PMC8548027 DOI: 10.2147/ott.s322852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background 18β-glycyrrhetinic acid (18β-Gly), which is extracted from licorice root, has various pharmacological properties; however, its anti-cancer effects on lung cancer cells have not been fully established. Purpose In this study, we investigated the underlying molecular mechanisms of 18β-Gly. Results Our results showed that 18β-Gly had significant cytotoxic effects and no apparent side effects. 18β-Gly induced mitochondria-dependent apoptosis of A549 lung cancer cells. In addition, after treatment with 18β-Gly, intracellular reactive oxygen species (ROS) levels were significantly increased, and G2/M cell cycle arrest and inhibition of cell migration were induced via the mitogen-activated protein kinase (MAPK)/signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa (NF-κB) signaling pathways. After pretreatment with the ROS scavenger N-acetyl-L-cysteine or MAPK inhibitors, the expression levels of phosphorylated p38 (p-p38), phosphorylated c-Jun N-terminal kinase, inhibitor of nuclear factor kappa B, cleaved caspase-3 (cle-cas-3), cleaved poly (ADP ribose) polymerase (cle-PARP), p-p53, p27, p21, and E-cadherin were decreased; and levels of phosphorylated extracellular signal-regulated kinase, p-STAT3, NF-κB, Bcl-2, cyclin B1, cyclase-dependent kinase 1/2 (CDK1/2), N-cadherin, vimentin, and snail homolog 1 (SNAI 1) were increased. In addition, the percentage of cells in the G2/M phase was decreased, and inhibition of migration was reduced. Conclusion In summary, 18β-Gly induced apoptosis and G2/M cell cycle arrest and inhibited migration via the ROS/MAPK/STAT3/NF-κB signaling pathways in A549 lung cancer cells. Therefore, 18β-Gly is a novel promising candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing, 163001, People's Republic of China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Zhong-Ren Fu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ying Wang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.,College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.,National Coarse Cereals Engineering Research Center, Daqing, 163319, People's Republic of China
| |
Collapse
|
12
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
13
|
Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Babaev M, Lobov A, Shishlov N, Zakharova E, Orlov A, Baymiev A, Kolesov S. Nanoparticles of self-organizing ionic complexes based on a copolymer of N,N′-diallyl-N,N′-dimethylammonium chloride with N-vinylpyrrolidone modified by betulonic acid. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Li YC, Hao JC, Shang B, Zhao C, Wang LJ, Yang KL, He XZ, Tian QQ, Wang ZL, Jing HL, Li Y, Cao YJ. Neuroprotective effects of aucubin on hydrogen peroxide-induced toxicity in human neuroblastoma SH-SY5Y cells via the Nrf2/HO-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153577. [PMID: 33994055 DOI: 10.1016/j.phymed.2021.153577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/21/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND When redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis. PURPOSE The present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro. METHODS SH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry. RESULTS The results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways. CONCLUSION These results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.
Collapse
Affiliation(s)
- Ying Chun Li
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Jin Cheng Hao
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Bo Shang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Cheng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Li Juan Wang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Kai Lin Yang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Xiao Zhou He
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Qian Qian Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Zhao Liang Wang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Hui Ling Jing
- Department of Dermatology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Yang Li
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China.
| | - Yan Jun Cao
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China.
| |
Collapse
|
16
|
Yang N, Sun H, Xue Y, Zhang W, Wang H, Tao H, Liang X, Li M, Xu Y, Chen L, Zhang L, Huang L, Geng D. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head. Clin Transl Med 2021; 11:e447. [PMID: 34185425 PMCID: PMC8167863 DOI: 10.1002/ctm2.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids (GCs) are used in treating viral infections, acute spinal cord injury, autoimmune diseases, and shock. Several patients develop GC-induced osteonecrosis of the femoral head (ONFH). However, the pathogenic mechanisms underlying GC-induced ONFH remain poorly understood. GC-directed bone marrow mesenchymal stem cells (BMSCs) fate is an important factor that determines GC-induced ONFH. At high concentrations, GCs induce BMSC apoptosis by promoting oxidative stress. In the present study, we aimed to elucidate the molecular mechanisms that relieve GC-induced oxidative stress in BMSCs, which would be vital for treating ONFH. The endocannabinoid system regulates oxidative stress in multiple organs. Here, we found that monoacylglycerol lipase (MAGL), a key molecule in the endocannabinoid system, was significantly upregulated during GC treatment in osteoblasts both in vitro and in vivo. MAGL expression was positively correlated with expression of the NADPH oxidase family and apoptosis-related proteins. Functional analysis showed that MAGL inhibition markedly reduced oxidative stress and partially rescued BMSC apoptosis. Additionally, in vivo studies indicated that MAGL inhibition effectively attenuated GC-induced ONFH. Pathway analysis showed that MAGL inhibition regulated oxidative stress in BMSCs via the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The expression of Nrf2, a major regulator of intracellular antioxidants, was upregulated by inhibiting MAGL. Nrf2 activation can mimic the effect of MAGL inhibition and significantly reduce GC-induced oxidative damage in BMSCs. The beneficial effects of MAGL inhibition were attenuated after the blockade of the Keap1/Nrf2 antioxidant signaling pathway. Notably, pharmacological blockade of MAGL conferred femoral head protection in GC-induced ONFH, even after oxidative stress responses were initiated. Therefore, MAGL may represent a novel target for the prevention and treatment of GC-induced ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Houyi Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineChangshuChina
| | - Weicheng Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Hongzhi Wang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Huaqiang Tao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Xiaolong Liang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Meng Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yaozeng Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lixin Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
17
|
Pagano C, Calarco P, Di Michele A, Ceccarini MR, Beccari T, Primavilla S, Scuota S, Marmottini F, Ramella D, Ricci M, Perioli L. Development of sodium carboxymethyl cellulose based polymeric microparticles for in situ hydrogel wound dressing formation. Int J Pharm 2021; 602:120606. [PMID: 33862131 DOI: 10.1016/j.ijpharm.2021.120606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
18β-glycyrrhetinic acid (Gly), a natural compound obtained from licorice, is known both for the anti-inflammatory and antioxidant activities and for this reason useful for wound treatment. Due to its poor solubility, Gly is not suitable for formulations used in conventional topical products such as gels, foams and creams. Polymeric bioadhesive microparticles (MP), loaded with Gly, were developed to be introduced in the wound bed and swell, once in contact with the exudate, to form a hydrogel in situ able to close the wound. The MP were prepared by spray drying method from the polymeric solution of polysaccharide sodium carboxymethyl cellulose (CMC) and copolymer Soluplus® (SL). Soluplus® introduction in MP composition, using a 3:1 ratio (CMC/SL wt./wt.), allowed to stabilize Gly in non-crystalline form, favoring the improvement of water solubility, and to obtain a spherical with rugged surface MP morphology. Ex vivo studies showed these MP maintain high swelling capability and are able to form in situ a hydrogel for wound repair. The controlled release of Gly from the hydrogel stimulates keratinocyte growth, potentially supporting the physiological healing processes.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Paola Calarco
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico dell'Umbria e delle Marche, Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Stefania Scuota
- Istituto Zooprofilattico dell'Umbria e delle Marche, Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Fabio Marmottini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Daniele Ramella
- Department of Chemistry, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
18
|
The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
|
19
|
Wang Z, Cai B, Cao C, Lv H, Dai Y, Zheng M, Zhao G, Peng Y, Gou W, Wang J, Liu D, Hu Y. Downregulation of CD151 induces oxidative stress and apoptosis in trophoblast cells via inhibiting ERK/Nrf2 signaling pathway in preeclampsia. Free Radic Biol Med 2021; 164:249-257. [PMID: 33450381 DOI: 10.1016/j.freeradbiomed.2020.12.441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is a pregnancy-related syndrome characterized by new-onset hypertension and proteinuria after gestational 20 weeks. Oxidative stress, resulting from the imbalance between the production of oxidants and antioxidants in placentas, is recognized as a key pathology of PE. To date, the molecules that regulate antioxidants production remain unclear. CD151, a member of tetraspanins, is an important regulator of many physiological functions. However, the function of CD151 in oxidative stress and its association with pregnancy-related complications are currently unknown. In the present study, we have demonstrated that CD151 was a key regulator of antioxidants in placentas. Compared with the placentas of the controls, the placentas of PE patients exhibited decreased CD151 expression accompanying with decreased antioxidant gene expression (HO-1, NQO-1, GCLC and SOD-1). In vitro, overexpression of CD151 in trophoblast cells could enhance HO-1, NQO-1, GCLC and SOD-1 expression but downregulation of CD151 decreased those antioxidant genes expression, which indicates CD151 is the upstream of antioxidants. Importantly, the phenotype of PE (hypertension and proteinuria) was mimicked in the downregulating CD151 induced mouse model. Moreover, the beneficial effect of CD151 in trophoblast cells was hindered when ERK and Nrf2 signaling were blocked. Overall, our results revealed CD151 might be a new target for PE treatment.
Collapse
Affiliation(s)
- Zhiyin Wang
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Bin Cai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenrui Cao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yanfang Peng
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenjing Gou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jingmei Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
20
|
Zhang Q, Feng Z, Gao M, Guo L. Determining novel candidate anti-hepatocellular carcinoma drugs using interaction networks and molecular docking between drug targets and natural compounds of SiNiSan. PeerJ 2021; 9:e10745. [PMID: 33628636 PMCID: PMC7894118 DOI: 10.7717/peerj.10745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND SiNiSan (SNS) is an ancient traditional Chinese medicine (TCM) used to treat liver and spleen deficiencies. We studied the unique advantages of using SNS to treat hepatocellular carcinoma (HCC) with multiple components and targets to determine its potential mechanism of action. METHODS The active compounds from the individual herbs in the SNS formula and their targets were mined from Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). HCC-associated targets were collected from the TCGA and GEO databases and samples were collected from patients with stage III hepatocellular carcinoma. A compound-disease target network was constructed, visualized, and analyzed using Cytoscape software. We built a protein-protein interaction (PPI) network using the String database. We enriched and analyzed key targets using GSEA, GO, and KEGG in order to explore their functions. Autodock software was used to simulate the process of SNS molecules acting on HCC targets. RESULTS A total of 113 candidate compounds were taken from SNS, and 64 of the same targets were chosen from HCC and SNS. The predominant targets genes were PTGS2, ESR1, CHEK1, CCNA2, NOS2 and AR; kaempferol and quercetin from SNS were the principal ingredients in HCC treatment. The compounds may work against HCC due to a cellular response to steroid hormones and histone phosphorylation. The P53 signaling pathway was significantly enriched in the gene set GSEA enrichment analysis and differential gene KEGG enrichment analysis. CONCLUSIONS Our results showed that the SNS component has a large number of stage III HCC targets. Among the targets, the sex hormone receptors, the AR and ESR1 genes, are the core targets of SNS component and the most active proteins in the PPI network. In addition, quercetin, which has the most targets, can act on the main targets (BAX, CDK1, CCNB1, SERPINE1, CHEK2, and IGFBP3) of the P53 pathway to treat HCC.
Collapse
Affiliation(s)
- Qin Zhang
- The Fourth Hospital of Hebei Medical University, Department of General Medicine, Shijiazhuang, Hebei, China
| | - Zhangying Feng
- The Fourth Hospital of Hebei Medical University, Department of Clinical Pharmacology, Shijiazhuang, Hebei, China
| | - Mengxi Gao
- The Fourth Hospital of Hebei Medical University, Department of General Medicine, Shijiazhuang, Hebei, China
| | - Liru Guo
- The Fourth Hospital of Hebei Medical University, Department of General Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Wu SY, Wang WJ, Dou JH, Gong LK. Research progress on the protective effects of licorice-derived 18β-glycyrrhetinic acid against liver injury. Acta Pharmacol Sin 2021; 42:18-26. [PMID: 32144337 PMCID: PMC7921636 DOI: 10.1038/s41401-020-0383-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
The first description of the medical use of licorice appeared in "Shennong Bencao Jing", one of the well-known Chinese herbal medicine classic books dated back to 220-280 AD. As one of the most commonly prescribed Chinese herbal medicine, licorice is known as "Guo Lao", meaning "a national treasure" in China. Modern pharmacological investigations have confirmed that licorice possesses a number of biological activities, such as antioxidation, anti-inflammatory, antiviral, immune regulation, and liver protection. 18β-glycyrrhetinic acid is one of the most extensively studied active integrants of licorice. Here, we provide an overview of the protective effects of 18β-glycyrrhetinic acid against various acute and chronic liver diseases observed in experimental models, and summarize its pharmacological effects and potential toxic/side effects at higher doses. We also make additional comments on the important areas that may warrant further research to support appropriate clinical applications of 18β-glycyrrhetinic acid and avoid potential risks.
Collapse
Affiliation(s)
- Shou-Yan Wu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jie Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hui Dou
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Li-Kun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
23
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
24
|
Vasileva LV, Savova MS, Amirova KM, Dinkova-Kostova AT, Georgiev MI. Obesity and NRF2-mediated cytoprotection: Where is the missing link? Pharmacol Res 2020; 156:104760. [DOI: 10.1016/j.phrs.2020.104760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
|
25
|
Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H. Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation 2020; 17:166. [PMID: 32450903 PMCID: PMC7249417 DOI: 10.1186/s12974-020-01836-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recently, depression has been identified as a prevalent and severe mental disorder. However, the mechanisms underlying the depression risk remain elusive. The neuroinflammation and NLRP3 inflammasome activation are known to be involved in the pathology of depression. Dihydrolipoic acid (DHLA) has been reported as a strong antioxidant and exhibits anti-inflammatory properties in various diseases, albeit the direct relevance between DHLA and depression is yet unknown. The present study aimed to investigate the preventive effect and potential mechanism of DHLA in the lipopolysaccharide (LPS)-induced sickness behavior in rats. Methods Adult male Sprague–Dawley rats were utilized. LPS and DHLA were injected intraperitoneally every 2 days and daily, respectively. Fluoxetine (Flu) was injected intraperitoneally daily. PD98059, an inhibitor of ERK, was injected intraperitoneally 1 h before DHLA injection daily. Small interfering ribonucleic acid (siRNA) for nuclear factor erythroid 2-like (Nrf2) was injected into the bilateral hippocampus 14 days before the DHLA injection. Depression-like behavior tests were performed. Western blot and immunofluorescence staining detected the ERK/Nrf2/HO-1/ROS/NLRP3 pathway-related proteins. Results The DHLA and fluoxetine treatment exerted preventive effects in LPS-induced sickness behavior rats. The DHLA treatment increased the expression of ERK, Nrf2, and HO-1 but decreased the ROS generation levels and reduced the expression of NLRP3, caspase-1, and IL-1β in LPS-induced sickness behavior rats. PD98059 abolished the effects of DHLA on preventive effect as well as the levels of Nrf2 and HO-1 proteins. Similarly, Nrf2 siRNA reversed the preventive effect of DHLA administration via the decreased expression of HO-1. Conclusions These findings suggested that DHLA exerted a preventive effect via ERK/Nrf2/HO-1/ROS/NLRP3 pathway in LPS-induced sickness behavior rats. Thus, DHLA may serve as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Hetao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China.
| | - Junjie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Yage Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Hui Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| |
Collapse
|
26
|
Shopit A, Niu M, Wang H, Tang Z, Li X, Tesfaldet T, Ai J, Ahmad N, Al-Azab M, Tang Z. Protection of diabetes-induced kidney injury by phosphocreatine via the regulation of ERK/Nrf2/HO-1 signaling pathway. Life Sci 2019; 242:117248. [PMID: 31899224 DOI: 10.1016/j.lfs.2019.117248] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/19/2022]
Abstract
Diabetic nephropathy is the most common long-term complication of diabetes mellitus. The Methylglyoxal (MGO) production is mainly by metabolic pathways, such as lipolysis and glycolysis, its increases in the DM enhances oxidative stress and plays a crucial role in the diabetic nephrotic pathogenesis. Phosphocreatine (PCr) can improve lipopolysaccharide, ox-LDL-induced atherosclerosis, and alleviate vascular endothelial cell injury in diabetes. The aim of our present study is to examine the potential role of phosphocreatine (PCr) as a molecule protects against diabetes-induced Kidney Injury in-vitro and in-vivo through ERK/Nrf2/HO-1 signaling pathway. NRK-52E cells treatment with PCr obviously suppressed MGO-induced change of viability, apoptosis, coupled with decreased Bax/Bcl-2ratio, casapse-9 and caspase-3expressions. We determined the generation of reactive oxygen species (ROS) using membrane permeable fluorescent probe DCFH-DA as well as intracellular calcium by flow cytometry. ERK, Nrf2 and HO-1 expressions were determined by Western blot. PCr pretreatment significantly returned the oxidative stress enzymes to normal condition in-vitro and in-vivo. PCr pretreatment significantly reduced apoptosis, calcium and ROS production, induced by MGO, in NRK-52E cells. Moreover, pretreatment with PCr significantly inhibited cleaved caspase-3, cleaved caspase-9 and p-ERK expressions, while increased Nrf-2 and HO-1 expressions. Furthermore, PCr pretreatment significantly decreased p-ERK expression of MGO-induced injury in NRK-52E cells transfected with p-ERK cDNA. In conclusion, the renal protective effect of PCr in-vitro and in-vivo depends on suppressing apoptosis and ROS generation through ERK mediated Nrf-2/HO-1 pathway, suggesting that PCr may be a novel therapeutic candidate for the diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Abdullah Shopit
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Mengyue Niu
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Hongyan Wang
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun 130000, China
| | - Xiaodong Li
- Second Clinical College, Dalian Medical University, Dalian 116044, China
| | - Tsehaye Tesfaldet
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Jie Ai
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Nisar Ahmad
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Mahmoud Al-Azab
- Department of immunology, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|