1
|
Azuma M, Konno N, Sakata I, Koshimizu TA, Kaiya H. Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes. Cell Tissue Res 2024; 397:61-76. [PMID: 38727755 DOI: 10.1007/s00441-024-03896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 07/09/2024]
Abstract
Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.
Collapse
Affiliation(s)
- Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan.
| | - Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 3190, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimookubo, Saitama, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Kaiya
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 3190, Japan
- Division of Drug Discovery, Grandsoul Research Institute for Immunology, Inc. 8-1 Utano-Matsui, Uda, Nara, Japan
| |
Collapse
|
2
|
Tang N, Li Y, Li Y, Xu S, Wang M, Wang B, Liu Y, Zhang S, Wu H, Zhang X, Zhou B, Li Z. Motilin, a Novel Orexigenic Factor, Involved in Feeding Regulation in Yangtze Sturgeon ( Acipenser dabryanus). Biomolecules 2024; 14:433. [PMID: 38672450 PMCID: PMC11048545 DOI: 10.3390/biom14040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Motilin is a gastrointestinal hormone that is mainly produced in the duodenum of mammals, and it is responsible for regulating appetite. However, the role and expression of motilin are poorly understood during starvation and the weaning stage, which is of great importance in the seeding cultivation of fish. In this study, the sequences of Yangtze sturgeon (Acipenser dabryanus Motilin (AdMotilin)) motilin receptor (AdMotilinR) were cloned and characterized. The results of tissue expression showed that by contrast with mammals, AdMotilin mRNA was richly expressed in the brain, whereas AdMotilinR was highly expressed in the stomach, duodenum, and brain. Weaning from a natural diet of T. Limnodrilus to commercial feed significantly promoted the expression of AdMotilin in the brain during the period from day 1 to day 10, and after re-feeding with T. Limnodrilus the change in expression of AdMotilin was partially reversed. Similarly, it was revealed that fasting increased the expression of AdMotilin in the brain (3 h, 6 h) and duodenum (3 h), and the expression of AdMotilinR in the brain (1 h) in a time-dependent manner. Furthermore, it was observed that peripheral injection of motilin-NH2 increased food intake and the filling index of the digestive tract in the Yangtze sturgeon, which was accompanied by the changes of AdMotilinR and appetite factors expression in the brain (POMC, CART, AGRP, NPY and CCK) and stomach (CCK). These results indicate that motilin acts as an indicator of nutritional status, and also serves as a novel orexigenic factor that stimulates food intake in Acipenser dabryanus. This study lays a strong foundation for the application of motilin as a biomarker in the estimation of hunger in juvenile Acipenser dabryanu during the weaning phase, and enhances the understanding of the role of motilin as a novel regulator of feeding in fish.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Bin Wang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Shupeng Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Bo Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| |
Collapse
|
3
|
Zhang S, Kaiya H, Kitazawa T. Does ghrelin regulate intestinal motility in rabbits? An in vitro study using isolated duodenal strips. Gen Comp Endocrinol 2023; 344:114384. [PMID: 37722460 DOI: 10.1016/j.ygcen.2023.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Rabbit duodenum has been used for examining the ability of motilin to cause muscle contraction in vitro. A motilin-related peptide, ghrelin, is known to be involved in the regulation of gastrointestinal (GI) motility in various animals, but its ability to cause rabbit GI contraction have not been well examined. The aim of this study is to clarify the action of rat ghrelin and its interaction with motilin in the rabbit duodenum. The mRNA expression of ghrelin and motilin receptors was also examined using RT-PCR. Rat ghrelin (10-9-10-6 M) did not change the contractile activity of the duodenum measured by the mean muscle tonus and area under the curve of contraction waves. In agreement with this result, the distribution of ghrelin receptor mRNA in the rabbit GI tract varied depending on the GI region from which the samples were taken; the expression level in the duodenum was negligible, but that in the esophagus or stomach was significant. On the other hand, motilin (10-10-10-6 M) caused a concentration-dependent contraction by means of increased mean muscle tonus, and consistently, motilin receptor mRNA was expressed heterogeneously depending on the GI region (esophagus = stomach = colon = rectum < duodenum = jejunum = ileum < cecum). Expression level of motilin receptor was comparable to that of ghrelin receptor in the esophagus and stomach. Pretreatment with ghrelin (10-6 M) prior to motilin did not affect the contractile activity of motilin in the duodenum. In conclusion, ghrelin does not affect muscle contractility or motilin-induced contraction in the rabbit duodenum, which is due to the lack of ghrelin receptors. The present in vitro results suggest that ghrelin might not be a regulator of intestinal motility in rabbits.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan; Faculty of Science, University of Toyama, Toyama, Toyama 933-8555, Japan; Grandsoul Research Institute for Immunology, Inc., Uda, Nara 633-2221, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
4
|
Li H, Yang L, Jin Y, Jin C. Roles of Endothelial Motilin Receptor and Its Signal Transduction Pathway in Motilin-Induced Left Gastric Artery Relaxation in Dogs. Front Physiol 2021; 12:770430. [PMID: 34777026 PMCID: PMC8581264 DOI: 10.3389/fphys.2021.770430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Motilin increases left gastric artery (LGA) blood flow in dogs via the endothelial motilin receptor (MLNR). This article investigates the signaling pathways of endothelial MLNR. Methods: Motilin-induced relaxation of LGA rings was assessed using wire myography. Nitric oxide (NO), and cyclic guanosine monophosphate (cGMP) levels were measured using an NO assay kit and cGMP ELISA kit, respectively. Results: Motilin concentration-dependently (EC50=9.1±1.2×10−8M) relaxed LGA rings precontracted with U46619 (thromboxane A2 receptor agonist). GM-109 (MLNR antagonist) significantly inhibited motilin-induced LGA relaxation and the production of NO and cGMP. N-ethylmaleimide (NEM; G-protein antagonist), U73122 [phospholipase C (PLC) inhibitor], and 2-aminoethyl diphenylborinate [2-APB; inositol trisphosphate (IP3) blocker] partially or completely blocked vasorelaxation. In contrast, chelerythrine [protein kinase C (PKC) inhibitor] and H89 [protein kinase A (PKA) inhibitor] had no such effect. Low-calcium or calcium-free Krebs solutions also reduced vasorelaxation. N-nitro-L-arginine methyl ester [L-NAME; nitric oxide synthase (NOS) inhibitor] and ODQ [soluble guanylyl cyclase (sGC) inhibitor] completely abolished vasodilation and synthesis of NO and cGMP. Indomethacin (cyclooxygenase inhibitor), 18α-glycyrrhetinic acid [18α-GA; myoendothelial gap junction (MEGJ) inhibitor], and K+ channel inhibition through high K+ concentrations or tetraethylammonium (TEA-Cl; KCa channel blocker) partially decreased vasorelaxation, whereas glibenclamide (KATP channel blocker) had no such effect. Conclusion: The current study suggests that motilin-induced LGA relaxation is dependent on endothelial MLNR through the G protein-PLC-IP3 pathway and Ca2+ influx. The NOS-NO-sGC-cGMP pathway, prostacyclin, MEGJ, and K+ channels (especially KCa) are involved in endothelial-dependent relaxation of vascular smooth muscle (VSM) cells.
Collapse
Affiliation(s)
- HongYu Li
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - LanLan Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - ChunXiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Yang L, Li H, Jin Y, He Y, Mei L, Jin C. Differential expression of motilin receptors on the endothelium of dog gastrointestinal arteries and motilin-induced motilin receptor dependent relaxation of corresponding arteries. Peptides 2021; 143:170574. [PMID: 34082070 DOI: 10.1016/j.peptides.2021.170574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motilin's role in the regulation of vascular tone and hemodynamic besides gastrointestinal motility is concerned. This study aimed to investigate the expression of motilin receptors in gastrointestinal arteries and motilin-induced relaxation. MATERIAL AND METHODS The expression of motilin receptors in the left gastric artery (LGA), superior mesenteric artery (SMA), and inferior mesenteric artery (IMA) of adult dogs (1.5-5 years old) were analyzed by immunochemistry, RT-PCR, and western blotting. Motilin's effects on the gastrointestinal arteries were evaluated in a multi-wire myograph system. RESULTS Immunohistochemical staining showed that motilin receptor was expressed on the membranes of endothelial cells with the fluorescence intensity LGA > SMA > IMA (P < 0.01). The motilin receptor's mRNA and protein expression levels shared the same distribution patterns as it in fluorescence intensity (P < 0.01). In isolated LGA preparations precontracted with U46619 (a thromboxaneA2 analog), motilin induced a concentration-dependent relaxation, and the EC50 was 8.8 × 10-8 ± 0.9 × 10-8 M. Motilin-induced relaxation on the three arteries also shared the same pattern as it in fluorescence intensity (P < 0.01) and inhibited by denuded-endothelium and GM-109 (a motilin receptor antagonist) but not by atropine (a muscarinic receptor antagonist). CONCLUSIONS Motilin receptors are expressed differentially on the membranes of endothelial cells in dog gastrointestinal arteries with a significantly high expression in the LGA. Motilin-induced relaxation is endothelium- and motilin receptor-dependent. The motilin receptor expressed on the endothelial cell membrane of the LGA is the molecular basis for motilin regulating gastric blood flow under physiological conditions in dogs.
Collapse
Affiliation(s)
- Lanlan Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu Li
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yu He
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Mei
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Kitazawa T, Kaiya H. Motilin Comparative Study: Structure, Distribution, Receptors, and Gastrointestinal Motility. Front Endocrinol (Lausanne) 2021; 12:700884. [PMID: 34497583 PMCID: PMC8419268 DOI: 10.3389/fendo.2021.700884] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Motilin, produced in endocrine cells in the mucosa of the upper intestine, is an important regulator of gastrointestinal (GI) motility and mediates the phase III of interdigestive migrating motor complex (MMC) in the stomach of humans, dogs and house musk shrews through the specific motilin receptor (MLN-R). Motilin-induced MMC contributes to the maintenance of normal GI functions and transmits a hunger signal from the stomach to the brain. Motilin has been identified in various mammals, but the physiological roles of motilin in regulating GI motility in these mammals are well not understood due to inconsistencies between studies conducted on different species using a range of experimental conditions. Motilin orthologs have been identified in non-mammalian vertebrates, and the sequence of avian motilin is relatively close to that of mammals, but reptile, amphibian and fish motilins show distinctive different sequences. The MLN-R has also been identified in mammals and non-mammalian vertebrates, and can be divided into two main groups: mammal/bird/reptile/amphibian clade and fish clade. Almost 50 years have passed since discovery of motilin, here we reviewed the structure, distribution, receptor and the GI motility regulatory function of motilin in vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
7
|
Zhang S, Okuhara Y, Iijima M, Takemi S, Sakata I, Kaiya H, Teraoka H, Kitazawa T. Identification of pheasant ghrelin and motilin and their actions on contractility of the isolated gastrointestinal tract. Gen Comp Endocrinol 2020; 285:113294. [PMID: 31585115 DOI: 10.1016/j.ygcen.2019.113294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
Abstract
Motilin and ghrelin were identified in the pheasant by molecular cloning, and the actions of both peptides on the contractility of gastrointestinal (GI) strips were examined in vitro. Molecular cloning indicated that the deduced amino acid sequences of the pheasant motilin and ghrelin were a 22-amino acid peptide, FVPFFTQSDIQKMQEKERIKGQ, and a 26-amino acid peptide, GSSFLSPAYKNIQQQKDTRKPTGRLH, respectively. In in vitro studies using pheasant GI strips, chicken motilin caused contraction of the proventriculus and small intestine, whereas the crop and colon were insensitive. Human motilin, but not erythromycin, caused contraction of small intestine. Chicken motilin-induced contractions in the proventriculus and ileum were not inhibited by a mammalian motilin receptor antagonist, GM109. Neither atropine (a cholinergic receptor antagonist) nor tetrodotoxin (a neuron blocker) inhibited the responses of chicken motilin in the ileum but both drugs decreased the responses to motilin in the proventriculus, suggesting that the contractile mechanisms of motilin in the proventriculus was neurogenic, different from that of the small intestine (myogenic). On the other hand, chicken and quail ghrelin did not cause contraction in any regions of pheasant GI tract. Since interaction of ghrelin and motilin has been reported in the house musk shrew, interaction of two peptides was examined. The chicken motilin-induced contractions were not modified by ghrelin, and ghrelin also did not cause any contraction under the presence of motilin, suggesting the absence of interaction in both peptides. In conclusion, both the motilin system and ghrelin system are present in the pheasant. Regulation of GI motility by motilin might be common in avian species. However, absence of ghrelin actions in any GI regions suggests the avian species-related difference in regulation of GI contractility by ghrelin.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan; School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yuji Okuhara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Mio Iijima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
8
|
Liu D, Han R, Wang X, Li W, Tang S, Li W, Wang Y, Jiang R, Yan F, Wang C, Liu X, Kang X, Li Z. A novel 86-bp indel of the motilin receptor gene is significantly associated with growth and carcass traits in Gushi-Anka F 2 reciprocal cross chickens. Br Poult Sci 2019; 60:649-658. [PMID: 31469320 DOI: 10.1080/00071668.2019.1655710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. A previous whole-genome association analysis has identified the motilin receptor gene (MLNR), which regulates gastrointestinal motility and gastric emptying, as a candidate gene related to chicken growth.2. MLNR mRNA was expressed in all tissues tested, and the expression level in digestive tissues was greater than in other tissues. Expression levels in the pancreas, duodenum and glandular stomach at day old and one, two and three weeks of age indicated a possible correlation with the digestive system. This suggested that the MLNR gene plays a central role in gastrointestinal tract function and affects the growth and development of chickens. Moreover, there was a significant difference in expression in the glandular stomach tissue between Ross 308 and Gushi chickens at six weeks of age.3. Re-sequencing revealed an 86-bp insertion/deletion polymorphism in the downstream region of the MLNR gene. The mutation locus was genotyped in 2,261 individuals from nine different chicken breeds. MLNR expression levels in the glandular stomach of chickens with DD genotypes were greater than those in chickens with the ID and II genotypes. The DD genotype was the most dominant genotype in commercial broiler's (Ross 308 and Arbor Acres broilers), and the D allele frequency in these breeds exceeded 91%. The deletion mutation tended towards fixation in commercial broilers.4. Association with growth and carcass traits analysed in a Gushi-Anka F2 intercrossed population, showed that the DD genotype was significantly associated with the greatest growth and carcass trait values, whereas values associated with the II genotype were the lowest in the F2 reciprocal cross chickens.5. The results suggest that the mutation is strongly associated with growth related traits and it is likely to be useful for marker-assisted selection of chickens.
Collapse
Affiliation(s)
- D Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - S Tang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Y Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - F Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - C Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Z Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Zhou Y, Qi X, Wen H, Zhang K, Zhang X, Li J, Li Y, Fan H. Identification, expression analysis, and functional characterization of motilin and its receptor in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2019; 277:38-48. [PMID: 30771290 DOI: 10.1016/j.ygcen.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Motilin (MLN), an interdigestive hormone secreted by endocrine cells of the intestinal mucosa, binds to a G protein-coupled receptor to exert its biological function of regulating gastrointestinal motility. In the present study, we identified the prepromotilin and mln receptor (mlnr) from the spotted sea bass, Lateolabrax maculatus. Mln consisted of an ORF of 336 nucleotides encoding 111 amino acids. The precursor protein contained a 17-amino-acid mature peptide. Mlnr had an ORF of 1089 bp encoding a protein of 362 amino acids. Seven transmembrane domains were predicted with TMHMM analysis. The phylogenetic analysis of mln and mlnr showed that they fell into the same clade with respective counterpart of selected fishes before clustering with other detected vertebrates. Both mln and mlnr genes were highly expressed in intestine of spotted sea bass using quantitative real-time PCR. In situ hybridization indicated that mln and mlnr mRNA were both localized in the lamina propria and the epithelial cell of intestinal villus. The expressions of both genes were regulated under short-term starvation in a time-dependent manner. In vitro experiments indicated that the expressions of ghrelin (ghrl), gastrin (gas) and cholecystokinin (cck) were enhanced by MLN after 3-h treatment, but the effect was absent after 6 or 12-h incubation. Taken together, the MLN and its receptor might play important roles in regulating intestinal motility in spotted sea bass.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Bass/genetics
- Cloning, Molecular
- Fasting
- Gene Expression Profiling
- Gene Expression Regulation
- Intestines/cytology
- Molecular Docking Simulation
- Motilin/chemistry
- Motilin/genetics
- Motilin/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Yangyang Zhou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Xiaoyan Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Jin Li
- Ji'nan Aquatic Technology Extension Station, Ji'nan 250021, China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China.
| | - Hongying Fan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China.
| |
Collapse
|
10
|
Kitazawa T, Harada R, Sakata I, Sakai T, Kaiya H. A verification study of gastrointestinal motility-stimulating action of guinea-pig motilin using isolated gastrointestinal strips from rabbits and guinea-pigs. Gen Comp Endocrinol 2019; 274:106-112. [PMID: 30677392 DOI: 10.1016/j.ygcen.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Motilin (MLN), a 22-amino-acid peptide hormone, is generally present in the mucosa of the upper gastrointestinal (GI) tract, mainly the duodenum of mammals, and it regulates GI motility, especially that related to interdigestive migrating contraction. However, MLN and its receptor are absent in mice and rats, and MLN does not cause any mechanical responses in the rat and mouse GI tracts. The guinea-pig is also a rodent, but expression of the MLN gene in the guinea-pig has been reported. In the present study, two guinea-pig MLNs, FIPIFTYSELRRTQEREQNKGL found in the Ensemble Genome Database (gpMLN-1) and FVPIFTYSELRRTQEREQNKRL reported by Xu et al. (2001) (gpMLN-2), were synthesized, and their biological activities were evaluated in the rabbit duodenum and guinea-pig GI tract in vitro. Both gpMLNs showed contractile activity in longitudinal muscle strips of the rabbit duodenum. The EC50 values of gpMLN-1 and gpMLN-2 were slightly higher than that of human MLN (hMLN), but the maximum contractions were as same as that of hMLN. Treatment with GM109 and hMLN-induced receptor desensitization decreased the contractile activity of both gpMLNs, indicating that the two gpMLN candidates are able to activate the MLN receptor (MLN-R) of the rabbit duodenum. In guinea-pig GI preparations, hMLN and gpMLNs did not show any mechanical responses in circular muscle strips from the gastric antrum or in longitudinal strips of the duodenum, ileum and colon although acetylcholine and 1,1-dimethyl-4-phenylpiperazinium (DMPP) caused definite mechanical responses. The DMPP-induced neural responses in the gastric circular muscle and ileal longitudinal muscles were not modified by gpMLN-1. Even in the gastric and ileal strips with intact mucosa, no mechanical responses were seen with either of the gpMLNs. Furthermore, RT-PCR using various primer sets failed to amplify the gpMLN-2 mRNA. In conclusion, gpMLNs including one that was already reported and the other that was newly found in a database were effective to the rabbit MLN-R, whereas they did not cause any contractions or modification of neural responses in the guinea-pig GI tract, indicating that the MLN system is vestigial and not functional in regulation of GI motility in the guinea-pig as well as in other rodents such as rats and mice.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - Rio Harada
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
11
|
Kitazawa T, Kaiya H. Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:278. [PMID: 31156548 PMCID: PMC6533539 DOI: 10.3389/fendo.2019.00278] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Takio Kitazawa
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
12
|
Abstract
Ghrelin and motilin are released from gastrointestinal endocrine cells during hunger, to act through G protein-coupled receptors that have closely related amino acid sequences. The actions of ghrelin are more complex than motilin because ghrelin also exists outside the GI tract, it is processed to des-acyl ghrelin which has activity, ghrelin can exist in truncated forms and retain activity, the ghrelin receptor can have constitutive activity and is subject to biased agonism and finally additional ghrelin-like and des-acyl ghrelin receptors are proposed. Both ghrelin and motilin can stimulate gastric emptying, acting via different pathways, perhaps influenced by biased agonism at the receptors, but research is revealing additional pathways of activity. For example, it is becoming apparent that reduction of nausea may be a key therapeutic target for ghrelin receptor agonists and perhaps for compounds that modulate the constitutive activity of the ghrelin receptor. Reduction of nausea may be the mechanism through which gastroparesis symptoms are reduced. Intriguingly, a potential ability of motilin to influence nausea is also becoming apparent. Ghrelin interacts with digestive function through its effects on appetite, and ghrelin antagonists may have a place in treating Prader-Willi syndrome. Unlike motilin, ghrelin receptor agonists also have the potential to treat constipation by acting at the lumbosacral defecation centres. In conclusion, agonists of both ghrelin and motilin receptors hold potential as treatments for specific subsets of digestive system disorders.
Collapse
|
13
|
Kitazawa T, Yoshida M, Teraoka H, Kaiya H. Does motilin peptide regulate gastrointestinal motility of zebrafish? An in vitro study using isolated intestinal strips. Gen Comp Endocrinol 2017; 249:15-23. [PMID: 28242309 DOI: 10.1016/j.ygcen.2017.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Abstract
Motilin (MOT), a 22-amino-acid peptide hormone produced in the duodenal mucosa, stimulates gastrointestinal motility in mammals and birds, and it is a mediator of interdigestive motor complexes. Recently, expression of MOT-like peptide (MOTLP) and its receptor mRNAs was identified in zebrafish. The aim of the present study was to determine whether the zebrafish MOTLP (zfMOTLP, HIAFFSPKEMRELREKE) affects zebrafish gastrointestinal motility, with comparison to the effect of human MOT, in which five amino acids are identical to zfMOTLP at positions 5, 9, 15, 16, and 17. zfMOTLP caused small contractions of the rabbit duodenum and chicken ileum but, the sensitivity was about 3000-times lower than that of human MOT. zfMOTLP-induced contraction in the rabbit duodenum was decreased by pretreatment of the MOT receptor antagonist GM109, indicating that zfMOTLP could bind to the MOT receptor. zfMOTLP (3-100nM) increased the intracellular Ca2+ concentration in zfMOT receptor-expressing HEK293 cells, but human MOT did not cause responses even at 100nM. In in vitro study using isolated zebrafish gastrointestinal strips, zfMOTLP caused only small contractions even at high doses (1-10μM). zfMOT receptor mRNA is detected in the gastrointestinal tract and brain to almost the same extent, and the expression level (40-70 copies/100ng total RNA) is much lower than that in the chicken gastrointestinal tract. These results suggest that the MOTLP/MOT receptor system is present in zebrafish, but its physiological role for regulation of gastrointestinal motility might be not significant due to the weak contractile activity and low expression level of the receptor.
Collapse
Affiliation(s)
- Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - Maria Yoshida
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
14
|
Apu AS, Mondal A, Kitazawa T, Takemi S, Sakai T, Sakata I. Molecular cloning of motilin and mechanism of motilin-induced gastrointestinal motility in Japanese quail. Gen Comp Endocrinol 2016; 233:53-62. [PMID: 27179882 DOI: 10.1016/j.ygcen.2016.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
Motilin, a peptide hormone produced in the upper intestinal mucosa, plays an important role in the regulation of gastrointestinal (GI) motility. In the present study, we first determined the cDNA and amino acid sequences of motilin in the Japanese quail and studied the distribution of motilin-producing cells in the gastrointestinal tract. We also examined the motilin-induced contractile properties of quail GI tracts using an in vitro organ bath, and then elucidated the mechanisms of motilin-induced contraction in the proventriculus and duodenum of the quail. Mature quail motilin was composed of 22 amino acid residues, which showed high homology with chicken (95.4%), human (72.7%), and dog (72.7%) motilin. Immunohistochemical analysis showed that motilin-immunopositive cells were present in the mucosal layer of the duodenum (23.4±4.6cells/mm(2)), jejunum (15.2±0.8cells/mm(2)), and ileum (2.5±0.7cells/mm(2)), but were not observed in the crop, proventriculus, and colon. In the organ bath study, chicken motilin induced dose-dependent contraction in the proventriculus and small intestine. On the other hand, chicken ghrelin had no effect on contraction in the GI tract. Motilin-induced contraction in the duodenum was not inhibited by atropine, hexamethonium, ritanserin, ondansetron, or tetrodotoxin. However, motilin-induced contractions in the proventriculus were significantly inhibited by atropine and tetrodotoxin. These results suggest that motilin is the major stimulant of GI contraction in quail, as it is in mammals and the site of action of motilin is different between small intestine and proventriculus.
Collapse
Affiliation(s)
- Auvijit Saha Apu
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Anupom Mondal
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takio Kitazawa
- Comparative Animal Pharmacology Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|
15
|
Dudani A, Aizawa S, Zhi G, Tanaka T, Jogahara T, Sakata I, Sakai T. The proximal gastric corpus is the most responsive site of motilin-induced contractions in the stomach of the Asian house shrew. J Comp Physiol B 2016; 186:665-75. [PMID: 27062028 DOI: 10.1007/s00360-016-0985-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022]
Abstract
The migrating motor complex (MMC) is responsible for emptying the stomach during the interdigestive period, in preparation for the next meal. It is known that gastric phase III of MMC starts from the proximal stomach and propagates the contraction downwards. We hypothesized that a certain region of the stomach must be more responsive to motilin than others, and that motilin-induced strong gastric contractions propagate from that site. Stomachs of the Suncus or Asian house shrew, a small insectivorous mammal, were dissected and the fundus, proximal corpus, distal corpus, and antrum were examined to study the effect of motilin using an organ bath experiment. Motilin-induced contractions differed in different parts of the stomach. Only the proximal corpus induced gastric contraction even at motilin 10(-10) M, and strong contraction was induced by motilin 10(-9) M in all parts of the stomach. The GPR38 mRNA expression was also higher in the proximal corpus than in the other sections, and the lowest expression was observed in the antrum. GPR38 mRNA expression varied with low expression in the mucosal layer and high expression in the muscle layer. Additionally, motilin-induced contractions in each dissected part of the stomach were inhibited by tetrodotoxin and atropine pretreatment. These results suggest that motilin reactivity is not consistent throughout the stomach, and an area of the proximal corpus including the cardia is the most sensitive to motilin.
Collapse
Affiliation(s)
- Amrita Dudani
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Sayaka Aizawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Gong Zhi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Toru Tanaka
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keiyaki dai, Sakado, Saitama, 350-0295, Japan
| | - Takamichi Jogahara
- Laboratory of Animal Management and Resources, Department of Zoology, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
16
|
Broad J, Takahashi N, Tajimi M, Sudo M, Góralczyk A, Parampalli U, Mannur K, Yamamoto T, Sanger GJ. RQ-00201894: A motilin receptor agonist causing long-lasting facilitation of human gastric cholinergically-mediated contractions. J Pharmacol Sci 2016; 130:60-5. [DOI: 10.1016/j.jphs.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/05/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
|
17
|
Differential expression of motilin receptor in various parts of gastrointestinal tract in dogs. Gastroenterol Res Pract 2015; 2015:970940. [PMID: 25918525 PMCID: PMC4396909 DOI: 10.1155/2015/970940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022] Open
Abstract
Objectives. The presence of motilin receptor in the GI tract of different animal species has been verified. However, the quantitation of motilin receptor expression in different regions of the GI tract remains unclear. The aim of this study was to investigate the expression of motilin receptor in the GI tract and semiquantitatively compare the expression difference in different GI regions in dogs. Methods. Antrum, duodenum, jejunum, ileum, proximal colon, middle colon, and distal colon were obtained from various parts of the GI tract of six sacrificed dogs. The distribution of motilin receptor was determined by immunohistochemistry. The expression levels of motilin receptor mRNA in different regions were measured by RT-PCR. Results. Motilin receptor was expressed throughout the GI tract in dogs. Multiple comparisons of the mean motilin receptor mRNA expression among various regions were significant (P < 0.05). Motilin receptor mRNA was extensively expressed in duodenum, followed by ileum, jejunum, proximal colon, antrum, middle colon, and distal colon. Immunohistochemistry revealed that motilin receptor immunoreactivity was observed only in the enteric nervous system. Conclusion. Motilin receptor is expressed differentially along the GI tract in dogs. The significantly high expression of motilin receptor mRNA is found in the duodenum.
Collapse
|
18
|
Takahashi H, Rikimaru K, Komatsu M, Uemoto Y, Suzuki K. Association between Motilin Receptor Gene Haplotypes and Growth Traits in Japanese Hinai-dori Crossbred Chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:316-23. [PMID: 25049957 PMCID: PMC4093263 DOI: 10.5713/ajas.2013.13500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/16/2013] [Accepted: 10/10/2013] [Indexed: 12/29/2022]
Abstract
We previously identified quantitative trait loci (QTL) for body weight and average daily gain in a common region between ADL0198 (chr 1: 171.7 Mb) and ABR0287 (chr 1: 173.4 Mb) on chicken chromosome 1 in an F2 resource population produced by crossing low- and high-growth lines of the Hinai-dori breed. Motilin receptor (MLNR) is a candidate gene affecting growth traits in the region. In this study, we genotyped polymorphisms of the MLNR gene and investigated its association with growth traits in a Hinai-dori F2 intercross population. All the exons of the MLNR gene in the parental population were subjected to PCR amplification, nucleotide sequenced and haplotypes identified. To distinguish resultant diplotype individuals in the F2 population, a mismatch amplification mutation assay was performed. Three haplotypes (Haplotypes 1–3) were accordingly identified. Six genotypes produced by the combination of three haplotypes (Haplotype 1, 2, and 3) were examined in order to identify associations between MLNR haplotypes and growth traits. The data showed that Haplotype 1 was superior to Haplotype 2 and 3 in body weight at 10 and 14 weeks of age, average daily gain between 4 and 10 weeks, 10 and 14 weeks, and 0 and 14 weeks of age in female in F2 females. It was concluded that MLNR is a useful marker of growth traits and could be used to develop strategies for improving growth traits in the Hinai-dori breed.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Akita Prefectural Livestock Experiment Station, Daisen 019-1701, Japan
| | - Kazuhiro Rikimaru
- Akita Prefectural Livestock Experiment Station, Daisen 019-1701, Japan
| | - Megumi Komatsu
- Akita Prefectural Livestock Experiment Station, Daisen 019-1701, Japan
| | - Yoshinobu Uemoto
- National Livestock Breeding Center, Nishigo, Fukushima 961-8511, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
19
|
Sanger GJ, Wang Y, Hobson A, Broad J. Motilin: towards a new understanding of the gastrointestinal neuropharmacology and therapeutic use of motilin receptor agonists. Br J Pharmacol 2013; 170:1323-32. [PMID: 23189978 PMCID: PMC3838679 DOI: 10.1111/bph.12075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/26/2012] [Accepted: 11/15/2012] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The gastrointestinal hormone motilin has been known about for >40 years, but after identification of its receptor and subsequent development of new tools and methods, a reappraisal of its actions is required. Firstly, it is important to note that motilin and ghrelin receptors are members of the same family (similar genomic organization, gastrointestinal distribution and abilities to stimulate gastrointestinal motility), yet each fails to recognize the ligand of the other; and whereas ghrelin and ghrelin receptors are widespread outside the gastrointestinal tract, motilin and its receptors are largely restricted to the gastrointestinal tract. Secondly, although some studies suggest motilin has activity in rodents, most do not, and receptor pseudogenes exist in rodents. Thirdly, motilin preferentially operates by facilitating enteric cholinergic activity rather than directly contracting the muscle, despite the relatively high expression of receptor immunoreactivity in muscle. This activity is ligand-dependent, with short-lasting actions of motilin contrasting with longer-lasting actions of the non-selective and selective motilin receptor agonists erythromycin and GSK962040. Finally, the use of erythromycin (also an antibiotic drug) to treat patients requiring acceleration of gastric emptying has led to concerns over safety and potential exacerbation of antibiotic resistance. Replacement motilin receptor agonists derived from erythromycin (motilides) have been unsuccessful. New, non-motilide, small molecule receptor agonists, designed to minimize self-desensitization, are now entering clinical trials for treating patients undergoing enteral feeding or with diabetic gastroparesis. Thus, for the translational pharmacologist, the study of motilin illustrates the need to avoid overreliance on artificial systems, on structural information and on animal studies. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- G J Sanger
- Neurogastroenterology Group, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
20
|
Liu Y, Li S, Huang X, Lu D, Liu X, Ko WH, Zhang Y, Cheng CHK, Lin H. Identification and characterization of a motilin-like peptide and its receptor in teleost. Gen Comp Endocrinol 2013; 186:85-93. [PMID: 23500008 DOI: 10.1016/j.ygcen.2013.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022]
Abstract
Although putative motilin receptor sequences have been reported in teleost, there is no proof for the existence of the motilin gene in teleost. In this study, we have identified a motilin-like gene in the genome of several fish species and cloned its cDNA sequence from zebrafish. The zebrafish motilin-like precursor shares very low amino acid (aa) identities with the previously reported motilin precursors. Processing of the zebrafish motilin-like precursor may generate a 17-aa C-terminal amidated mature peptide, the motilin-like peptide (motilin-LP). A putative zebrafish motilin receptor (MLNR) was also identified in zebrafish. In cultured eukaryotic cells transfected with the zebrafish MLNR, zebrafish motilin-LP could enhance both CRE-driven and SRE-driven promoter activities. Tissue distribution studies indicated that the zebrafish motilin-like gene is mainly expressed in the intestine and liver while the zebrafish MLNR gene is highly expressed in brain regions, suggesting that motilin-LP behaves like other gut hormones to regulate brain functions. These data suggest that the presence of a unique motilin/MNLR system in teleost.
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Broad J, Mukherjee S, Samadi M, Martin JE, Dukes GE, Sanger GJ. Regional- and agonist-dependent facilitation of human neurogastrointestinal functions by motilin receptor agonists. Br J Pharmacol 2013; 167:763-74. [PMID: 22537158 DOI: 10.1111/j.1476-5381.2012.02009.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Delayed gastric emptying is poorly managed. Motilin agonists are potential treatments but inadequate understanding into how enteric nerve functions are stimulated compromises drug/dose selection. Resolution is hampered by extreme species dependency so methods were developed to study human gastrointestinal neuromuscular activities and the neurobiology of motilin. EXPERIMENTAL APPROACH Protocols to study neuromuscular activities were developed for different regions of human stomach and intestine (71 patients) using circular muscle preparations and electrical field stimulation (EFS) of intrinsic nerves. Other tissues were fixed for immunohistochemistry. KEY RESULTS EFS evoked contractions and/or relaxations via cholinergic and nitrergic neurons, with additional tachykinergic activity in colon; these were consistent after 154 min (longer if stored overnight). Motilin 1-300 nM and the selective motilin agonist GSK962040 0.1-30 µM acted pre-junctionally to strongly facilitate cholinergic contractions of the antrum (E(max) ≈ 1000% for motilin), with smaller increases in fundus, duodenum and ileum; high concentrations increased baseline muscle tension in fundus and small intestine. There were minimal effects in the colon. In the antrum, cholinergic facilitation by motilin faded irregularly, even with peptidase inhibitors, whereas facilitation by GSK962040 was long lasting. Motilin receptor immunoreactivity was identified in muscle and myenteric plexus predominantly in the upper gut, co-expressed with choline acetyltransferase in neurons. CONCLUSIONS AND IMPLICATIONS Motilin and GSK962040 strongly facilitated cholinergic activity in the antrum, with lower activity in fundus and small intestine only. Facilitation by motilin was short lived, consistent with participation in migrating motor complexes. Long-lasting facilitation by GSK962040 suggests different receptor interactions and potential for clinical evaluation.
Collapse
Affiliation(s)
- J Broad
- Neurogastroenterology group, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Suzuki A, Ishida Y, Aizawa S, Sakata I, Tsutsui C, Mondal A, Kanako K, Sakai T. Molecular identification of GHS-R and GPR38 in Suncus murinus. Peptides 2012; 36:29-38. [PMID: 22579813 DOI: 10.1016/j.peptides.2012.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022]
Abstract
We previously identified ghrelin and motilin genes in Suncus murinus (suncus), and also revealed that motilin induces phase III-like strong contractions in the suncus stomach in vivo, as observed in humans and dogs. Moreover, repeated migrating motor complexes were found in the gastrointestinal tract of suncus at regular 120-min intervals. We therefore proposed suncus as a small laboratory animal model for the study of gastrointestinal motility. In the present study, we identified growth hormone secretagogue receptor (GHS-R) and motilin receptor (GPR38) genes in the suncus. We also examined their tissue distribution throughout the body. The amino acids of suncus GHS-R and GPR38 showed high homology with those of other mammals and shared 42% amino acid identity. RT-PCR showed that both the receptors were expressed in the hypothalamus, medulla oblongata, pituitary gland and the nodose ganglion in the central nervous system. In addition, GHS-R mRNA expressions were detected throughout the stomach and intestine, whereas GPR38 was expressed in the gastric muscle layer, lower intestine, lungs, heart, and pituitary gland. These results suggest that ghrelin and motilin affect gut motility and energy metabolism via specific receptors expressed in the gastrointestinal tract and/or in the central nervous system of suncus.
Collapse
Affiliation(s)
- Airi Suzuki
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mondal A, Kawamoto Y, Yanaka T, Tsutsui C, Sakata I, Oda SI, Tanaka T, Sakai T. Myenteric neural network activated by motilin in the stomach of Suncus murinus (house musk shrew). Neurogastroenterol Motil 2011; 23:1123-31. [PMID: 22029733 DOI: 10.1111/j.1365-2982.2011.01801.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND It has been shown in human and canine studies that motilin, a gastroprokinetic hormone, induces gastric phase III contractions via the enteric nervous; however, the center of motilin action in the stomach has not been clearly revealed. In the present study, we investigated the neural pathway of motilin-induced gastric contraction by using Suncus murinus, a new animal model for motilin study. METHODS An isolated suncus stomach was used in vitro to determine the mechanism of motilin action through the myenteric plexus. Synthetic suncus motilin (10(-11) -10(-7) molL(-1) ) was added to an organ bath, and the spontaneous contraction response was expressed as a percent of ACh (10(-5) molL(-1) ) responses. Motilin-induced contractions were also studied by a pharmacological method using several receptor antagonists and enzyme inhibitor. KEY RESULTS Suncus motilin induced a concentration-dependent gastric contraction at concentrations from 10(-9) to 10(-7) molL(-1) . The responses to suncus motilin in the stomach were completely abolished by atropine and tetrodotoxin treatment and significantly suppressed by administration of hexamethonium, verapamil, phentolamine, yohimbine, ondansetron, and naloxone, whereas ritanserin, prazosin, timolol, and FK888 did not affect the action of motilin. Additionally, N-nitro l-arginine methylester slightly potentiated the contractions induced by motilin. CONCLUSIONS & INFERENCES The results indicate that motilin directly stimulates and modulates suncus gastric contraction through cholinergic, adrenergic, serotonergic, opioidergic, and NO neurons in the myenteric plexus.
Collapse
Affiliation(s)
- A Mondal
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Leming S, Broad J, Cozens SJ, Otterson M, Winchester W, Lee K, Dukes GE, Sanger GJ. GSK962040: a small molecule motilin receptor agonist which increases gastrointestinal motility in conscious dogs. Neurogastroenterol Motil 2011; 23:958-e410. [PMID: 21895874 DOI: 10.1111/j.1365-2982.2011.01770.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND GSK962040, a small molecule motilin receptor agonist, was identified to address the need for a safe, efficacious gastric prokinetic agent. However, as laboratory rodents lack a functional motilin system, studies in vivo have been limited to a single dose, which increased defecation in rabbits. Motilin agonists do not usually increase human colonic motility, so gastric prokinetic activity needs to be demonstrated. METHODS The effect of intravenous GSK962040 on gastro-duodenal motility was assessed in fasted dogs implanted with strain gauges. Activity was correlated with blood plasma concentrations of GSK962040 (measured by HPLC-MS/MS) and potency of GSK962040 at the dog recombinant receptor [using a Fluorometric Imaging Plate Reader (Molecular Devices, Wokingham, UK) after expression in HEK293 cells]. KEY RESULTS GSK962040 activated the dog motilin receptor (pEC(50) 5.79; intrinsic activity 0.72, compared with [Nle(13) ]-motilin). In vivo, GSK962040 induced phasic contractions, the duration of which was dose-related (48 and 173 min for 3 and 6 mg kg(-1) ), driven by mean plasma concentrations >1.14 μmol L(-1) . After the effects of GSK962040 faded, migrating motor complex (MMC) activity returned. Migrating motor complex restoration was unaffected by 3 mg kg(-1) GSK962040 but at 6 mg kg(-1) , MMCs returned 253 min after dosing, compared with 101 min after saline (n=5 each). CONCLUSIONS & INFERENCES The results are consistent with lower potency for agonists at the dog motilin receptor, compared with humans. They also define the doses of GSK962040 which stimulate gastric motility. Correlation of in vivo and in vitro data in the same species, together with plasma concentrations, guides further studies and translation to other species.
Collapse
Affiliation(s)
- S Leming
- Zablocki VAMC, Wisconsin Corporation for Biomedical Research, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sanger GJ, Holbrook JD, Andrews PLR. The translational value of rodent gastrointestinal functions: a cautionary tale. Trends Pharmacol Sci 2011; 32:402-9. [PMID: 21531468 DOI: 10.1016/j.tips.2011.03.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 02/06/2023]
Abstract
Understanding relationships between gene complements and physiology is important, especially where major species-dependent differences are apparent. Molecular and functional differences between rodents (rats, mice, guinea pigs) and humans are increasingly reported. Recently, the motilin gene, which encodes a gastrointestinal hormone widely detected in mammals, was found to be absent in rodents where the receptors are pseudogenes; however, actions of motilin in rodents are sometimes observed. Although ghrelin shares common ancestry with motilin, major species-dependent abberations are not reported. The apparently specific absence of functional motilin in rodents is associated with specialised digestive physiology, including loss of ability to vomit; motilin is functional in mammals capable of vomiting. The exception is rabbit, the only other mammal unable to vomit, in which motilin might be conserved to regulate caecotrophy, another specialised digestive process. Motilin illustrates a need for caution when translating animal functions to humans. Nevertheless, motilin receptor agonists are under development as gastroprokinetic drugs.
Collapse
Affiliation(s)
- Gareth J Sanger
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 26 Ashfield Street, London, E1 2AJ, UK.
| | | | | |
Collapse
|
27
|
Hirabayashi T, Morikawa Y, Matsufuji H, Hoshino K, Hagane K, Ozaki K. Stimulatory action of mitemcinal (GM-611), an acid-resistant non-peptide motilin receptor agonist, on colonic motor activity and defecation: spontaneous and mitemcinal-induced giant migrating contractions during defecation in dogs. Neurogastroenterol Motil 2009; 21:1085-e91. [PMID: 19508333 DOI: 10.1111/j.1365-2982.2009.01341.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this study was to characterize giant migrating contractions (GMCs) during spontaneous defecation in dogs and to investigate the effect of mitemcinal (an orally active and highly acid-resistant motilin receptor agonist) on colonic motility to assess the possibility of using it for the treatment of colonic motility disorders. To assess colonic motility, strain-gauge force transducers were implanted on the gastrointestinal tract of five dogs, and the behaviour of the dogs was monitored with a noctovision-video camera system. The effect of mitemcinal (0, 3, 10 or 30 mg per dog) and sennoside (300 mg per dog) on colonic motility was assessed 24 h after oral administration. During a 39-day period, the starting point of most of the 140 GMCs was between the transverse colon and the descending colon, but some variation was observed. In the daytime, the GMCs originated from somewhat more proximal positions than at night. Mitemcinal caused an increase in the GMC-index (integration of contractile amplitude and duration) and proximal translocation of the GMC starting point, but did not cause an increase in the number of defecations 12 h after administration. Sennoside, however, caused a significant increase in the number of defecations, an increase in the GMC-index, and prolongation of the duration of GMCs. The GMC starting point in the canine colon varied during spontaneous defecation. Mitemcinal was a potent prokinetic drug to mimic a spontaneous defecation compared with sennoside. Mitemcinal evacuates more intestinal luminal contents during the defecation than does sennoside.
Collapse
Affiliation(s)
- T Hirabayashi
- Pediatric Surgery, St Luke's International Hospital, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
De Smet B, Mitselos A, Depoortere I. Motilin and ghrelin as prokinetic drug targets. Pharmacol Ther 2009; 123:207-23. [DOI: 10.1016/j.pharmthera.2009.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 12/13/2022]
|
29
|
An orally active motilin receptor antagonist, MA-2029, inhibits motilin-induced gastrointestinal motility, increase in fundic tone, and diarrhea in conscious dogs without affecting gastric emptying. Eur J Pharmacol 2009; 615:185-92. [DOI: 10.1016/j.ejphar.2009.04.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 04/25/2009] [Accepted: 04/29/2009] [Indexed: 12/30/2022]
|