1
|
Li M, Liu X, Li J, Guo H, Xue S, Zhu L, Ma C, Chen D, Wang H, Cai Y, Shen J. Brain glycogen: A key to revealing the pathology of mental diseases. Brain Res 2024; 1844:149194. [PMID: 39182899 DOI: 10.1016/j.brainres.2024.149194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Brain glycogen, which is distinct from muscle glycogen and liver glycogen, has become a crucial node linking metabolism, epigenetics, and autophagy. Recent studies have suggested that brain glycogen governs multiple neurobehavioral processes, such as memory formation and consolidation. However, the changes in brain glycogen levels in mental diseases and the associations of these changes with the disease prognosis are unknown. Here, we review the psychological functions of brain glycogen and the different characteristics of astrocytic glycogen and neuronal glycogen. In addition, we summarize the alterations in brain glycogen levels in depression, schizophrenia and sleep disorders, highlighting that brain glycogen functions as an important metabolite responsible for the development of mental diseases. In summary, brain glycogen is a key to understanding the pathology of mental diseases and deserves more attention in future research.
Collapse
Affiliation(s)
- Mingyu Li
- Graduate School, Xi׳an Medical University, Xi'an, Shaanxi, China
| | - Xiaohui Liu
- Department of Psychiatry, Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shanshan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Zhu
- Graduate School, Xi׳an Medical University, Xi'an, Shaanxi, China
| | - Cuicui Ma
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongyu Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jiangpei Shen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Prabha S, Sajad M, Anjum F, Hassan MI, Shamsi A, Thakur SC. Investigating gene expression datasets of hippocampus tissue to discover Alzheimer's disease-associated molecular markers. J Alzheimers Dis 2024; 102:994-1016. [PMID: 39604273 DOI: 10.1177/13872877241297335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an advancing neurodegenerative disorder distinguished by the formation of amyloid plaques and neurofibrillary tangles in the human brain. Nevertheless, the lack of peripheral biomarkers that can detect the development of AD remains a significant limitation. OBJECTIVE The main aim of this work was to discover the molecular markers associated with AD. METHODS We conducted a comprehensive microarray analysis of gene expression data from hippocampus tissue in AD patients and control samples using three microarray datasets (GSE1297, GSE28146, and GSE29378) collected from Gene Expression Omnibus (GEO). The datasets were pre-processed and normalized, revealing 346 significant genes, 103 of which were upregulated and 243 downregulated. The PPI network of significant genes was constructed to detect the top 50 hub genes, which were then further analyzed using Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and GSEA, revealing 47 key genes involved in AD-related pathways. These key genes were then subjected to feed forward loop (FFL) motif analysis for the prediction of transcriptional factors (TFs) and microRNAs (miRNAs) mediated gene regulatory networks. RESULTS The interaction of AD-associated TFs HNF4A, SPI1, EGR1, STAT3, and MYC and miRNAs hsa-miR-155-5p and hsa-miR-16-5p in the transcriptional and post-transcriptional events of 3 upregulated and 10 downregulated genes: H2AFZ, MCM3, MYO1C, AXIN1, CCND1, ETS2, MYH9, RELA, RHEB, SOCS3, TBL1X, TBP, TXNIP, and YWHAZ, respectively, has been identified. The miRNA/TF-mediated three types of the FFL motifs, i.e., miRNA-FFL, TF-FFL, and composite-FFL, were constructed, and seven common genes among these FFL were identified: CCND1, MYH9, SOCS3, RHEB, MYO1C, TXNIP, AXIN1, and TXNIP. CONCLUSIONS These findings may provide insights into the development of potential molecular markers for therapeutic management of AD.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Kim J, Moon JS. Molecular Roles of NADPH Oxidase-Mediated Oxidative Stress in Alzheimer's Disease: Isoform-Specific Contributions. Int J Mol Sci 2024; 25:12299. [PMID: 39596364 PMCID: PMC11594809 DOI: 10.3390/ijms252212299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress is linked to the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder marked by memory impairment and cognitive decline. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) of hyperphosphorylated tau. AD is associated with an imbalance in redox states and excessive reactive oxygen species (ROS). Recent studies report that NADPH oxidase (NOX) enzymes are significant contributors to ROS generation in neurodegenerative diseases, including AD. NOX-derived ROS aggravates oxidative stress and neuroinflammation during AD. In this review, we provide the potential role of all NOX isoforms in AD pathogenesis and their respective structural involvement in AD progression, highlighting NOX enzymes as a strategic therapeutic target. A comprehensive understanding of NOX isoforms and their inhibitors could provide valuable insights into AD pathology and aid in the development of targeted treatments for AD.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Qiao L, Yi S, Li T, Pan X, Wang G, Liu X, Li M, Min J, Le H, Tang Z. Calpeptin improves the cognitive function in Alzheimer's disease-like complications of diabetes mellitus rats by regulating TXNIP/NLRP3 inflammasome. J Diabetes Investig 2024; 15:1365-1376. [PMID: 39171660 PMCID: PMC11442751 DOI: 10.1111/jdi.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
AIMS Diabetes mellitus (DM) is closely associated with Alzheimer's disease (AD), and is considered an accelerator of AD. Our previous study has confirmed that the Calpain inhibitor Calpeptin may alleviate AD-like complications of diabetes mellitus. This work further investigated its underlying mechanism. MATERIALS AND METHODS Diabetes mellitus rat model was constructed by a high-fat and high-sugar diet combined with streptozotocin, followed by the administration of Calpeptin. Moreover, rats were micro-injected with LV-TXNIP-OE/vector into the CA1 region of the hippocampus one day before streptozotocin injection. The Morris water maze test assessed the spatial learning and memory ability of rats. Immunohistochemistry and western blotting detected the expression of the pericyte marker PDGFRβ, tight junction proteins occludin and ZO-1, calpain-1, calpain-2, APP, Aβ, Aβ-related, and TXNIP/NLRP3 inflammasome-related proteins. Immunofluorescence staining examined the blood vessel density and neurons in the hippocampus. Evans blue extravasation and fluorescence detected the permeability of the blood-brain barrier (BBB) in rats. Additionally, the oxidative stress markers and inflammatory-related factors were assessed by enzyme-linked immunosorbent assay. RESULTS Calpeptin effectively reduced the expression of Calpain-2 and TXNIP/NLRP3 inflammasome-related proteins, improved the decreased pericyte marker (PDGFR-β) and cognitive impairment in hippocampus of DM rats. The neuronal loss, microvessel density, permeability of BBB, Aβ accumulation, inflammation, and oxidative stress injury in the hippocampus of DM rats were also partly rescued by calpeptin treatment. The influence conferred by calpeptin treatment was reversed by TXNIP overexpression. CONCLUSIONS These data demonstrated that calpeptin treatment alleviated AD-like symptoms in DM rats through regulating TXNIP/NLRP3 inflammasome. Thus, calpeptin may be a potential drug to treat AD-like complications of diabetes mellitus.
Collapse
Affiliation(s)
- Luyao Qiao
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Shouqin Yi
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tianpei Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xin Pan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gege Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Min Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jun Min
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Huahui Le
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Zhenyu Tang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
5
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
6
|
Liu Y, Guo Y, Zeng Q, Hu Y, He R, Ma W, Qian C, Hua T, Song F, Cai Y, Zhu L, Ren X, Xu J, Zheng C, Ding L, Ge J, Wang W, Xu H, Ge M, Zheng G. Prosapogenin A induces GSDME-dependent pyroptosis of anaplastic thyroid cancer through vacuolar ATPase activation-mediated lysosomal over-acidification. Cell Death Dis 2024; 15:586. [PMID: 39138191 PMCID: PMC11322489 DOI: 10.1038/s41419-024-06985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Anaplastic thyroid cancer (ATC) is among the most aggressive and metastatic malignancies, often resulting in fatal outcomes due to the lack of effective treatments. Prosapogenin A (PA), a bioactive compound prevalent in traditional Chinese herbs, has shown potential as an antineoplastic agent against various human tumors. However, its effects on ATC and the underlying mechanism remain unclear. Here, we demonstrate that PA exhibits significant anti-ATC activity both in vitro and in vivo by inducing GSDME-dependent pyroptosis in ATC cells. Mechanistically, PA promotes lysosomal membrane permeabilization (LMP), leading to the release of cathepsins that activate caspase 8/3 to cleave GSDME. Remarkably, PA significantly upregulates three key functional subunits of V-ATPase-ATP6V1A, ATP6V1B2, and ATP6V0C-resulting in lysosomal over-acidification. This over-acidification exacerbates LMP and subsequent lysosomal damage. Neutralization of lysosomal lumen acidification or inhibition/knockdown of these V-ATPase subunits attenuates PA-induced lysosomal damage, pyroptosis and growth inhibition of ATC cells, highlighting the critical role for lysosomal acidification and LMP in PA's anticancer effects. In summary, our findings uncover a novel link between PA and lysosomal damage-dependent pyroptosis in cancer cells. PA may act as a V-ATPase agonist targeting lysosomal acidification, presenting a new potential therapeutic option for ATC treatment.
Collapse
Affiliation(s)
- Yunye Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yawen Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Qian Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yiqun Hu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Ru He
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenli Ma
- Bengbu Medical College, Bengbu, Anhui, China
| | - Chenhong Qian
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tebo Hua
- Department of Thyroid Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Fahuan Song
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Yefeng Cai
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Zhu
- Department of Thyroid Surgery, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Xinxin Ren
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Chuanming Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Lingling Ding
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenzhen Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haifeng Xu
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China.
| | - Guowan Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Fei Q, Jin K, Shi S, Li T, Guo D, Lin M, Yu X, Wu W, Ye L. Suppression of pancreatic cancer proliferation through TXNIP-mediated inhibition of the MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:513-524. [PMID: 38229544 PMCID: PMC11094629 DOI: 10.3724/abbs.2023286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is a crucial thioredoxin-binding protein that is recognized as a tumor suppressor in diverse malignancies, such as breast cancer, lung cancer, hepatocellular carcinoma, and thyroid cancer. However, the specific role and molecular mechanisms of TXNIP in the pathogenesis and progression of pancreatic cancer cells have not been determined. In this study, we investigate the relationship between TXNIP expression and overall survival prognosis in pancreatic cancer patients. Mechanistic studies are conducted to reveal the role of TXNIP in pancreatic cancer cell proliferation, migration, and regulation during malignancy. Our findings indicate that patients with high TXNIP expression have a more favorable prognosis. In vitro experiments with pancreatic cell lines show that overexpression of TXNIP suppresses the proliferation and migration of pancreatic cancer cells. Furthermore, we find that TXNIP inhibits the activation of the MAPK signaling pathway, thereby decreasing the malignant potential of pancreatic cancer. In conclusion, our study reveals TXNIP as a promising new predictive marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Qinglin Fei
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Kaizhou Jin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Saimeng Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Tianjiao Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Duancheng Guo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Mengxiong Lin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Weiding Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Longyun Ye
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
8
|
Wu Y, Chen W, Jian J, Liu W, Wang H, Gao D, Liu W. The potential molecular markers of inflammatory response in KOA with AD based on single-cell transcriptome sequencing analysis and identification of ligands by virtual screening. Mol Divers 2024:10.1007/s11030-024-10854-4. [PMID: 38622351 DOI: 10.1007/s11030-024-10854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.
Collapse
Affiliation(s)
- Yufeng Wu
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Junde Jian
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Weinian Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The First Clinical Medical College, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Dawei Gao
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wengang Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China.
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| |
Collapse
|
9
|
Vittori C, Faia C, Wyczechowska D, Trauth A, Plaisance-Bonstaff K, Meyaski-Schluter M, Reiss K, Peruzzi F. IKAROS expression drives the aberrant metabolic phenotype of macrophages in chronic HIV infection. Clin Immunol 2024; 260:109915. [PMID: 38286172 PMCID: PMC10922842 DOI: 10.1016/j.clim.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
The increased risk for acquiring secondary illnesses in people living with HIV (PLWH) has been associated with immune dysfunction. We have previously found that circulating monocytes from PLWH display a trained phenotype. Here, we evaluated the metabolic profile of these cells and found increased mitochondrial respiration and glycolysis of monocyte-derived macrophages (MDMs) from PLWH. We additionally found that cART shifted the energy metabolism of MDMs from controls toward increased utilization of mitochondrial respiration. Importantly, both downregulation of IKAROS expression and inhibition of the mTOR pathway reversed the metabolic profile of MDMs from PLWH and cART-treated control-MDMs. Altogether, this study reveals a very specific metabolic adaptation of MDMs from PLWH, which involves an IKAROS/mTOR-dependent increase of mitochondrial respiration and glycolysis. We propose that this metabolic adaptation decreases the ability of these cells to respond to environmental cues by "locking" PLWH monocytes in a pro-inflammatory and activated phenotype.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Amber Trauth
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Karlie Plaisance-Bonstaff
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Mary Meyaski-Schluter
- Clinical and Translational Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA; Louisiana State University Health Sciences Center, Department of Medicine, Louisiana Cancer Research Center; New Orleans, LA 70112, USA.
| |
Collapse
|