1
|
Leite AAS, Weber LV, Correa JPA, de Castro TLA, da Silva CCM, da Costa E Silva RMF, Cardoso CAL, Konradt-Moraes LC. Biodiesel production potential of Eichhornia crassipes (Mart.) Solms: comparison of collection sites and different alcohol transesterifications. Sci Rep 2024; 14:1586. [PMID: 38238408 PMCID: PMC10796625 DOI: 10.1038/s41598-024-51913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Renewable resources have stood out as raw materials in producing biofuels. This study aimed to evaluate the parameters of alcohol transesterification (ethanol and methanol) and localization of collection of aquatic macrophyte Eichhornia crassipes (Mart.) Solms in the production of biodiesel by in situ transesterification. E. crassipes was collected in Dourados and Corumbá (Brazil) municipalities. The fatty acid ester composition of the biodiesel was characterized and quantified by gas chromatography. The biodiesel properties were estimated using the BiodieselAnalyzer© program prediction. The ethyl transesterification resulted in higher yields, but the localization of collection was the most relevant parameter in biodiesel production according to the Permutation Multivariate Analysis of Variance. The simulation and comparison of the physical-chemical properties of E. crassipes biodiesel and BD 100 (commercial biodiesel) were promising for commercial application.
Collapse
Affiliation(s)
| | - Luciana Vincenzi Weber
- State University of Mato Grosso do Sul (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | | | | | - Carmem Cícera Maria da Silva
- Chemistry Department, Federal University of Espírito Santo (UFES), Campus Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | | | | | | |
Collapse
|
2
|
Hui GT, Meng TK, Kassim MA. Green ultrasonication-assisted extraction of microalgae Chlorella sp. for polysaturated fatty acid (PUFA) rich lipid extract using alternative solvent mixture. Bioprocess Biosyst Eng 2023; 46:1499-1512. [PMID: 37580470 DOI: 10.1007/s00449-023-02917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P < 0.05). The highest crude lipid yield of 25.05 ± 0.924% was achieved using ethanol-2-MeTHF mixture (2:1, v/v) with a solvent-to-biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.
Collapse
Affiliation(s)
- Goh Ting Hui
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Tan Kean Meng
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohd Asyraf Kassim
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
3
|
Azwar E, Mahari WAW, Liew RK, Ramlee MZ, Verma M, Chong WWF, Peng W, Ng HS, Naushad M, Sonne C, Lam SS. Remediation and recovery of Kariba weed as emerging contaminant in freshwater and shellfish aquaculture system via solvothermal liquefaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162673. [PMID: 36894104 DOI: 10.1016/j.scitotenv.2023.162673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fast growing Kariba weed causes major problems and pollution on freshwater and shellfish aquaculture systems by interfering with nutrient uptake of crops, restricting sunlight penetration, and decreasing water quality due to massive biomass of Kariba weed remnants. Solvothermal liquefaction is considered an emerging thermochemical technique to convert waste into high yield of value-added products. Solvothermal liquefaction (STL) of Kariba weed as an emerging contaminant was performed to investigate the effects of different types of solvents (ethanol and methanol) and Kariba weed mass loadings (2.5-10 % w/v) on treating and reducing the weed via conversion into potentially useful crude oil product and char. Up to 92.53 % of Kariba weed has been reduced via this technique. The optimal conditions for crude oil production were found to be at 5 % w/v of mass loading in methanol medium, resulting in a high heating value (HHV) of 34.66 MJ/kg and yield of 20.86 wt%, whereas the biochar production was found to be optimum at 7.5 % w/v of mass loading in methanol medium, resulting in 29.92 MJ/kg of HHV and 25.38 wt% of yield. The crude oil consisted of beneficial chemical compounds for biofuel production such as hexadecanoic acid, methyl ester (65.02 peak area %) and the biochar showed high carbon content (72.83 %). In conclusion, STL as a remediation for emerging Kariba weed is a feasible process for shellfish aquaculture waste treatment and biofuels production.
Collapse
Affiliation(s)
- Elfina Azwar
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Muhammad Zulhilmi Ramlee
- Centre of Research and Field Service, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia.
| |
Collapse
|
4
|
Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, Goh SW. Sulfonated magnetic multi-walled carbon nanotubes with enhanced bonding stability, high adsorption performance, and reusability for water remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40242-40259. [PMID: 36604398 DOI: 10.1007/s11356-022-25064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
Collapse
Affiliation(s)
- Chuan Chuan Lim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Qi Hwa Ng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Siti Kartini Enche Ab Rahim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Peng Yong Hoo
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Wei Ming Yeoh
- Department of Petrochemical Engineering, Universiti Tunku Abdul Rahman, 31900, Perak, Kampar, Malaysia
| | - Soon Wah Goh
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
5
|
Venkatesan EP, Murugesan P, Ellappan S, Rajendran S, Aabid A, Abbas M, Saleel CA, Remigious PA, Medapati SR. Effect of Kariba Weed Biodiesel Blended with n-Pentane on the Chosen Parameters of a Ceramic-Coated Thermal Barrier Direct Injection Diesel Engine. ACS OMEGA 2022; 7:46337-46346. [PMID: 36570275 PMCID: PMC9773814 DOI: 10.1021/acsomega.2c04937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 05/04/2023]
Abstract
In this experimental investigation, Kariba weed biodiesel (KSB) blended with n-pentane has been tested in conventional and ceramic-coated thermal barrier engines, and the results have been compiled and presented. A single-cylinder, four-stroke, direct injection diesel engine has been used as the test engine with eddy current dynamometer loading as used in the experimental setup. The tests were repeated in various ambient conditions to get an optimal value. Ceramic coating has been done with partially stabilized zirconia by the plasma arc spraying process. Among the quantum of tests conducted, 90% KSB blended with 10% n-pentane showed appreciable results when it was compared with the test fuel (neat diesel). The brake thermal efficiency and brake-specific fuel consumption were found to be better when compared with neat diesel. At increasing load, unburnt hydrocarbon, carbon monoxide, and smoke opacity emissions were appreciably reduced.
Collapse
Affiliation(s)
| | - Parthasarathy Murugesan
- Department
of Automobile Engineering, Vel Tech Rangarajan
Dr.Sagunthala R&D Institute of Science and Technology, Chennai600062, India
| | - Sivakumar Ellappan
- Department
of Mechanical Engineering, TJS Engineering
College, Chennai601206, Tamil Nadu, India
| | - Silambarasan Rajendran
- Department
of Mechanical Engineering, Annapoorna Engineering
College, Salem636308, Tamil Nadu, India
| | - Abdul Aabid
- Department
of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh11586, Saudi Arabia
| | - Mohamed Abbas
- Electrical
Engineering Department, College of Engineering, King Khalid University, Abha61421, Saudi Arabia
- Electronics
and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa35712, Egypt
| | - Chanduveetil Ahamed Saleel
- Department
of Mechanical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha61421, Saudi Arabia
| | | | | |
Collapse
|
6
|
Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules 2022; 27:molecules27206794. [PMID: 36296385 PMCID: PMC9608605 DOI: 10.3390/molecules27206794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
The present study uses the Taguchi method of experimental design to optimize lipid extraction from Spirulina spp. by ultrasound application and mechanical stirring. A Taguchi L9 orthogonal array was used to optimize various parameters, such as methanol: chloroform (M:C) ratio, biomass: solvent ratio, and extraction time for lipid extraction. The results were analyzed using the signal-to-noise (S/N) ratio and analysis of variance (ANOVA). The biomass: solvent ratio significantly influenced lipid content (p < 0.05) with 92.1% and 92.3% contributions to the lipid and S/N ratio data, respectively. The extraction time presented a contribution value of 5.0%, while the M:C ratio presented the most negligible contribution of 0.4% for S/N data. The optimum extraction conditions were: M:C ratio of 1:1, biomass: solvent ratio of 1:60, and extraction time of 30 min. The predominant fatty acids were palmitic acid (44.5%), linoleic acid (14.9%), and gamma-linolenic acid (13.4%). The confirmation experiments indicated a lipid content of 8.7%, within a 95% confidence interval, proving the Taguchi method’s effectiveness in optimizing the process parameters for lipid extraction.
Collapse
|
7
|
Saini RK, Prasad P, Shang X, Keum YS. Advances in Lipid Extraction Methods-A Review. Int J Mol Sci 2021; 22:13643. [PMID: 34948437 PMCID: PMC8704327 DOI: 10.3390/ijms222413643] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Extraction of lipids from biological tissues is a crucial step in lipid analysis. The selection of appropriate solvent is the most critical factor in the efficient extraction of lipids. A mixture of polar (to disrupt the protein-lipid complexes) and nonpolar (to dissolve the neutral lipids) solvents are precisely selected to extract lipids efficiently. In addition, the disintegration of complex and rigid cell-wall of plants, fungi, and microalgal cells by various mechanical, chemical, and enzymatic treatments facilitate the solvent penetration and extraction of lipids. This review discusses the chloroform/methanol-based classical lipid extraction methods and modern modifications of these methods in terms of using healthy and environmentally safe solvents and rapid single-step extraction. At the same time, some adaptations were made to recover the specific lipids. In addition, the high throughput lipid extraction methodologies used for liquid chromatography-mass spectrometry (LC-MS)-based plant and animal lipidomics were discussed. The advantages and disadvantages of various pretreatments and extraction methods were also illustrated. Moreover, the emerging green solvents-based lipid extraction method, including supercritical CO2 extraction (SCE), is also discussed.
Collapse
Affiliation(s)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea;
| |
Collapse
|
8
|
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139420. [PMID: 32464391 DOI: 10.1016/j.scitotenv.2020.139420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lipid-based biofuel is a clean and renewable energy that has been recognized as a promising replacement for petroleum-based fuels. Lipid-based biofuel can be made from three different types of intracellular biolipids; triacylglycerols (TAGs), wax esters (WEs), and polyhydroxybutyrate (PHB). Among many lipid-producing prokaryotes and eukaryotes, biolipids from prokaryotes have been recently highlighted due to simple cultivation of lipid-producing prokaryotes and their ability to accumulate high biolipid contents. However, the cost of lipid-based biofuel production remains high, in part, because of high cost of lipid extraction processes. This review summarizes the production mechanisms of these different types of biolipids from prokaryotes and extraction methods for these biolipids. Traditional and improved physical/chemical approaches for biolipid extraction remain costly, and these methods are summarized and compared in this review. Recent advances in biological lipid extraction including phage-based cell lysis or secretion of biolipids are also discussed. These new techniques are promising for bacterial biolipids extraction. Challenges and future research needs for cost-effective lipid extraction are identified in this review.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
9
|
Sankaran R, Show PL, Cheng YS, Tao Y, Ao X, Nguyen TDP, Van Quyen D. Integration Process for Protein Extraction from Microalgae Using Liquid Biphasic Electric Flotation (LBEF) System. Mol Biotechnol 2018; 60:749-761. [DOI: 10.1007/s12033-018-0111-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Chen J, Li J, Zhang X, Tyagi RD, Dong W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit Rev Biotechnol 2018; 38:902-917. [DOI: 10.1080/07388551.2017.1418733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
- Eau, Terre et Environnement, INRS, Québec, Canada
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | | | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|