1
|
Chen Z, Yang R, Xu Y, Liang L, Ao S, Wang Z, Bai P, Gu D, Duan X, Liu Y, Zhong W, Xu P, Deng T, Zeng G, Wang C. PET Imaging of Bromodomain and Extra-Terminal Domain Inhibitors for the Noninvasive Assessment of Metabolic Changes in the Liver and Brain of Early-Stage Alcoholic Liver Disease. Mol Pharm 2022; 19:2335-2342. [PMID: 35604773 DOI: 10.1021/acs.molpharmaceut.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alcoholic liver disease (ALD) has a significant impact on human health and is one of the leading causes of liver disease mortality. The early and exact diagnosis of ALD is very important since the early stage of disease progression can be reversible. Although ALD can be evaluated by ultrasound, CT, or MRI, there is still no imaging technique sufficient in the diagnosis of early-stage ALD. Of the current studies, epigenetic modulation plays a significant role in the development and progression of ALD. In this work, we evaluate whether BRDs play a vital role in the early-stage ALD using our new PET imaging probe of BET proteins, [11C]CW22. PET/CT imaging of [11C]CW22 and [18F]FDG was used to identify early-stage lesions of livers and brains in the mice model. We found that the average uptake values of livers and brains in early-stage ALD were significantly increased for [11C]CW22 PET/CT imaging but only slightly changed in [18F]FDG PET/CT imaging. Consistently, we also found that BRD 3, 4 protein expression levels were significantly higher in the liver and brain tissues of early-stage ALD. Furthermore, through Pmod software, we found that [11C]CW22 PET/CT uptakes in the brain stem, cerebellum, and midbrain were significantly up-regulated in the early-stage ALD. In conclusion, BRDs were important mediators of damage in early-stage ALD. [11C]CW22 PET/CT imaging can detect the early-phase alcohol-induced damage of livers and brains, which will likely lead to human trials in the future.
Collapse
Affiliation(s)
- Zude Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Riwei Yang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Leqi Liang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Shan Ao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Zuomin Wang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Xiaolu Duan
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Wen Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Peng Xu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
2
|
Chen ZW, Tang K, Zhao YF, Chen YZ, Tang LJ, Li G, Huang OY, Wang XD, Targher G, Byrne CD, Zheng XW, Zheng MH. Radiomics based on fluoro-deoxyglucose positron emission tomography predicts liver fibrosis in biopsy-proven MAFLD: a pilot study. Int J Med Sci 2021; 18:3624-3630. [PMID: 34790034 PMCID: PMC8579290 DOI: 10.7150/ijms.64458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: Since non-invasive tests for prediction of liver fibrosis have a poor diagnostic performance for detecting low levels of fibrosis, it is important to explore the diagnostic capabilities of other non-invasive tests to diagnose low levels of fibrosis. We aimed to evaluate the performance of radiomics based on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in predicting any liver fibrosis in individuals with biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). Methods: A total of 22 adults with biopsy-confirmed MAFLD, who underwent 18F-FDG PET/CT, were enrolled in this study. Sixty radiomics features were extracted from whole liver region of interest in 18F-FDG PET images. Subsequently, the minimum redundancy maximum relevance (mRMR) method was performed and a subset of two features mostly related to the output classes and low redundancy between them were selected according to an event per variable of 5. Logistic regression, Support Vector Machine, Naive Bayes, 5-Nearest Neighbor and linear discriminant analysis models were built based on selected features. The predictive performances were assessed by the receiver operator characteristic (ROC) curve analysis. Results: The mean (SD) age of the subjects was 38.5 (10.4) years and 17 subjects were men. 12 subjects had histological evidence of any liver fibrosis. The coarseness of neighborhood grey-level difference matrix (NGLDM) and long-run emphasis (LRE) of grey-level run length matrix (GLRLM) were selected to predict fibrosis. The logistic regression model performed best with an AUROC of 0.817 [95% confidence intervals, 0.595-0.947] for prediction of liver fibrosis. Conclusion: These preliminary data suggest that 18F-FDG PET radiomics may have clinical utility in assessing early liver fibrosis in MAFLD.
Collapse
Affiliation(s)
- Zhong-Wei Chen
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Tang
- Department of Nuclear Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - You-Fan Zhao
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Zong Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Xiang-Wu Zheng
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Nuclear Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Keramida G, Peters AM. FDG PET/CT of the non‐malignant liver in an increasingly obese world population. Clin Physiol Funct Imaging 2020; 40:304-319. [DOI: 10.1111/cpf.12651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Georgia Keramida
- Department of Nuclear Medicine Royal Brompton and HarefieldNHS Foundation Trust London UK
| | - A. Michael Peters
- Department of Nuclear Medicine King’s College HospitalNHS Foundation Trusts London UK
| |
Collapse
|
4
|
Shao T, Josephson L, Liang SH. PET/SPECT Molecular Probes for the Diagnosis and Staging of Nonalcoholic Fatty Liver Disease. Mol Imaging 2020; 18:1536012119871455. [PMID: 31478458 PMCID: PMC6724487 DOI: 10.1177/1536012119871455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a significant public health challenge afflicting approximately 1 billion individuals both in the Western world and in the East world. While liver biopsy is considered as gold standard in the diagnosis and staging of liver fibrosis, noninvasive imaging technologies, including ultrasonography, computed tomography, single-photon emission computed tomography (SPECT), magnetic resonance imaging, and positron emission tomography (PET) could offer more sensitive, comprehensive, and quantitative measurement for NAFLD. In this review, we focus on recent development and applications of PET/SPECT molecular probes that enable multispatial/temporal visualization and quantification of physiopathological progress at the molecular level in the NAFLD. We shall also discuss the limitations of current radioligands and future direction for PET/SPECT probe development.
Collapse
Affiliation(s)
- Tuo Shao
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven H Liang
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Verloh N, Einspieler I, Utpatel K, Menhart K, Brunner S, Hofheinz F, van den Hoff J, Wiggermann P, Evert M, Stroszczynski C, Hellwig D, Grosse J. In vivo confirmation of altered hepatic glucose metabolism in patients with liver fibrosis/cirrhosis by 18F-FDG PET/CT. EJNMMI Res 2018; 8:98. [PMID: 30414009 PMCID: PMC6226405 DOI: 10.1186/s13550-018-0452-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The aim of this study was to assess the value of 18F-FDG PET/CT for quantitative assessment of hepatic metabolism in patients with different stages of liver fibrosis/cirrhosis. MATERIALS AND METHODS 18F-FDG PET/CT scans of 37 patients either with or without liver fibrosis/cirrhosis, classified according to the METAVIR score (F0-F4) obtained from histopathological analysis of liver specimen, were analyzed retrospectively and classified as follows: no liver fibrosis (F0, n = 6), mild liver fibrosis (F1, n = 11), advanced liver fibrosis (F2, n = 6), severe liver fibrosis (F3, n = 5), and liver cirrhosis (F4, n = 11). The liver-to-blood ratio (LBR, scan time corrected for a reference time of 75 min) was compared between patient groups. RESULTS Patients with liver fibrosis or cirrhosis (≥ F1; LBR 1.53 ± 0.35) showed a significant higher LBR than patients with normal liver parenchyma (F0, 1.08 ± 0.23; P = 0.004). In direct comparison, LBR increased up to the advanced stage of liver fibrosis (F2; 2.00 ± 0.40) and decreased until liver cirrhosis is reached (F4, 1.32 ± 0.14). CONCLUSION Functional changes in liver parenchyma during liver fibrosis/cirrhosis affect hepatic glucose metabolism and significantly differ between stages of liver fibrosis/cirrhosis, classified according to the METAVIR scoring system, as demonstrated by LBR quantification by 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Niklas Verloh
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany. .,Department of Radiology, University Hospital Regensburg, Regensburg, Germany.
| | - Ingo Einspieler
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - Karin Menhart
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Brunner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany.,Department of Radiology and Nuclear Medicine, Hospital Braunschweig, Braunschweig, Germany
| | - Matthias Evert
- Department of Pathology, University Regensburg, Regensburg, Germany
| | | | - Dirk Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jirka Grosse
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Hepatic glucose uptake is increased in association with elevated serum γ-glutamyl transpeptidase and triglyceride. Dig Dis Sci 2014; 59:607-13. [PMID: 24326630 DOI: 10.1007/s10620-013-2957-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/13/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Subjects with fatty liver disease (FLD) can show increased hepatic 2-deoxy-2-((18)F)fluoro-D-glucose (FDG) uptake, but the role of hepatic inflammation has not been explored. AIMS We investigated whether hepatic inflammatory response, as implicated by elevated serum markers, is associated with increased liver FDG uptake in FLD. METHODS Liver sonography and FDG positron emission tomography was performed in 331 asymptomatic men with nonalcoholic FLD (NAFLD), 122 with alcoholic FLD (AFLD), and 349 controls. Mean standard uptake value (SUV) of liver FDG uptake was compared to cardiac risk factors and serum markers of liver injury. RESULTS Hepatic FDG mean SUV was increased in NAFLD (2.40 ± 0.25) and AFLD groups (2.44 ± 0.25) compared to controls (2.28 ± 0.26; both P < 0.001). Both FLD groups also had higher serum γ-glutamylranspeptidase (GGT), triglyceride (TG), hepatic transaminases, and LDL. High GGT and TG levels were independent determinants of increased FDG uptake for both FLD groups. Hepatic mean SUV significantly increased with high compared to low GGT for NAFLD (2.48 ± 0.28 vs. 2.37 ± 0.24), AFLD (2.51 ± 0.27 vs. 2.39 ± 0.23), and control groups (2.39 ± 0.22 vs. 2.26 ± 0.26). High TG increased hepatic mean SUV in AFLD and control groups. Furthermore, serum GGT and TG levels significantly correlated to hepatic mean SUV in all three groups. CONCLUSIONS Hepatic FDG uptake is closely associated with elevated TG and GGT regardless of the presence of FLD. Thus, inflammation response may play a major role in increased hepatic glucose uptake.
Collapse
|