1
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
2
|
Zhou Y, Bai F, Xiao R, Chen M, Sun Y, Ye J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper ( Epinephelus coioides). Animals (Basel) 2024; 14:2039. [PMID: 39061501 PMCID: PMC11274106 DOI: 10.3390/ani14142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China; (Y.Z.); (F.B.); (R.X.); (M.C.); (Y.S.)
| |
Collapse
|
3
|
Liu X, Jiang L, Zeng H, Gao L, Guo S, Chen C, Liu X, Zhang M, Ma L, Li Y, Qi X, Wu Y. Circ-0000953 deficiency exacerbates podocyte injury and autophagy disorder by targeting Mir665-3p-Atg4b in diabetic nephropathy. Autophagy 2024; 20:1072-1097. [PMID: 38050963 PMCID: PMC11135827 DOI: 10.1080/15548627.2023.2286128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Circular RNAs (circRNAs) are special non-coding RNA (ncRNA) molecules that play a significant role in many diseases. However, the biogenesis and regulation of circRNAs in diabetic nephropathy (DN) are largely unknown. Here, we investigated the expression profile of circRNAs in kidney of DN mice through circular RNA sequencing (circRNA-seq). The renal biopsy samples of patients with DN had low circ -0,000,953 expression, which was significantly associated with renal function. Furthermore, loss-of-function and gain-of-function experiments were carried out to prove the role of circ -0,000,953 in DN. Podocyte conditional knockin (cKI) or systemic overexpression of circ -0,000,953 alleviated albuminuria and restored macroautophagy/autophagy in kidney of diabetic mice. However, circ -0,000,953 knockdown exacerbated albuminuria and podocyte injury. Mechanistically, we found circ -0,000,953 directly binds to Mir665-3p-Atg4b to perform its function. Silencing of Mir665-3p or overexpression of Atg4b recovered podocyte autophagy both in vitro and in vivo. To examine the cause of circ -0,000,953 downregulation in DN, bioinformatics prediction found that circ -0,000,953 sequence has a high possibility of containing an m6A methylation site. Additionally, METTL3 was proved to regulate the expression and methylation level of circ -0,000,953 through YTHDF2 (YTH N6-methyladenosine RNA binding protein 2). In conclusion, this study revealed that circ -0,000,953 regulates podocyte autophagy by targeting Mir665-3p-Atg4b in DN. Therefore, circ -0,000,953 is a potential biomarker for prevention and cure of DN.Abbreviation: CCL2/MCP-1: C-C motif chemokine ligand 2; ceRNA: competing endogenous RNA; circRNA: circular RNA; cKI: conditional knockin; cKO: conditional knockout; CRE: creatinine; DM: diabetes mellitus; DN: diabetic nephropathy; ESRD: end-stage renal disease; HG: high glucose; IF: immunofluorescence; MAP1LC3/LC3B: microtubule-associated protein 1 light chain 3 beta; MPC5: mouse podocyte clone 5; MTECs: mouse tubular epithelial cells; MTOR: mechanistic target of rapamycin kinase; NC: normal control; ncRNA: non-coding RNA; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PAS: periodic acid-Schiff; RELA/p65: v-rel reticuloendotheliosis viral oncogene homolog A (avian); SDs: slit diaphragm proteins; Seq: sequencing; STZ: streptozotocin; SV40: SV40-MES13-cells, mouse mesangial cell line; T1D: type 1 diabetes mellitus; T2D: type 2 diabetes mellitus; TEM: transmission electron microscopy; TNF/TNF-α: tumor necrosis factor; VECs: vascular endothelial cells; WT1: WT1 transcription factor; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.
Collapse
Affiliation(s)
- Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Hanxu Zeng
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Li Gao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Shanshan Guo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Chaoyi Chen
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Mengya Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Lijuan Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
4
|
Min XL, Zou H, Yan J, Lyu Q, He X, Shang FF. Stress conditions induced circRNAs profile of extracellular vesicles in brain microvascular endothelial cells. Metab Brain Dis 2022; 37:1977-1987. [PMID: 35699856 DOI: 10.1007/s11011-022-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Cerebral ischemia causes hypoxic injury and inflammation, and brain microvascular endothelial cells (BMVECs) dysfunction is an initial stage of blood-brain barrier disruption. Endothelial cells secrete extracellular vesicles (EVs) that are involved in intercellular signal transduction. EVs contain a variety of RNAs, proteins, and metabolites. Circular RNA (circRNA) is a member of the non-coding RNA. The expression profile and potential function of circRNAs in BMVECs are unknown. Here, human BMVECs have undergone hypoxia or TNF-α induction, and the changes in circRNAs were measured by RNA sequencing. A total of 70 circRNAs showed differential expression, including 43 previously unrecorded circRNAs and 27 recorded circRNAs. Since astrocyte end-feet encircle endothelial cells, they are considered the main targets of the EVs from BMVEC. The miRNA sequence data and bioinformatics were used to predict the circRNA-miRNA-mRNA networks in astrocytes. The gene ontology (GO) analysis showed the main downstream targets of circRNAs are DNA transcription regulation and protein kinase-related signaling pathways. These results suggest that altering circRNAs may be a potential therapeutic target for cerebral ischemia induced hypoxic injury and inflammation.
Collapse
Affiliation(s)
- Xiao-Li Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, People's Republic of China
| | - Hecun Zou
- Institute of Life Science, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Qiang Lyu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiang He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| |
Collapse
|
5
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
6
|
Zhang H, Deng J, Huang K, He Y, Cai Z, He Y. circNup188/miR-760–3p/Map3k8 axis regulates inflammation in cerebral ischemia. Mol Cell Probes 2022; 64:101830. [DOI: 10.1016/j.mcp.2022.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
7
|
Zhang RM, Pan Y, Zou CX, An Q, Cheng JR, Li PJ, Zheng ZH, Pan Y, Feng WY, Yang SF, Shi DS, Wei YM, Deng YF. CircUBE2Q2 promotes differentiation of cattle muscle stem cells and is a potential regulatory molecule of skeletal muscle development. BMC Genomics 2022; 23:267. [PMID: 35387588 PMCID: PMC8985345 DOI: 10.1186/s12864-022-08518-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background The growth and development of muscle stem cells (MuSCs) are significant events known to affect muscle plasticity, disease, meat production, and meat quality, which involves the types and functions of mRNA and non-coding RNA. Here, MuSCs were cultured from Guangxi fetal cattle. RNA sequencing was used to analyze the RNA expression of mRNA and non-coding RNAs during the cell proliferation and differentiation phases. Results Two thousand one hundred forty-eight mRNAs and 888 non-coding RNAs were differentially expressed between cell proliferation and differentiation phases, including 113 miRNAs, 662 lncRNAs, and 113 circRNAs. RT-qPCR verified the differential expression levels of mRNAs and non-coding RNAs, and the differentially expressed circUBE2Q2 was subsequently characterized. Expression profile analysis revealed that circUBE2Q2 was abundant in muscle tissues and intramuscular fat. The expression of cricUBE2Q2 was also significantly upregulated during MuSCs myogenic differentiation and SVFs adipogenic differentiation and decreased with age in cattle muscle tissue. Finally, the molecular mechanism of circUBE2Q2 regulating MuSCs function that affects skeletal muscle development was investigated. The results showed that circUBE2Q2 could serve as a sponge for miR-133a, significantly promoting differentiation and apoptosis of cultured MuSCs, and inhibiting proliferation of MuSCs. Conclusions CircUBE2Q2 is associated with muscle growth and development and induces MuSCs myogenic differentiation through sponging miR-133a. This study will provide new clues for the mechanisms by which mRNAs and non-coding RNAs regulate skeletal muscle growth and development, affecting muscle quality and diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08518-4.
Collapse
Affiliation(s)
- Rui-Men Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chao-Xia Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiang An
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Juan-Ru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Peng-Ju Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zi-Hua Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, 530007, Guangxi, China
| | - Wan-You Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Su-Fang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China.,International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, 530000, Guangxi, China
| | - De-Shun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Ying-Ming Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Yan-Fei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
Hu R, Yu Y, Wang H. The LMCD1-AS1/miR-526b-3p/OSBPL5 axis promotes cell proliferation, migration and invasion in non-small cell lung cancer. BMC Pulm Med 2022; 22:30. [PMID: 35000595 PMCID: PMC8744214 DOI: 10.1186/s12890-022-01820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To explore the specific role and regulatory mechanism of oxysterol binding protein like 5 (OSBPL5) in non-small cell lung cancer (NSCLC). METHODS AND RESULTS Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that OSBPL5 expression was notably elevated in NSCLC tissues and cell lines, and Kaplan-Meier analysis manifested that high OSBPL5 expression was closely related to the poor prognosis of NSCLC patients. Besides, according to the results from western blot analysis, cell counting kit-8, EdU and Transwell assays, knockdown of OSBPL5 suppressed NSCLC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process. Additionally, by performing qRT-PCR analysis, luciferase reporter and RNA pull-down assays, we verified that OSBPL5 was a downstream target of miR-526b-3p and long noncoding RNA (lncRNA) LMCD1-AS1 served as a sponge for miR-526b-3p. Moreover, from rescue assays, we observed that OSBPL5 overexpression offset LMCD1-AS1 knockdown-mediated inhibition in cell proliferation, migration, invasion and EMT in NSCLC. CONCLUSIONS This paper was the first to probe the molecular regulatory mechanism of OSBPL5 involving the LMCD1-AS1/miR-526b-3p axis in NSCLC and our results revealed that the LMCD1-AS1/miR-526b-3p/OSBPL5 axis facilitates NSCLC cell proliferation, migration, invasion and EMT, which may offer a novel therapeutic direction for NSCLC.
Collapse
Affiliation(s)
- Rui Hu
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China
| | - Yankai Yu
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China
| | - Haining Wang
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China.
| |
Collapse
|
9
|
Yang J, Peng S, Zhang K. ARL4C depletion suppresses the resistance of ovarian cancer to carboplatin by disrupting cholesterol transport and autophagy via notch-RBP-Jκ-H3K4Me3-OSBPL5. Hum Exp Toxicol 2022; 41:9603271221135064. [DOI: 10.1177/09603271221135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing studies indicate that cholesterol plays an important role in drug resistance. ARL4C is implicated in the export and import of cholesterol, therefore this study aimed to explore the effect of ARL4C on the resistance of ovarian cancer (OVC) to Carboplatin. This study collected OVC tissue samples from patients who are sensitive or resistant to carboplatin, and established Carboplatin-resistant OVC cell lines, OVCAR3(R) and SKOV3(R) using OVCAR3 and SKOV3. High throughput sequencing was conducted to find genes that regulated by ARL4C. Cholesterol esterification was performed to evaluate the transport of cholesterol from Lysosome (LY) to Endoplasmic reticulum (ER). The fluorescence of LC3-GFP-mRFP was used to evaluate the function of autophagy flux. As indicated by PCR, western blot and Immunohistochemistry, ARL4C was increased in the Carboplatin-resistant OVC tissues and cells. Knockdown of ARL4C attenuated the resistance of OVCAR3(R) and SKOV3(R) to Carboplatin. By suppressing Notch signal, ARL4C knockdown inhibited the transcriptional function of RBP-Jκ and RBP-Jκ-induced H3K4Me3, which collectively reduced OSBPL5 expression. OSBPL5 deficiency inhibited the transport of cholesterol from LYs to ER, which led to the accumulation of cholesterol in LYs and the dysfunction of autophagy. In summary, ARL4C knockdown attenuated the resistance of OVC to Carboplatin by disrupting cholesterol transport and autophagy. This study revealed a promising target to attenuate the resistance of OVC to Carboplatin and elucidated the potential mechanism.
Collapse
Affiliation(s)
- Juan Yang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Keqiang Zhang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
10
|
Li JY, Li QQ, Sheng R. The role and therapeutic potential of exosomes in ischemic stroke. Neurochem Int 2021; 151:105194. [PMID: 34582960 DOI: 10.1016/j.neuint.2021.105194] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/05/2021] [Accepted: 09/25/2021] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a disease caused by insufficient blood and oxygen supply to the brain, which is mainly due to intracranial arterial stenosis and middle cerebral artery occlusion. Exosomes play an important role in cerebral ischemia. Nucleic acid substances such as miRNA, circRNA, lncRNA in exosomes can play communication roles and improve cerebral ischemia by regulating the development and regeneration of the nervous system, remodeling of blood vessels and inhibiting neuroinflammation. Furthermore, exosomes modulate stroke through various mechanisms, including improving neural communication, promoting the development of neuronal cells and myelin synapses, neurovascular unit remodeling and maintaining homeostasis of the nervous system. At the same time, exosomes are also a good carrier of bioactive substances, which can be modified and targeted to the lesion site. Here, we review the roles of exosomes in cerebral ischemia, and discuss the possible mechanisms and potentials of modification of exosomes for targeting stroke, providing a new idea for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Birmingham Veterans Affairs Medical Center, USA; Research Department, Birmingham Veterans Affairs Medical Center, USA
| | - Christopher G Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cellular Biology and Anatomy, LSU Health Shreveport, USA.
| |
Collapse
|