1
|
Zhang J, Zhang T, Chen Y, Xuan X, Zhao Y, Lu G. Spermidine mitigates ferroptosis in free fatty acid-induced AML-12 cells through the ATF4/SLC7A11/GCLM/GPX4 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159560. [PMID: 39181440 DOI: 10.1016/j.bbalip.2024.159560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of chronic liver disease worldwide. Spermidine (SPD), a naturally occurring polyamine, has shown potential in alleviating the accumulation of hepatic lipids and reducing NAFLD symptoms in overweight mice. Nonetheless, the specific mechanisms through which SPD exerts its effects remain largely unknown. This study seeks to explore the protective effects of SPD on NAFLD and to clarify the underlying mechanisms. An in vitro model of NAFLD was established by inducing steatosis in AML-12 cells through the use of free fatty acids (FFAs). Our experimental results demonstrate that SPD significantly reduces NAFLD development induced by FFAs. This reduction is primarily achieved through the inhibition of cellular ferroptosis, as evidenced by decreased levels of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS). Additionally, SPD was found to enhance cellular activity and ameliorate mitochondrial dysfunction and oxidative stress caused by FFA exposure. Further mechanistic studies have revealed that SPD upregulates the expression of solute transporter family 7a member 11 (SLC7A11), glutamate-cysteine ligase modifier subunit (GCLM), and glutathione peroxidase (GPX4). This upregulation is mediated by the activation of activating transcription factor 4 (ATF4). Knockdown experiments of ATF4 confirmed that its inhibition reverses the upregulation of SLC7A11, GCLM, and GPX4, thereby negating the protective effects of SPD. In conclusion, our findings suggest that SPD mitigates NAFLD by modulating the ATF4/SLC7A11/GCLM/GPX4 signaling pathway, resulting in the suppression of ferroptosis and the improvement of cellular health. These insights provide a novel molecular mechanism and identify potential therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Tao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yihang Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaojie Xuan
- Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yuqian Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Gaofeng Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang LY, Hu YY, Liu XY, Wang XY, Li SC, Zhang JG, Xian XH, Li WB, Zhang M. The Role of Astrocytic Mitochondria in the Pathogenesis of Brain Ischemia. Mol Neurobiol 2024; 61:2270-2282. [PMID: 37870679 DOI: 10.1007/s12035-023-03714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
The morbidity rate of ischemic stroke is increasing annually with the growing aging population in China. Astrocytes are ubiquitous glial cells in the brain and play a crucial role in supporting neuronal function and metabolism. Increasing evidence shows that the impairment or loss of astrocytes contributes to neuronal dysfunction during cerebral ischemic injury. The mitochondrion is increasingly recognized as a key player in regulating astrocyte function. Changes in astrocytic mitochondrial function appear to be closely linked to the homeostasis imbalance defects in glutamate metabolism, Ca2+ regulation, fatty acid metabolism, reactive oxygen species, inflammation, and copper regulation. Here, we discuss the role of astrocytic mitochondria in the pathogenesis of brain ischemic injury and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ling-Yan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Xi-Yun Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Xiao-Yu Wang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Shi-Chao Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
4
|
Yin X, Dong L, Wang X, Qin Z, Ma Y, Ke X, Li Y, Wang Q, Mi Y, Lyu Q, Xu X, Zheng P, Tang Y. Perilipin 5 regulates hepatic stellate cell activation and high-fat diet-induced non-alcoholic fatty liver disease. Animal Model Exp Med 2024; 7:166-178. [PMID: 37202925 PMCID: PMC11079159 DOI: 10.1002/ame2.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases globally. Hepatic stellate cells (HSCs) are the major effector cells of liver fibrosis. HSCs contain abundant lipid droplets (LDs) in their cytoplasm during quiescence. Perilipin 5 (PLIN 5) is a LD surface-associated protein that plays a crucial role in lipid homeostasis. However, little is known about the role of PLIN 5 in HSC activation. METHODS PLIN 5 was overexpressed in HSCs of Sprague-Dawley rats by lentivirus transfection. At the same time, PLIN 5 gene knockout mice were constructed and fed with a high-fat diet (HFD) for 20 weeks to study the role of PLIN 5 in NAFLD. The corresponding reagent kits were used to measure TG, GSH, Caspase 3 activity, ATP level, and mitochondrial DNA copy number. Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS. AMPK, mitochondrial function, cell proliferation, and apoptosis-related genes and proteins were detected by western blotting and qPCR. RESULTS Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria, inhibition of cell proliferation, and a significant increase in cell apoptosis through AMPK activation. In addition, compared with the HFD-fed C57BL/6J mice, PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition, decreased LD abundance and size, and reduced liver fibrosis. CONCLUSION These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.
Collapse
Affiliation(s)
- Xuecui Yin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Dong
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaohan Wang
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenzhen Qin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuying Ma
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaofei Ke
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ya Li
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qingde Wang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Mi
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanjun Lyu
- Department of Clinical Nutritionthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New drug R & D and Preclinical Safety, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Pengyuan Zheng
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Youcai Tang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pediatrics, Gastroenterology, Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury and Henan Provincial Outstanding Overseas Scientists Chronic Liver Injury Studiothe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Yan Z, Luan Y, Wang Y, Ren Y, Li Z, Zhao L, Shen L, Yang X, Liu T, Gao Y, Sun W. Constructing a Novel Amino Acid Metabolism Signature: A New Perspective on Pheochromocytoma Diagnosis, Immune Landscape, and Immunotherapy. Biochem Genet 2024:10.1007/s10528-024-10733-5. [PMID: 38526709 DOI: 10.1007/s10528-024-10733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
Pheochromocytoma/paraganglioma (PGPG) is a rare neuroendocrine tumor. Amino acid metabolism is crucial for energy production, redox balance, and metabolic pathways in tumor cell proliferation. This study aimed to build a risk model using amino acid metabolism-related genes, enhancing PGPG diagnosis and treatment decisions. We analyzed RNA-sequencing data from the PCPG cohort in the GEO dataset as our training set and validated our findings using the TCGA dataset and an additional clinical cohort. WGCNA and LASSO were utilized to identify hub genes and develop risk prediction models. The single-sample gene set enrichment analysis, MCPCOUNTER, and ESTIMATE algorithm calculated the relationship between amino acid metabolism and immune cell infiltration in PCPG. The TIDE algorithm predicted the immunotherapy efficacy for PCPG patients. The analysis identified 292 genes with differential expression, which are involved in amino acid metabolism and immune pathways. Six genes (DDC, SYT11, GCLM, PSMB7, TYRO3, AGMAT) were identified as crucial for the risk prediction model. Patients with a high-risk profile demonstrated reduced immune infiltration but potentially higher benefits from immunotherapy. Notably, DDC and SYT11 showed strong diagnostic and prognostic potential. Validation through quantitative Real-Time Polymerase Chain Reaction and immunohistochemistry confirmed their differential expression, underscoring their significance in PCPG diagnosis and in predicting immunotherapy response. This study's integration of amino acid metabolism-related genes into a risk prediction model offers critical clinical insights for PCPG risk stratification, potential immunotherapy responses, drug development, and treatment planning, marking a significant step forward in the management of this complex condition.
Collapse
Affiliation(s)
- Zechen Yan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yongkun Luan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yu Wang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yilin Ren
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhiyuan Li
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
| | - Luyang Zhao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Linnuo Shen
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaojie Yang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Tonghu Liu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yukui Gao
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Weibo Sun
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Department of Radiation Oncology and Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Hou K, Liu L, Fang ZH, Zong WX, Sun D, Guo Z, Cao L. The role of ferroptosis in cardio-oncology. Arch Toxicol 2024; 98:709-734. [PMID: 38182913 DOI: 10.1007/s00204-023-03665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
With the rapid development of new generations of antitumor therapies, the average survival time of cancer patients is expected to be continuously prolonged. However, these therapies often lead to cardiotoxicity, resulting in a growing number of tumor survivors with cardiovascular disease. Therefore, a new interdisciplinary subspecialty called "cardio-oncology" has emerged, aiming to detect and treat cardiovascular diseases associated with tumors and antitumor therapies. Recent studies have highlighted the role of ferroptosis in both cardiovascular and neoplastic diseases. The balance between intracellular oxidative stress and antioxidant defense is crucial in regulating ferroptosis. Tumor cells can evade ferroptosis by upregulating multiple antioxidant defense pathways, while many antitumor therapies rely on downregulating antioxidant defense and promoting ferroptosis in cancer cells. Unfortunately, these ferroptosis-inducing antitumor therapies often lack tissue specificity and can also cause injury to the heart, resulting in ferroptosis-induced cardiotoxicity. A range of cardioprotective agents exert cardioprotective effects by inhibiting ferroptosis. However, these cardioprotective agents might diminish the efficacy of antitumor treatment due to their antiferroptotic effects. Most current research on ferroptosis only focuses on either tumor treatment or heart protection but rarely considers both in concert. Therefore, further research is needed to study how to protect the heart during antitumor therapies by regulating ferroptosis. In this review, we summarized the role of ferroptosis in the treatment of neoplastic diseases and cardiovascular diseases and also attempted to propose further research directions for ferroptosis in the field of cardio-oncology.
Collapse
Affiliation(s)
- Kai Hou
- Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Chest Hospital, Tianjin, 300222, China.
- Chest Hospital, Tianjin University, Tianjin, 300222, China.
- Pu'er People's Hospital, Yunnan, 665000, China.
| | - Lin Liu
- Institute of Natural Sciences, MOE-LSC, School of Mathematical Sciences, CMA-Shanghai, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daqiang Sun
- Tianjin Medical University, Tianjin, 300070, China
- Tianjin Chest Hospital, Tianjin, 300222, China
- Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Zhigang Guo
- Tianjin Medical University, Tianjin, 300070, China
- Tianjin Chest Hospital, Tianjin, 300222, China
- Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Lu Cao
- Tianjin Chest Hospital, Tianjin, 300222, China.
- Chest Hospital, Tianjin University, Tianjin, 300222, China.
| |
Collapse
|
7
|
Gong S, Zhang A, Yao M, Xin W, Guan X, Qin S, Liu Y, Xiong J, Yang K, Xiong L, He T, Huang Y, Zhao J. REST contributes to AKI-to-CKD transition through inducing ferroptosis in renal tubular epithelial cells. JCI Insight 2023; 8:166001. [PMID: 37288660 PMCID: PMC10393228 DOI: 10.1172/jci.insight.166001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/20/2023] [Indexed: 06/09/2023] Open
Abstract
Ischemic-reperfusion injury (IRI) is a major pathogenic factor in acute kidney injury (AKI), which directly leads to the hypoxic injury of renal tubular epithelial cells (RTECs). Although emerging studies suggest repressor element 1-silencing transcription factor (REST) as a master regulator of gene repression under hypoxia, its role in AKI remains elusive. Here, we found that REST was upregulated in AKI patients, mice, and RTECs, which was positively associated with the degree of kidney injury, while renal tubule-specific knockout of Rest significantly alleviated AKI and its progression to chronic kidney disease (CKD). Subsequent mechanistic studies indicated that suppression of ferroptosis was responsible for REST-knockdown-induced amelioration of hypoxia-reoxygenation injury, during which process Cre-expressing adenovirus-mediated REST downregulation attenuated ferroptosis through upregulating glutamate-cysteine ligase modifier subunit (GCLM) in primary RTECs. Further, REST transcriptionally repressed GCLM expression via directly binding to its promoter region. In conclusion, our findings revealed the involvement of REST, a hypoxia regulatory factor, in AKI-to-CKD transition and identified the ferroptosis-inducing effect of REST, which may serve as a promising therapeutic target for ameliorating AKI and its progression to CKD.
Collapse
|
8
|
Şensoy E. Investigation of the effect of Cadmium chloride applied during pregnancy on the morphological parameters of mouse offspring and the protective role of melatonin. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100222. [DOI: 10.1016/j.hazadv.2022.100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Liu Y, Kang W, Liu S, Li J, Liu J, Chen X, Gan F, Huang K. Gut microbiota-bile acid-intestinal Farnesoid X receptor signaling axis orchestrates cadmium-induced liver injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157861. [PMID: 35934034 DOI: 10.1016/j.scitotenv.2022.157861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a widely prevalent environmental pollutant that accumulates in the liver and induces liver injury. The mechanism of Cd-induced liver injury remains elusive. Our study aimed to clarify the mechanism by which changes in the gut microbiota contribute to Cd-induced liver injury. Here, a murine model of liver injury induced by chronic Cd exposure was used. Liver injury was assessed by biochemistry and histopathology. Expression profiles of genes involved in bile acid (BA) homeostasis, inflammation and injury were assessed via Realtime-PCR and Western-blot. 16S rRNA gene sequencing and mass spectrometry-based metabolomics were used to investigate changes in the gut microbiota and its metabolites in the regulation of Cd-induced liver injury. Here, we showed that Cd exposure induced hepatic ductular proliferation, hepatocellular damage and inflammatory infiltration in mice. Cd exposure induced gut microbiota dysbiosis and reduced the fecal bile salt hydrolase activity leading to an increase of tauro-β-muricholic acid levels in the intestine. Cd exposure decreased intestine FXR/FGF-15 signaling and promoted hepatic BA synthesis. Furthermore, the mice receiving fecal microbiota transplantation from Cd-treated mice showed reduced intestinal FXR/FGF-15 signaling, increased hepatic BA synthesis, and liver injury. However, the depletion of the commensal microbiota by antibiotics failed to change these indices in Cd-treated mice. Finally, the administration of the intestine-restricted FXR agonist fexaramine attenuated the liver injury, improved the intestinal barrier, and decreased hepatic BA synthesis in the Cd-treated mice. Our study identified a new mechanism of Cd-induced liver injury. Cd-induced gut microbiota dysbiosis, decreased feces BSH activity, and increased intestinal T-βMCA levels led to an inhibition of intestinal FXR/FGF-15 signaling and an increase in hepatic BA synthesis, ultimately facilitating the development of hepatic ductular proliferation, inflammation, and injury in mice. This study expands our understanding of the health hazards caused by environmental Cd pollution.
Collapse
Affiliation(s)
- Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
10
|
Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel) 2022; 11:antiox11061128. [PMID: 35740025 PMCID: PMC9220137 DOI: 10.3390/antiox11061128] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD mimics. In addition, we will offer insights into prospective therapeutic options for improving the effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.
Collapse
|