1
|
Chen Y, Ma L, Yan Y, Wang X, Cao L, Li Y, Li M. Ophiopogon japonicus polysaccharide reduces doxorubicin-induced myocardial ferroptosis injury by activating Nrf2/GPX4 signaling and alleviating iron accumulation. Mol Med Rep 2025; 31:36. [PMID: 39575489 PMCID: PMC11605273 DOI: 10.3892/mmr.2024.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Doxorubicin (DOX) is a principal chemotherapeutic agent in the domain of oncological intervention. However, its clinical application is constrained due to its severe and irreversible side effects, particularly heart damage. Ferroptosis, characterized by iron accumulation and redox system imbalance, serves a key role in DOX‑induced cardiotoxicity. Ophiopogon japonicus polysaccharide (OJP) exhibits diverse pharmacological activities, including cardiovascular protection, and anti‑inflammatory, anti‑oxidative and immune regulatory effects. However, the role and mechanism of OJP in DOX‑mediated ferroptosis‑triggered injury in cardiomyocytes remain elusive. The present study aimed to assess the effect of OJP on DOX‑induced myocardial ferroptosis injury and to reveal its underlying anti‑ferroptosis mechanism. The detection of myocardial injury markers, such as LDH, indicated that OJP can ameliorate myocardial damage. Additionally, western blot analyses reveal that OJP decreases the expression levels of the ferroptosis‑related marker transferrin receptor 1 (TFR1) while simultaneously increasing expression levels of glutathione peroxidase 4 (GPX4) in a concentration‑dependent manner. Furthermore, fluorescence probe assays demonstrate that OJP not only reduces iron accumulation and oxidative stress but also inhibits the production of lipid peroxidation, as evidenced by a decrease in malondialdehyde (MDA) levels measured. In addition, OJP simultaneously decreased ferroptosis by enhancing mitochondrial function. Mechanistically, OJP attenuated ferroptosis by upregulating the endogenous key antioxidant factor nuclear factor erythroid 2‑related factor 2 (Nrf2), which in turn increased the expression of the downstream signaling molecule GPX4 and reduced the accumulation of the labile iron pool. Therefore, OJP may be a novel therapeutic intervention for DOX‑induced ferroptosis‑triggered myocardial injury.
Collapse
Affiliation(s)
- Yongting Chen
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Linlin Ma
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yuzhong Yan
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiaoying Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Lizhi Cao
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yanfei Li
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Ming Li
- Administration Office, East Hospital Affiliated to Tongji University, Shanghai 201318, P.R. China
| |
Collapse
|
2
|
Zhang Y, Cai X, Ma X, Yan H, Wu Q, Tong H, Zheng Z. Delavinone elicits oxidative stress and triggers ferroptosis in colorectal cancer by inhibiting PKCδ-mediated phosphorylation of Nrf2. Chem Biol Interact 2025; 405:111312. [PMID: 39551424 DOI: 10.1016/j.cbi.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Ferroptosis is a potential therapeutic approach for colorectal cancer (CRC). Studies have shown that peimine and its analogs exhibit anti-cancer potential; however, the intricate relationship between ferroptosis and their efficacy in fighting CRC remains unclear. In this study, we attempted to assess the therapeutic impact of peimine and its analogs on CRC and unravel the underlying mechanisms. CRC cells and a DSS/AOM-induced CRC mouse model were employed for in vitro and in vivo experiments, molecular interactions and co-immunoprecipitation were used to identify target proteins. Among the compounds, delavinone significantly inhibited CRC cell proliferation and increased cellular lipid ROS levels, MDA accumulation, and GSH depletion; the ferroptosis inhibitors DFO and Fer-1 ameliorated delavinone-induced cell death. Mechanistically, delavinone impedes PKCδ-mediated Nrf2 phosphorylation by inhibiting the kinase activity of PKCδ, thereby decreasing Nrf2 nuclear translocation and downstream GSH synthesis-related gene expression. overexpression of GPX4 weakened the anticancer effect of delavinone, underscoring delavinone's inhibition of the PKCδ/Nrf2/GPX4 signaling axis and induction of ferroptosis in CRC cells. Consistent with in vitro findings, delavinone notably hindered AOM/DSS-induced colorectal carcinogenesis, exhibiting a pronounced pro-ferroptosis effect on CRC. This study delineates that delavinone exerts its anticancer activity by inducing ferroptosis through PKCδ inhibition, consequently reducing Nrf2 phosphorylation. These findings position delavinone as a promising candidate for CRC treatment.
Collapse
Affiliation(s)
- Ya Zhang
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xiexiao Cai
- Gastrointestinal Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiaojing Ma
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanjuan Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| | - Zhihai Zheng
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Pu X, Wu H, Liu X, Yang F. PRMT4 Reduced Erastin-Induced Ferroptosis in Nasopharyngeal Carcinoma Cisplatin-Resistant Cells by Nrf2/GPX4 Pathway. J Environ Pathol Toxicol Oncol 2025; 44:57-71. [PMID: 39462450 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the common malignant tumors in clinic. In the current study, we aim to investigate the effects of PRMT4 on erastin-induced ferroptosis in NPC by cisplatin resistant. PRMT4 expression in patients with NPC by cisplatin was upregulated. PRMT4 upregulation promoted cell growth of erastin-induced ferroptosis in NPC cisplatin-resistant cells. PRMT4 downregulation reduced cell growth of erastin-induced ferroptosis in NPC cisplatin-resistant cells. PRMT4 promoted tumor volume in mice model of erastin-induced NPC by cisplatin. PRMT4 upregulation reduced erastin-induced ferroptosis in NPC cisplatin-resistant cells by mitochondrial damage. PRMT4 upregulation induced Nrf2 protein expression in model of erastin-induced NPC by cisplatin. Nrf2 reduced the effects of si-PRMT4 on cell growth of erastin-induced ferroptosis in NPC cisplatin-resistant cells. Nrf2 inhibitor reduced the effects of PRMT4 on cell growth of erastin-induced ferroptosis in NPC cisplatin-resistant cells. Nrf2 reduced the effects of si-PRMT4 on erastin-induced ferroptosis in NPC cisplatin-resistant cells by mitochondrial damage. PRMT4 protein interlinked with Nrf2 protein to decrease Nrf2 ubiquitination. Methylation increased PRMT4 DNA stability. Collectively, our data reveal that PRMT4 reduced erastin-induced ferroptosis in NPC cisplatin-resistant cells by Nrf2/GPX4 pathway, suggesting that targeting PRMT4 may present as a potential strategy against the development of NPC.
Collapse
Affiliation(s)
| | - Hong Wu
- Department of Otolaryngology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Xiaoyan Liu
- Department of Otolaryngology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Fang Yang
- Department of Otolaryngology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| |
Collapse
|
4
|
Wu L, Wang LT, Du YX, Zhang YM, Ren J. Asiatic acid ameliorates doxorubicin-induced cardiotoxicity by promoting FPN-mediated iron export and inhibiting ferroptosis. Acta Pharmacol Sin 2025; 46:81-95. [PMID: 39143234 PMCID: PMC11695865 DOI: 10.1038/s41401-024-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Doxorubicin (DOX), a common chemotherapeutic agent in cancer therapy, is accompanied by pronounced cardiotoxicity. Ferroptosis has been implicated in the pathogenesis and therapeutics of DOX-induced cardiotoxicity (DIC). Asiatic acid (AA), a pentacyclic triterpene from the Chinese medicinal herb Centella asiatica, displays antioxidant, anti-inflammatory, and antiapoptotic activities. In this study, we investigated the beneficial effects of AA against DOX-induced ferroptosis and cardiotoxicity and the underlying mechanisms. A chronic DIC model was established by challenging mice with DOX (5 mg/kg, i.p.) once per week for 4 weeks. Concurrent with DOX insult, the mice were administered AA (25 mg·kg-1·d-1, i.g.). Cardiac function and mechanical properties of isolated cardiomyocytes were evaluated at the end of treatment. We showed that AA administration preserved cardiac function, significantly reduced cardiac injury, and improved cardiomyocyte contractile function in DIC mice. The beneficial effects of AA were causally linked to the inhibition of DOX-induced ferroptosis both in vivo and in vitro. We revealed that AA attenuated DOX-induced iron accumulation in HL-1 cells by increasing FPN-mediated iron export, in a Nrf2-dependent manner. AA upregulated Nrf2 expression and promoted Nrf2 nuclear translocation in DOX-treated HL-1 cells. Moreover, AA-offered benefits against DOX-induced cardiac dysfunction and ferroptosis were abolished by Nrf2 inhibitor ML385 (30 mg·kg-1·d-1, i.p.) administrated 30 min before AA in DIC mice. Our data favor that AA promotes FPN-mediated iron export to inhibit iron overload and ferroptosis in DIC, suggesting its therapeutic potential in the treatment of DIC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Li-Tao Wang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yu-Xin Du
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ying-Mei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
5
|
Zhou X, Wang H, Yan B, Nie X, Chen Q, Yang X, Lei M, Guo X, Ouyang C, Ren Z. Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07642-5. [PMID: 39641901 DOI: 10.1007/s10557-024-07642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs. METHODS A comprehensive review was conducted using the literature researches. RESULTS AND DISCUSSION Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs. CONCLUSION There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Xianpeng Zhou
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Hao Wang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Biao Yan
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xinwen Nie
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaosong Yang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Min Lei
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiying Guo
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Changhan Ouyang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Wang Y, Zhao X, Chen B, Chen S, Liang Y, Chen D, Li X. Methylophiopogonanone A Inhibits Ferroptosis in H9c2 Cells: An Experimental and Molecular Simulation Study. Molecules 2024; 29:5764. [PMID: 39683922 DOI: 10.3390/molecules29235764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, homoisoflavone methylophiopogonanone A (MOA) was investigated for its inhibitory effect on ferroptosis of H9c2 cells using a set of cellular assays, such as BODIPY-probed and H2DCFDA-probed flow cytometry analyses, cell counting kit-8 analysis (CCK-8), and lactate dehydrogenase (LDH) release analysis. All these cellular assays adopted Fer-1 as the positive control. Subsequently, MOA and Fer-1 were subjected to two antioxidant assays, i.e., 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging and 2,2'-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid radical (ABTS•+)-scavenging. Finally, MOA, along with Fer-1, were systematically analyzed for molecular docking and dynamics simulations using a set of software tools. The experimental results revealed that MOA could inhibit ferroptosis of H9c2 cells but did not effectively scavenge PTIO• and ABTS•+ free radicals. Two molecular simulation methods or algorithms suggested that MOA possessed similar binding affinity and binding free energy (∆Gbind) to Fer-1. Visual analyses indicated various hydrophobic interactions between MOA and one of the seven enzymes, including superoxide dismutase (SOD), dihydroorotate dehydrogenase (DHODH), ferroportin1 (FPN), ferroptosis suppressor protein 1 (FSP1), glutathione peroxidase 4 (GPX4), nicotinamide adenine dinucleotide phosphate (NADPH), and solute carrier family 7 member 11 (SLC7A11). Based on these experimental and molecular simulation results, it is concluded that MOA, a homoisoflavonoid with meta-di-OHs, can inhibit ferroptosis in H9c2 cells. Its inhibitory effect is mainly attributed to the regulation of enzymes rather than direct free radical scavenging. The regulation of enzymes primarily depends on hydrophobic interactions rather than H-bond formation. During the process, flexibility around position 9 allows MOA to adjust to the enzyme binding site. All these findings provide foundational information for developing MOA and its derivatives as potential drugs for myocardial diseases.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xi Zhao
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ban Chen
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Shaoman Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yongbai Liang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
7
|
Zheng LY, Zhang NY, Zheng H, Wang KM, Zhang J, Meng N, Jiang CS. Synthesis and biological evaluation of ferrostatin-based diamide derivatives as new ferroptosis inhibitors. Bioorg Med Chem Lett 2024; 113:129974. [PMID: 39332647 DOI: 10.1016/j.bmcl.2024.129974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Ferroptosis, a distinct type of cell death caused by iron and lipid peroxidation, has been associated with several diseases, including cardiovascular disorders. Ferrostatin-1 (Fer-1) is a known ferroptosis inhibitor, but its clinical application is limited by low efficacy and stability. In the present study, a series of Fer-1-based diamide derivatives was synthesized and evaluated to enhance ferroptosis inhibition and in vitro metabolic stability. The synthesized compounds were tested for their protective effects against Erastin-induced injury in human vascular endothelial cells (HUVECs). Among the derivatives, compound 36 exhibited the most potent anti-ferroptosis activity with an EC50 value of 0.58 ± 0.02 µM. Remarkably, compound 36 also demonstrated superior stability in both microsomal (human and mouse) and mouse plasma assays. These findings indicated ferroptosis inhibitor 36 as a promising hit for further developing potential therapeutic drug candidates in cardiovascular diseases.
Collapse
Affiliation(s)
- Lei-Yin Zheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hui Zheng
- Jinan University Hospital, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
8
|
Wang J, Yi H, Li J, Yang Y, Sun G, Xue Y, He L. P62-autophagic pathway degrades SLC7A11 to regulate ferroptosis in doxorubicin-induced cardiotoxicity. Life Sci 2024; 356:122981. [PMID: 39147314 DOI: 10.1016/j.lfs.2024.122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Doxorubicin-induced cardiotoxicity (DIC) poses a significant challenge, impeding its widespread application. Emerging evidence suggests the involvement of ferroptosis in the DIC. While the downregulation of SLC7A11 expression has been linked to the promotion of ferroptosis, the precise regulatory mechanism remains unclear. Recent studies, including our own, have highlighted abnormal levels of autophagy adapter protein P62 and autophagy in DIC development. Thus, our study aimed to further investigate the role of autophagy and ferroptosis in DIC, elucidating underlying molecular mechanisms across molecular, cellular, and whole-organ levels utilizing gene knockdown, immunoprecipitation, and mass spectrometry techniques. The results of our findings unveiled cardiomyocyte damage, heightened autophagy levels, and ferroptosis in DOX-treated mouse hearts. Notably, inhibition of autophagy levels attenuated DOX-induced ferroptosis. Mechanistically, we discovered that the autophagy adaptor protein P62 mediates the entry of SLC7A11 into the autophagic pathway for degradation. Furthermore, the addition of autophagy inhibitors (CQ or BAF) could elevate SLC7A11 and GPX4 protein expression, reduce the accumulation of Fe2+ and ROS in cardiomyocytes, and thus mitigate DOX-induced ferroptosis. In summary, our findings underscore the pivotal role of the P62-autophagy pathway in SLC7A11 degradation, modulating ferroptosis to exacerbate DIC. This finding offers significant insights into the underlying molecular mechanisms of DOX-induced ferroptosis and identifies new targets for reversing DIC.
Collapse
Affiliation(s)
- Jihong Wang
- The Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hong Yi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou 519041, Guangdong, China
| | - Juxiang Li
- The Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yuting Yang
- The Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Guofang Sun
- The Department of Electrocardiogram Diagnosis, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou 519041, Guangdong, China.
| | - Ling He
- The Department of Geriatrics, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
9
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
10
|
Ou W, Liu H, Chen C, Yang C, Zhao X, Zhang Y, Zhang Z, Huang S, Mo H, Lu W, Wang X, Chen A, Yan J, Song X. Spexin inhibits excessive autophagy-induced ferroptosis to alleviate doxorubicin-induced cardiotoxicity by upregulating Beclin 1. Br J Pharmacol 2024; 181:4195-4213. [PMID: 38961632 DOI: 10.1111/bph.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is widely used in the treatment of malignant tumours, but doxorubicin-induced cardiotoxicity severely limits its clinical application. Spexin is a neuropeptide that acts as a novel biomarker in cardiovascular disease. However, the effects of spexin on doxorubicin-induced cardiotoxicity is unclear. EXPERIMENTAL APPROACH We established a model of doxorubicin-induced cardiotoxicity both in vivo and in vitro. Levels of cardiac damage in mice was assessed through cardiac function assessment, determination of serum cardiac troponin T and CKMB levels and histological examination. CCK8 and PI staining were used to assess the doxorubicin-induced toxicity in cultures of cardiomyocytes in vitro. Ferroptosis was assessed using FerroOrange staining, determination of MDA and 4-HNE content and ferroptosis-associated proteins SLC7A11 and GPX4. Mitochondrial membrane potential and lipid peroxidation levels were measured using TMRE and C11-BODIPY 581/591 probes, respectively. Myocardial autophagy was assessed by expression of P62 and Beclin1. KEY RESULTS Spexin treatment improved heart function of mice with doxorubicin-induced cardiotoxicity, and attenuated doxorubicin-induced cardiotoxicity by decreasing iron accumulation, abnormal lipid metabolism and inhibiting ferroptosis. Interestingly, doxorubicin caused excessive autophagy in cardiomyocyte in culture, which could be alleviated by treatment with spexin. Knockdown of Beclin 1 eliminated the protective effects of spexin in mice with DIC. CONCLUSION AND IMPLICATIONS Spexin ameliorated doxorubicin-induced cardiotoxicity by inhibiting excessive autophagy-induced ferroptosis, suggesting that spexin could be a drug candidate against doxorubicin-induced cardiotoxicity. Beclin 1 might be critical in mediating the protective effect of spexin against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Haiqiong Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Cardiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xiaoqing Zhao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Zhiyin Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Shuwen Huang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Liao P, Han L, Tao R, Li D, Zhang P, Xiao H. Specific peptides targeting the myocardiocyte are prognostic markers for heart attack: Function of α-SMA protein. Int J Biol Macromol 2024; 280:135793. [PMID: 39304042 DOI: 10.1016/j.ijbiomac.2024.135793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease that often results in a significant decline in heart function and associated complications. α-SMA (α-smooth muscle cell actin) is an important biomarker in the process of cardiac remodeling and repair, and its expression level is closely related to myocardial remodeling and prognosis. Therefore, the purpose of this study was to investigate the potential of nanoparticles containing cardiomyocyte targeting peptides in predicting prognosis and α-SMA protein expression after myocardial infarction, with a view to providing new therapeutic strategies and clinical guidelines. In this study, a novel targeting nanoparticle was constructed, using cardiomyocyte specific peptides as targeting ligands, and characterized by loading different drugs. Subsequently, a mouse model of myocardial infarction was used to systematically evaluate the effect of nanoparticles on α-SMA protein expression and prognosis prediction ability after MI. The expression level of α-SMA was analyzed by Western blot and immunohistochemistry, and the prognosis was evaluated by cardiac function assessment. The study found that nanoparticles containing cardiomyocyte targeting peptides significantly increased α-SMA expression levels and improved heart function in animal models of myocardial infarction. Compared with the control group, the application of targeted nanoparticles was closely related to the level of myocardial cell repair and fibrosis, and could effectively predict the prognosis after myocardial infarction. Therefore, nanoparticles containing cardiomyocyte targeting peptides can not only effectively improve the expression of α-SMA, but also serve as an important prognostic tool after myocardial infarction.
Collapse
Affiliation(s)
- Pengfei Liao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Lu Han
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Ran Tao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Dandan Li
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China.
| | - Hongbing Xiao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China.
| |
Collapse
|
12
|
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones 2024; 29:666-680. [PMID: 39343295 PMCID: PMC11490929 DOI: 10.1016/j.cstres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Doxorubicin (DOX) is the most commonly used anthracycline anticancer agent, while its clinical utility is limited by harmful side effects like cardiotoxicity. Numerous studies have elucidated that programmed cell death plays a significant role in DOX-induced cardiotoxicity (DIC). This review summarizes several kinds of programmed cell death, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, oxidative stress, inflammation, and mitochondrial dysfunction are also important factors in the molecular mechanisms of DIC. Besides, a comprehensive understanding of specific signal pathways of DIC can be helpful to its treatment. Therefore, the related signal pathways are elucidated in this review, including sirtuin deacetylase (silent information regulator 2 [Sir2]) 1 (SIRT1)/nuclear factor erythroid 2-related factor 2, SIRT1/Klotho, SIRT1/Recombinant Sestrin 2, adenosine monophosphate-activated protein kinase, AKT, and peroxisome proliferator-activated receptor. Heat shock proteins function as chaperones, which play an important role in various stressful situations, especially in the heart. Thus, some of heat shock proteins involved in DIC are also included. Hence, the last part of this review focuses on the therapeutic research based on the mechanisms above.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Second Clinical Medical College, Southern Medical University, Guangzhou, China.
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Zhou Y, Liao Q, Li D, Chen L, Zhang H, Yi B. Vitamin D receptor alleviates lipid peroxidation in diabetic nephropathy by regulating ACLY/Nrf2/Keap1 pathway. FASEB J 2024; 38:e70060. [PMID: 39302807 DOI: 10.1096/fj.202401543r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The membrane lipid damage caused by reactive oxygen species(ROS) and various peroxides, namely lipid peroxidation, plays an important role in the progression of diabetic nephropathy (DN).We previously reported that vitamin D receptor(VDR) plays an active role in DN mice by modulating autophagy disorders. However, it is unclear whether the ATP-citrate lyase (ACLY)/NF-E2-related factor-2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway is associated with the reduction of lipid peroxidation by VDR in the DN model. We found that in the DN mouse model, VDR knockout significantly aggravated mitochondrial morphological damage caused by DN, increased the expression of ACLY, promoted the accumulation of ROS, lipid peroxidation products Malondialdehyde(MDA) and 4-hydroxy-2-nonenal (4-HNE),consumed the Nrf2/Keap1 system, thus increasing lipid peroxidation. However, the overexpression of VDR and intervention with the VDR agonist paricalcitol (Pari) can reduce the above damage. On the other hand, cellular experiments have shown that Pari can significantly reduce the elevated expression of ACLY and ROS induced by advanced glycation end products (AGE). However, ACLY overexpression partially eliminated the positive effects of the VDR agonist. Next, we verified the transcriptional regulation of ACLY by VDR through chromatin immunoprecipitation (ChIP)-qPCR and dual luciferase experiments. Moreover, in AGE models, knockdown of ACLY decreased lipid peroxidation and ROS production, while intervention with Nrf2 inhibitor ML385 partially weakened the protective effect of ACLY downregulation. In summary, VDR negatively regulates the expression of ACLY through transcription, thereby affecting the state of Nrf2/Keap1 system and regulating lipid peroxidation, thereby inhibiting kidney injury induced by DN.
Collapse
Affiliation(s)
- Yueyi Zhou
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Qin Liao
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Li Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
15
|
Hu K, Wang H, Wang H, Li T, Liu L, Zhang H, Li Z, Wang S, Han L. Lipid discovered in American ginseng alleviates doxorubicin-induced cardiotoxicity by inhibiting cardiomyocyte ferroptosis. Fitoterapia 2024; 177:106097. [PMID: 38945490 DOI: 10.1016/j.fitote.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Doxorubicin (Dox)-induced cardiotoxicity (DIC) has limited its clinical application. It is crucial to discover more effective substances to treat DIC. In this study, a zebrafish model is used to evaluate the inhibition of DIC in the lipids in American ginseng (AGL) compared with the lipids in soybeans (SOL) and in egg yolks (YOL). A lipidomics approach based on Q Exactive LC-MS/MS is employed to monitor, identify, and analyze the lipid composition of three lipid samples. The H9c2 cell was used to investigate the key lipid in AGL for its effect mechanism in alleviating DIC. The results showed that AGL alleviated DIC on zebrafish by increasing the stroke volume, heart rate, and fractional shortening compared to SOL and YOL. A total of 216 differential lipids were identified among the three types of lipids using lipidomics. Besides, a fatty acid with 18 carbons and four double bonds, FA (18:4) was the dominant proportion in AGL and possessed the highest variable importance of projection (VIP) value. FA (18:4) also showed significant bioactivity to alleviate DIC in zebrafish. Furthermore, FA (18:4) reduced the ferric ions and reactive oxygen species (ROS) accumulation, increased GPX4 expression, and relieved mitochondrial damage to inhibit Dox-induced ferroptosis in H9c2 cells. Therefore, the composition characteristic and anti-DIC effect of AGL were revealed; FA (18,4) was identified for the first time to be a novel active component of AGL against DIC by inhibiting ferroptosis. These results provide a new understanding of AG-derived bioactive lipids and their potential benefits for heart health.
Collapse
Affiliation(s)
- Kaiqing Hu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Huan Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Haiyang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Taiping Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Lu Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Haiyan Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| |
Collapse
|
16
|
Liu D, Cheng X, Wu H, Song H, Bu Y, Wang J, Zhang X, Yan C, Han Y. CREG1 attenuates doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis of cardiomyocytes. Redox Biol 2024; 75:103293. [PMID: 39094399 PMCID: PMC11345695 DOI: 10.1016/j.redox.2024.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Doxorubicin (DOX)-induced cardiotoxicity limits the application of DOX in cancer patients. Currently, there is no effective prevention or treatment for DOX-induced cardiotoxicity. The cellular repressor of E1A-stimulated genes (CREG1) is a cardioprotective factor that plays an important role in the maintenance of cardiomyocytes differentiation and homeostasis. However, the role and mechanism of CREG1 in DOX-induced cardiotoxicity has not yet been elucidated. METHODS In vivo, C57BL/6J mice, CREG1 transgenic and cardiac-specific CREG1 knockout mice were used to establish a DOX-induced cardiotoxicity model. H&E staining, Masson's trichrome, WGA staining, real-time PCR, and western blotting were performed to examine fibrosis and ferroptosis in the myocardium. In vitro, neonatal mouse cardiomyocytes (NMCMs) were cultured and stimulated with DOX, CREG1-overexpressed adenovirus, and small interfering RNA was used to establish CREG1 overexpression or knockdown cardiomyocytes. Transcriptomics, real-time PCR, western blotting, and immunoprecipitation were used to examine the roles and mechanisms of CREG1 in cardiomyocytes ferroptosis. RESULTS The mRNA and protein levels of CREG1 were reduced in the hearts and NMCMs after DOX treatment. CREG1 overexpression alleviated myocardial damage and inhibited DOX-induced ferroptosis in the myocardium. CREG1 deficiency in the heart aggravated DOX-induced cardiotoxicity and ferroptosis. In vitro, CREG1 overexpression inhibited cardiomyocytes ferroptosis induced by DOX, and CREG1 knockdown aggravated DOX-induced cardiotoxicity. Mechanistically, CREG1 inhibited the mRNA and protein expression of pyruvate dehydrogenase kinase 4 (PDK4) by regulating the F-box and WD repeat domain containing 7 (FBXW7)-forkhead box O1 (FOXO1) pathway. PDK4 deficiency reversed the effects of CREG1 knockdown on cardiomyocytes ferroptosis following DOX treatment. CONCLUSION CREG1 alleviated DOX-induced cardiotoxicity by inhibiting ferroptosis in cardiomyocytes. Our findings may help clarify the new roles of CREG1 in the development of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoli Cheng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuxin Bu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
17
|
Guo L, Ma J, Xiao M, Liu J, Hu Z, Xia S, Li N, Yang Y, Gong H, Xi Y, Fu R, Jiang P, Xia C, Lauschke VM, Yan M. The involvement of the Stat1/Nrf2 pathway in exacerbating Crizotinib-induced liver injury: implications for ferroptosis. Cell Death Dis 2024; 15:600. [PMID: 39160159 PMCID: PMC11333746 DOI: 10.1038/s41419-024-06993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Crizotinib carries an FDA hepatotoxicity warning, yet analysis of the FAERS database suggests that the severity of its hepatotoxicity risks, including progression to hepatitis and liver failure, might be underreported. However, the underlying mechanism remains poorly understood, and effective intervention strategies are lacking. Here, mRNA-sequencing analysis, along with KEGG and GO analyses, revealed that DEGs linked to Crizotinib-induced hepatotoxicity predominantly associate with the ferroptosis pathway which was identified as the principal mechanism behind Crizotinib-induced hepatocyte death. Furthermore, we found that ferroptosis inhibitors, namely Ferrostatin-1 and Deferoxamine mesylate, significantly reduced Crizotinib-induced hepatotoxicity and ferroptosis in both in vivo and in vitro settings. We have also discovered that overexpression of AAV8-mediated Nrf2 could mitigate Crizotinib-induced hepatotoxicity and ferroptosis in vivo by restoring the imbalance in glutathione metabolism, iron homeostasis, and lipid peroxidation. Additionally, both Stat1 deficiency and the Stat1 inhibitor NSC118218 were found to reduce Crizotinib-induced ferroptosis. Mechanistically, Crizotinib induces the phosphorylation of Stat1 at Ser727 but not Tyr701, promoting the transcriptional inhibition of Nrf2 expression after its entry into the nucleus to promote ferroptosis. Meanwhile, we found that MgIG and GA protected against hepatotoxicity to counteract ferroptosis without affecting or compromising the anti-cancer activity of Crizotinib, with a mechanism potentially related to the Stat1/Nrf2 pathway. Overall, our findings identify that the phosphorylation activation of Stat1 Ser727, rather than Tyr701, promotes ferroptosis through transcriptional inhibition of Nrf2, and highlight MgIG and GA as potential therapeutic approaches to enhance the safety of Crizotinib-based cancer therapy.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaYi Liu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - ZhiYu Hu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Shuang Xia
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Department of Pharmacy, Wuzhou Gongren Hospital, Wuzhou, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yang Xi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Rao Fu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Pei Jiang
- Department of Pharmacy, Jining No 1 People's Hospital, Jining Medical University, Jining, China
| | - ChunGuang Xia
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd, Lianyungang, Jiangsu, China
| | - Volker M Lauschke
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
18
|
Xu Y, Cai F, Zhou Y, Tang J, Mao J, Wang W, Li Z, Zhou L, Feng Y, Xi K, Gu Y, Chen L. Magnetically attracting hydrogel reshapes iron metabolism for tissue repair. SCIENCE ADVANCES 2024; 10:eado7249. [PMID: 39151007 PMCID: PMC11328908 DOI: 10.1126/sciadv.ado7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Ferroptosis, caused by disorders of iron metabolism, plays a critical role in various diseases, making the regulation of iron metabolism essential for tissue repair. In our analysis of degenerated intervertebral disc tissue, we observe a positive correlation between the concentration of extracellular iron ions (ex-iron) and the severity of ferroptosis in intervertebral disc degeneration (IVDD). Hence, inspired by magnets attracting metals, we combine polyether F127 diacrylate (FDA) with tannin (TA) to construct a magnetically attracting hydrogel (FDA-TA). This hydrogel demonstrates the capability to adsorb ex-iron and remodel the iron metabolism of cells. Furthermore, it exhibits good toughness and self-healing properties. Notably, it can activate the PI3K-AKT pathway to inhibit nuclear receptor coactivator 4-mediated ferritinophagy under ex-iron enrichment conditions. The curative effect and related mechanism are further confirmed in vivo. Consequently, on the basis of the pathological mechanism, a targeted hydrogel is designed to reshape iron metabolism, offering insights for tissue repair.
Collapse
Affiliation(s)
- Yichang Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Feng Cai
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yidi Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Ziang Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yu Feng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| |
Collapse
|
19
|
Qiao O, Zhang L, Han L, Wang X, Li Z, Bao F, Hao H, Hou Y, Duan X, Li N, Gong Y. Rosmarinic acid plus deferasirox inhibits ferroptosis to alleviate crush syndrome-related AKI via Nrf2/Keap1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155700. [PMID: 38704914 DOI: 10.1016/j.phymed.2024.155700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Myoglobin (Mb) induced death of renal tubular epithelial cells (RTECs) is a major pathological factor in crush syndrome-related acute kidney injury (CS-AKI). It is unclear whether ferroptosis is involved and could be a target for treatment. PURPOSE This study aimed to evaluate the potential therapeutic effects of combining the natural small molecule rosemarinic acid (RA) and the iron chelator deferasirox (Dfe) on CS-AKI through inhibition of ferroptosis. METHODS Sequencing data were downloaded from the GEO database, and differential expression analysis was performed using the R software limma package. The CS-AKI mouse model was constructed by squeezing the bilateral thighs of mice for 16 h with 1.5 kg weight. TCMK1 and NRK-52E cells were induced with 200 μM Mb and then treated with RA combined with Dfe (Dfe + RA, both were 10 μM). Functional and pathological changes in mouse kidney were evaluated by glomerular filtration rate (GFR) and HE pathology. Immunofluorescence assay was used to detect Mb levels in kidney tissues. The expression levels of ACSL4, GPX4, Keap1, and Nrf2 were analyzed by WB. RESULTS We found that AKI mice in the GSE44925 cohort highly expressed the ferroptosis markers ACSL4 and PTGS2. CS-AKI mice showed a rapid decrease in GFR, up-regulation of ACSL4 expression in kidney tissue, and down-regulation of GPX4 expression, indicating activation of the ferroptosis pathway. Mb was found to deposit in renal tubules, and it has been proven to cause ferroptosis in TCMK1 and NRK-52E cells in vitro. We found that Dfe had a strong iron ion scavenging effect and inhibited ACSL4 expression. RA could disrupt the interaction between Keap1 andNrf2, stabilize Nrf2, and promote its nuclear translocation, thereby exerting antioxidant effects. The combination of Dfe and RA effectively reversed Mb induced ferroptosis in RTECs. CONCLUSION In conclusion, we found that RA combined with Dfe attenuated CS-AKI by inhibiting Mb-induced ferroptosis in RTECs via activating the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Ou Qiao
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Li Zhang
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Lu Han
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Xinyue Wang
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Zizheng Li
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Fengjiao Bao
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Herui Hao
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Yingjie Hou
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Xiaohong Duan
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Ning Li
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China; Key Laboratory for Disaster Medicine Technology, Tianjin, China.
| | - Yanhua Gong
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China; Key Laboratory for Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
20
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
21
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
22
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
23
|
Gao Y, Lu X, Zhang G, Liu C, Sun S, Mao W, Jiang G, Zhou Y, Zhang N, Tao S, Chen M, Chen S, Zhang L. DRD4 alleviates acute kidney injury by suppressing ISG15/NOX4 axis-associated oxidative stress. Redox Biol 2024; 70:103078. [PMID: 38354631 PMCID: PMC10876914 DOI: 10.1016/j.redox.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Acute kidney injury (AKI) is a life-threatening health condition associated with increasing morbidity and mortality. Despite extensive research on the mechanisms underlying AKI, effective clinical tools for prediction and treatment remain scarce. Oxidative stress and mitochondrial damage play a critical role in AKI and dopamine D4 receptor (DRD4) has been confirmed to be associated with oxidative stress. In this study, we hypothesized that DRD4 could attenuate AKI through its antioxidative and antiapoptotic effects. In vivo, DRD4 was remarkably decreased in the kidneys of mice subjected to ischemia/reperfusion injury (IRI) or cisplatin treatment. Notably, DRD4 significantly attenuated nephrotoxicity by suppressing oxidative stress and enhancing mitochondrial bioenergetics through the downregulation of reactive oxygen species (ROS) generation and NADPH oxidase 4 (NOX4) expression. In vitro, DRD4 demonstrated the ability to ameliorate oxidative stress-induced apoptosis in HK-2 cells subjected to hypoxia/reoxygenation- or cisplatin treatment. Transcriptome sequencing revealed that, mechanistically, DRD4 reduced the expression of its downstream target, interferon-stimulated gene 15 (ISG15), suppressing NOX4 ISGylation, enhancing the ubiquitination of NOX4, leading to its degradation, and ultimately counteracting oxidative stress-induced AKI. Altogether, these findings underscore the significance of DRD4 in AKI and elucidate DRD4 as a potential protectant against IRI or cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xun Lu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Chunhui Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Si Sun
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Weipu Mao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Guiya Jiang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yu Zhou
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Nieke Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shuchun Tao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Shuqiu Chen
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Lei Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Liu J, Liu H, Deng L, Wang T, Li L, Chen Y, Qu L, Zou W. Protective Role of Dioscin against Doxorubicin-Induced Chronic Cardiotoxicity: Insights from Nrf2-GPX4 Axis-Mediated Cardiac Ferroptosis. Biomolecules 2024; 14:422. [PMID: 38672439 PMCID: PMC11047995 DOI: 10.3390/biom14040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Recent evidence suggests that ferroptosis, an iron-facilitated cell death with excessive lipid peroxidation, is a critical mechanism underlying doxorubicin (DOX)-induced cardiotoxicity (DIC). Although dioscin has been reported to improve acute DIC, direct evidence is lacking to clarify the role of dioscin in chronic DIC and its potential mechanism in cardiac ferroptosis. In this study, we used chronic DIC rat models and H9c2 cells to investigate the potential of dioscin to mitigate DIC by inhibiting ferroptosis. Our results suggest that dioscin significantly improves chronic DIC-induced cardiac dysfunction. Meanwhile, it significantly inhibited DOX-induced ferroptosis by reducing Fe2+ and lipid peroxidation accumulation, maintaining mitochondrial integrity, increasing glutathione peroxidase 4 (GPX4) expression, and decreasing acyl-CoA synthetase long-chain family 4 (ACSL4) expression. Through transcriptomic analysis and subsequent validation, we found that the anti-ferroptotic effects of dioscin are achieved by regulating the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 axis and Nrf2 downstream iron metabolism genes. Dioscin further downregulates nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) and upregulates expression of frataxin (FXN) and ATP-binding cassette B8 (ABCB8) to limit mitochondrial Fe2+ and lipid peroxide accumulation. However, Nrf2 inhibition diminishes the anti-ferroptotic effects of dioscin, leading to decreased GPX4 expression and increased lipid peroxidation. This study is a compelling demonstration that dioscin can effectively reduce DIC by inhibiting ferroptosis, which is dependent on the Nrf2/GPX4 pathway modulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.L.); (H.L.); (L.D.); (T.W.); (L.L.); (Y.C.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.L.); (H.L.); (L.D.); (T.W.); (L.L.); (Y.C.)
| |
Collapse
|
25
|
Li R, Ning Y, Yuan Y, Yang X. Molecular mechanisms of ferroptosis and its effects on bladder cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:286-295. [PMID: 38755725 PMCID: PMC11103069 DOI: 10.11817/j.issn.1672-7347.2024.230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Indexed: 05/18/2024]
Abstract
Bladder cancer (BC) is one of the 3 common malignant tumors in the urinary system, with high incidence, easy metastasis, poor therapeutic efficacy, and poor prognosis, which seriously threatens the health of human. Tumor cells exhibit a strong demand for iron, and iron overload can induce ferroptosis, which is an iron dependent cell death caused by lipid peroxidation and cell membrane damage. Therefore, ferroptosis has strong anti-tumor potential. The molecular mechanisms of ferroptosis is associated with abnormalities in cellular phospholipid metabolism and iron metabolism, and dysregulation of antioxidant and non-antioxidant systems Xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4). Ferroptosis relevant molecules play important roles in the occurrence and development, metastasis, drug resistance, and immune response of BC, and are expected to become targets for the treatment of BC.
Collapse
Affiliation(s)
- Ruijie Li
- First School of Clinical Medical, Gansu University of Chinese Medicince, Lanzhou 730000.
- Department of Urology, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou 730050.
| | - Yiping Ning
- First School of Clinical Medical, Gansu University of Chinese Medicince, Lanzhou 730000
| | - Yacheng Yuan
- Gansu Provincial Key Laboratory of Stem Cell and Gene Drug, Lanzhou 730050, China
| | - Xukai Yang
- Department of Urology, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou 730050.
| |
Collapse
|
26
|
Yildirim-Balatan C, Fenyi A, Besnault P, Gomez L, Sepulveda-Diaz JE, Michel PP, Melki R, Hunot S. Parkinson's disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype. J Neuroinflammation 2024; 21:54. [PMID: 38383421 PMCID: PMC10882738 DOI: 10.1186/s12974-024-03043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.
Collapse
Affiliation(s)
- Cansu Yildirim-Balatan
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Alexis Fenyi
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Pierre Besnault
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Lina Gomez
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Patrick P Michel
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Ronald Melki
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Stéphane Hunot
- Sorbonne Université, Paris, France.
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France.
- Inserm UMRS 1127, Paris, France.
- CNRS UMR 7225, Paris, France.
| |
Collapse
|
27
|
Ryabov VV, Maslov LN, Vyshlov EV, Mukhomedzyanov AV, Kilin M, Gusakova SV, Gombozhapova AE, Panteleev OO. Ferroptosis, a Regulated Form of Cell Death, as a Target for the Development of Novel Drugs Preventing Ischemia/Reperfusion of Cardiac Injury, Cardiomyopathy and Stress-Induced Cardiac Injury. Int J Mol Sci 2024; 25:897. [PMID: 38255971 PMCID: PMC10815150 DOI: 10.3390/ijms25020897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is about 6% and has not decreased in recent years. The leading cause of death of these patients is ischemia/reperfusion (I/R) cardiac injury. It is quite obvious that there is an urgent need to create new drugs for the treatment of STEMI based on knowledge about the pathogenesis of I/R cardiac injury, in particular, based on knowledge about the molecular mechanism of ferroptosis. In this study, it was demonstrated that ferroptosis is involved in the development of I/R cardiac injury, antitumor drug-induced cardiomyopathy, diabetic cardiomyopathy, septic cardiomyopathy, and inflammation. There is indirect evidence that ferroptosis participates in stress-induced cardiac injury. The activation of AMPK, PKC, ERK1/2, PI3K, and Akt prevents myocardial ferroptosis. The inhibition of HO-1 alleviates myocardial ferroptosis. The roles of GSK-3β and NOS in the regulation of ferroptosis require further study. The stimulation of Nrf2, STAT3 prevents ferroptosis. The activation of TLR4 and NF-κB promotes ferroptosis of cardiomyocytes. MiR-450b-5p and miR-210-3p can increase the tolerance of cardiomyocytes to hypoxia/reoxygenation through the inhibition of ferroptosis. Circ_0091761 RNA, miR-214-3p, miR-199a-5p, miR-208a/b, miR-375-3p, miR-26b-5p and miR-15a-5p can aggravate myocardial ferroptosis.
Collapse
Affiliation(s)
- Vyacheslav V. Ryabov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Evgeniy V. Vyshlov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Mikhail Kilin
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Svetlana V. Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk 634050, Russia;
| | - Alexandra E. Gombozhapova
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Oleg O. Panteleev
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| |
Collapse
|
28
|
Wang S, Deng L, Chen J, Li Y, Zhong Y, Wang Y, Cao H. Role and efficacy of capecitabine in the anthracycline-free regimen in breast cancer patients: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2023; 149:17671-17682. [PMID: 37891407 DOI: 10.1007/s00432-023-05459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE Capecitabine has extensive utilization in the treatment of diverse solid tumors, and its efficacy has been substantiated. Its oral administration and minimal toxicity in clinical practice render it advantageous. Nevertheless, uncertainty remains regarding whether capecitabine can substitute anthracycline drugs in chemotherapy regimens to achieve a lower risk of anthracycline-induced degradation. Consequently, we conducted a meta-analysis of randomized controlled trials (RCTs) to assess the potential of capecitabine as a replacement for anthracycline drugs in chemotherapy regimens for breast cancer. METHODS We systematically searched PubMed, Embase, Web of Science, and the Cochrane Controlled Trials Register (CENTRAL) to retrieve eligible studies published before July 18, 2023. Two independent reviewers extracted relevant data from the included studies using a pre-established data extraction form. The primary endpoints of interest encompassed overall survival (OS) and progression-free survival (PFS) for postoperative adjuvant therapy, as well as pathological complete response (PCR) following neoadjuvant therapy. Adverse events were considered as secondary outcomes. The statistical analysis was performed using Revman 5.4.1. RESULTS A total of six studies involving 2348 breast cancer patients were deemed eligible according to the selection criteria. The pooled meta-analysis revealed that there were no statistically significant differences observed in the primary outcomes of overall survival (OS) (HR 1.06, 95% CI 0.88-1.28) and progression-free survival (PFS) (HR 1.10, 95% CI 0.90-1.34) across the four postoperative adjuvant chemotherapy trials, as well as in the two neoadjuvant chemotherapy trials with respect to the primary outcome of pathological complete response (PCR) (OR 1.65, 95% CI 0.93-2.95) when comparing regimens containing anthracycline drugs to those without. In terms of adverse events, the probability of experiencing diarrhea (OR 3.94, P = 0.004) and hand-foot syndrome (OR 10.89, P = 0.004) was significantly higher in the capecitabine group, attributable to the drug characteristics. Conversely, the likelihood of developing neutropenia (OR 0.50, P = 0.03) was higher in the anthracycline group. CONCLUSIONS According to the current evidence, there was no statistically significant difference in the primary outcomes when capecitabine was substituted for anthracycline drugs. Thus, capecitabine can be regarded as a feasible alternative in the subset of patients who necessitate the exclusion of anthracyclines.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lufeng Deng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiaren Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yilin Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yangyan Zhong
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Youquan Wang
- People's Hospital of Longhua District, Shenzhen, 518110, Guangdong, China.
| | - Hong Cao
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
29
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|