1
|
Li Q, Wei X, Wu F, Qin C, Dong J, Chen C, Lin Y. Development and validation of preeclampsia predictive models using key genes from bioinformatics and machine learning approaches. Front Immunol 2024; 15:1416297. [PMID: 39544937 PMCID: PMC11560445 DOI: 10.3389/fimmu.2024.1416297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024] Open
Abstract
Background Preeclampsia (PE) poses significant diagnostic and therapeutic challenges. This study aims to identify novel genes for potential diagnostic and therapeutic targets, illuminating the immune mechanisms involved. Methods Three GEO datasets were analyzed, merging two for training set, and using the third for external validation. Intersection analysis of differentially expressed genes (DEGs) and WGCNA highlighted candidate genes. These were further refined through LASSO, SVM-RFE, and RF algorithms to identify diagnostic hub genes. Diagnostic efficacy was assessed using ROC curves. A predictive nomogram and fully Connected Neural Network (FCNN) were developed for PE prediction. ssGSEA and correlation analysis were employed to investigate the immune landscape. Further validation was provided by qRT-PCR on human placental samples. Result Five biomarkers were identified with validation AUCs: CGB5 (0.663, 95% CI: 0.577-0.750), LEP (0.850, 95% CI: 0.792-0.908), LRRC1 (0.797, 95% CI: 0.728-0.867), PAPPA2 (0.839, 95% CI: 0.775-0.902), and SLC20A1 (0.811, 95% CI: 0.742-0.880), all of which are involved in key biological processes. The nomogram showed strong predictive power (C-index 0.873), while FCNN achieved an optimal AUC of 0.911 (95% CI: 0.732-1.000) in five-fold cross-validation. Immune infiltration analysis revealed the importance of T cell subsets, neutrophils, and NK cells in PE, linking these genes to immune mechanisms underlying PE pathogenesis. Conclusion CGB5, LEP, LRRC1, PAPPA2, and SLC20A1 are validated as key diagnostic biomarkers for PE. Nomogram and FCNN could credibly predict PE. Their association with immune infiltration underscores the crucial role of immune responses in PE pathogenesis.
Collapse
Affiliation(s)
- Qian Li
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Wei
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanmei Qin
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junpeng Dong
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ortega MA, Pekarek T, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Bujan J, Pekarek L, Barrena-Blázquez S, Gragera R, Rodríguez-Benitez P, Hernández-Fernández M, López-González L, Díaz-Pedrero R, Asúnsolo Á, Álvarez-Mon M, García-Honduvilla N, Saez MA, De León-Luis JA, Bravo C. Placental Tissue Calcification and Its Molecular Pathways in Female Patients with Late-Onset Preeclampsia. Biomolecules 2024; 14:1237. [PMID: 39456171 PMCID: PMC11506500 DOI: 10.3390/biom14101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks' gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for both mother and baby. The pathogenesis of PE develops due to a dysfunctional placenta with aberrant architecture that releases factors contributing to endothelial dysfunction, an antiangiogenic state, increased oxidative stress, and maternal inflammatory responses. Previous studies have shown a correlation between grade 3 placental calcifications and an elevated risk of developing PE at term. However, little is known about the molecular pathways leading to placental calcification. In this work, we studied the gene and protein expression of c-Jun N-terminal kinase (JNK), Runt-related transcription factor 2 (RUNX2), osteocalcin (OSC), osteopontin (OSP), pigment epithelium-derived factor (PEDF), MSX-2/HOX8, SOX-9, WNT-1, and β-catenin in placental tissue from women with late-onset PE (LO-PE). In addition, we employed von Kossa staining to detect mineral deposits in placental tissues. Our results show a significant increase of all these components in placentas from women with LO-PE. Therefore, our study suggests that LO-PE may be associated with the activation of molecular pathways of placental calcification. These results could be the starting point for future research to describe the molecular mechanisms that promote placental calcification in PE and the development of therapeutic strategies directed against it.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Julia Bujan
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raquel Gragera
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Mauricio Hernández-Fernández
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
3
|
Abstract
Inorganic phosphate (Pi) is an essential component of many biologically important molecules such as DNA, RNA, ATP, phospholipids, or apatite. It is required for intracellular phosphorylation signaling events and acts as pH buffer in intra- and extracellular compartments. Intestinal absorption, uptake into cells, and renal reabsorption depend on a set of different phosphate transporters from the SLC20 (PiT transporters) and SLC34 (NaPi transporters) gene families. The physiological relevance of these transporters is evident from rare monogenic disorders in humans affecting SLC20A2 (Fahr's disease, basal ganglia calcification), SLC34A1 (idiopathic infantile hypercalcemia), SLC34A2 (pulmonary alveolar microlithiasis), and SLC34A3 (hereditary hypophosphatemic rickets with hypercalciuria). SLC34 transporters are inhibited by millimolar concentrations of phosphonoformic acid or arsenate while SLC20 are relatively resistant to these compounds. More recently, a series of more specific and potent drugs have been developed to target SLC34A2 to reduce intestinal Pi absorption and to inhibit SLC34A1 and/or SLC34A3 to increase renal Pi excretion in patients with renal disease and incipient hyperphosphatemia. Also, SLC20 inhibitors have been developed with the same intention. Some of these substances are currently undergoing preclinical and clinical testing. Tenapanor, a non-absorbable Na+/H+-exchanger isoform 3 inhibitor, reduces intestinal Pi absorption likely by indirectly acting on the paracellular pathway for Pi and has been tested in several phase III trials for reducing Pi overload in patients with renal insufficiency and dialysis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Correia-Branco A, Mei A, Pillai S, Jayaraman N, Sharma R, Paquette AG, Neradugomma NK, Benson C, Chavkin NW, Mao Q, Wallingford MC. SLC20a1/PiT-1 is required for chorioallantoic placental morphogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e220018. [PMID: 36795703 PMCID: PMC10160536 DOI: 10.1530/vb-22-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/16/2023] [Indexed: 02/17/2023]
Abstract
The placenta mediates the transport of nutrients, such as inorganic phosphate (Pi), between the maternal and fetal circulatory systems. The placenta itself also requires high levels of nutrient uptake as it develops to provide critical support for fetal development. This study aimed to determine placental Pi transport mechanisms using in vitro and in vivo models. We observed that Pi (P33) uptake in BeWo cells is sodium dependent and that SLC20A1/Slc20a1 is the most highly expressed placental sodium-dependent transporter in mouse (microarray), human cell line (RT-PCR) and term placenta (RNA-seq), supporting that normal growth and maintenance of the mouse and human placenta requires SLC20A1/Slc20a1. Slc20a1 wild-type (Slc20a1+/+) and knockout (Slc20a1-/-) mice were produced through timed intercrosses and displayed yolk sac angiogenesis failure as expected at E10.5. E9.5 tissues were analyzed to test whether placental morphogenesis requires Slc20a1. At E9.5, the developing placenta was reduced in size in Slc20a1-/-. Multiple structural abnormalities were also observed in the Slc20a1-/-chorioallantois. We determined that monocarboxylate transporter 1 protein (MCT1+) cells were reduced in developing Slc20a1-/-placenta, confirming that Slc20a1 loss reduced trophoblast syncytiotrophoblast 1 (SynT-I) coverage. Next, we examined the cell type-specific Slc20a1 expression and SynT molecular pathways in silico and identified Notch/Wnt as a pathway of interest that regulates trophoblast differentiation. We further observed that specific trophoblast lineages express Notch/Wnt genes that associate with endothelial cell tip-and-stalk cell markers. In conclusion, our findings support that Slc20a1 mediates the symport of Pi into SynT cells, providing critical support for their differentiation and angiogenic mimicry function at the developing maternal-fetal interface.
Collapse
Affiliation(s)
- Ana Correia-Branco
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ariel Mei
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sreehari Pillai
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nirmala Jayaraman
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Radhika Sharma
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Alison G Paquette
- University of Washington, Department of Pediatrics, Seattle, Washington, USA
| | - Naveen K Neradugomma
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Ciara Benson
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nicholas W Chavkin
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Jennings ML. Role of transporters in regulating mammalian intracellular inorganic phosphate. Front Pharmacol 2023; 14:1163442. [PMID: 37063296 PMCID: PMC10097972 DOI: 10.3389/fphar.2023.1163442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
This review summarizes the current understanding of the role of plasma membrane transporters in regulating intracellular inorganic phosphate ([Pi]In) in mammals. Pi influx is mediated by SLC34 and SLC20 Na+-Pi cotransporters. In non-epithelial cells other than erythrocytes, Pi influx via SLC20 transporters PiT1 and/or PiT2 is balanced by efflux through XPR1 (xenotropic and polytropic retrovirus receptor 1). Two new pathways for mammalian Pi transport regulation have been described recently: 1) in the presence of adequate Pi, cells continuously internalize and degrade PiT1. Pi starvation causes recycling of PiT1 from early endosomes to the plasma membrane and thereby increases the capacity for Pi influx; and 2) binding of inositol pyrophosphate InsP8 to the SPX domain of XPR1 increases Pi efflux. InsP8 is degraded by a phosphatase that is strongly inhibited by Pi. Therefore, an increase in [Pi]In decreases InsP8 degradation, increases InsP8 binding to SPX, and increases Pi efflux, completing a feedback loop for [Pi]In homeostasis. Published data on [Pi]In by magnetic resonance spectroscopy indicate that the steady state [Pi]In of skeletal muscle, heart, and brain is normally in the range of 1–5 mM, but it is not yet known whether PiT1 recycling or XPR1 activation by InsP8 contributes to Pi homeostasis in these organs. Data on [Pi]In in cultured cells are variable and suggest that some cells can regulate [Pi] better than others, following a change in [Pi]Ex. More measurements of [Pi]In, influx, and efflux are needed to determine how closely, and how rapidly, mammalian [Pi]In is regulated during either hyper- or hypophosphatemia.
Collapse
|
6
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
7
|
Frangi G, Guicheteau M, Jacquot F, Pyka G, Kerckhofs G, Feyeux M, Veziers J, Guihard P, Halgand B, Sourice S, Guicheux J, Prieur X, Beck L, Beck-Cormier S. PiT2 deficiency prevents increase of bone marrow adipose tissue during skeletal maturation but not in OVX-induced osteoporosis. Front Endocrinol (Lausanne) 2022; 13:921073. [PMID: 36465661 PMCID: PMC9708882 DOI: 10.3389/fendo.2022.921073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The common cellular origin between bone marrow adipocytes (BMAds) and osteoblasts contributes to the intimate link between bone marrow adipose tissue (BMAT) and skeletal health. An imbalance between the differentiation ability of BMSCs towards one of the two lineages occurs in conditions like aging or osteoporosis, where bone mass is decreased. Recently, we showed that the sodium-phosphate co-transporter PiT2/SLC20A2 is an important determinant for bone mineralization, strength and quality. Since bone mass is reduced in homozygous mutant mice, we investigated in this study whether the BMAT was also affected in PiT2-/- mice by assessing the effect of the absence of PiT2 on BMAT volume between 3 and 16 weeks, as well as in an ovariectomy-induced bone loss model. Here we show that the absence of PiT2 in juveniles leads to an increase in the BMAT that does not originate from an increased adipogenic differentiation of bone marrow stromal cells. We show that although PiT2-/- mice have higher BMAT volume than control PiT2+/+ mice at 3 weeks of age, BMAT volume do not increase from 3 to 16 weeks of age, leading to a lower BMAT volume in 16-week-old PiT2-/- compared to PiT2+/+ mice. In contrast, the absence of PiT2 does not prevent the increase in BMAT volume in a model of ovariectomy-induced bone loss. Our data identify SLC20a2/PiT2 as a novel gene essential for the maintenance of the BMAd pool in adult mice, involving mechanisms of action that remain to be elucidated, but which appear to be independent of the balance between osteoblastic and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Giulia Frangi
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Marie Guicheteau
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Frederic Jacquot
- Nantes Université, CHU Nantes, Inserm, CNRS, CRCI2NA, Nantes, France
| | - Grzegorz Pyka
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UC Louvain, Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UC Louvain, Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- IREC, Institute of Experimental and Clinical Research, UC Louvain, Woluwé-Saint-Lambert, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Joëlle Veziers
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Pierre Guihard
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Boris Halgand
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Sophie Sourice
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Xavier Prieur
- Nantes Université, CNRS, Inserm, l’Institut du Thorax, Nantes, France
| | - Laurent Beck
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Sarah Beck-Cormier
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
- *Correspondence: Sarah Beck-Cormier,
| |
Collapse
|
8
|
Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW. Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
9
|
Yamazaki M, Kawai M, Kinoshita S, Tachikawa K, Nakanishi T, Ozono K, Michigami T. Clonal osteoblastic cell lines with CRISPR/Cas9-mediated ablation of Pit1 or Pit2 show enhanced mineralization despite reduced osteogenic gene expression. Bone 2021; 151:116036. [PMID: 34118444 DOI: 10.1016/j.bone.2021.116036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Multiple actions of extracellular Pi on the skeletal cells are likely to be partly mediated by type III sodium/phosphate (Na+/Pi) cotransporters Pit1 and Pit2, although the details are not fully understood. In the current study, to determine the roles of Pit1 and Pit2 in osteoblasts, we generated Pit1-knockout (KO) and Pit2-KO osteoblastic cells by applying CRISPR/Cas9 genome editing to an osteoblastic cell line MC3T3-E1 subclone 4. The extracellular Pi level was increased in the Pit1-KO and Pit2-KO clones due to the reduced Pi uptake. Interestingly, in vitro mineralization was accelerated in the Pit1-KO and Pit2-KO clones, although the induction of the expression of osteogenic marker genes was suppressed. In the cells before mineralization, extracellular levels of pyrophosphate (PPi) and adenosine triphosphate (ATP) were increased in the Pit1-KO and Pit2-KO clones, which might be attributable to the reduced expression and activity of tissue-nonspecific alkaline phosphatase (TNSALP). A 24-h treatment with high Pi reduced the expression and activity of TNSALP, suggesting that the suppression of TNSALP in the Pit1-KO and Pit2-KO clones was caused by the increased availability of extracellular Pi. Lentiviral gene transfer of Pit1 and Pit2 restored the changes observed in Pit1-KO and Pit2-KO clones, respectively. The expressions of P2Y2 and P2X7 which encode receptors for extracellular ATP were altered in the Pit1-KO and Pit2-KO clones, suggesting an influence on purinergic signaling. In mineralized cells after long-term culture, intracellular levels of PPi and ATP were higher in the Pit1-KO and Pit2-KO clones. Taken together, ablation of Pit1 or Pit2 in this osteoblastic cell model led to accelerated mineralization, suppressed TNSALP and altered the levels of extracellular and intracellular PPi and ATP, which might be partly mediated by changes in the availability of extracellular Pi.
Collapse
Affiliation(s)
- Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Saori Kinoshita
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
10
|
Ren Y, Shen Y, Si N, Fan S, Zhang Y, Xu W, Shi L, Zhang X. Slc20a2-Deficient Mice Exhibit Multisystem Abnormalities and Impaired Spatial Learning Memory and Sensorimotor Gating but Normal Motor Coordination Abilities. Front Genet 2021; 12:639935. [PMID: 33889180 PMCID: PMC8056086 DOI: 10.3389/fgene.2021.639935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr's disease, is a rare autosomal dominant or recessive neurodegenerative disorder characterized by bilateral and symmetrical microvascular calcifications affecting multiple brain regions, particularly the basal ganglia (globus pallidus, caudate nucleus, and putamen) and thalamus. The most common clinical manifestations include cognitive impairment, neuropsychiatric signs, and movement disorders. Loss-of-function mutations in SLC20A2 are the major genetic causes of PFBC. OBJECTIVE This study aimed to investigate whether Slc20a2 knockout mice could recapitulate the dynamic processes and patterns of brain calcification and neurological symptoms in patients with PFBC. We comprehensively evaluated brain calcifications and PFBC-related behavioral abnormalities in Slc20a2-deficient mice. METHODS Brain calcifications were analyzed using classic calcium-phosphate staining methods. The Morris water maze, Y-maze, and fear conditioning paradigms were used to evaluate long-term spatial learning memory, working memory, and episodic memory, respectively. Sensorimotor gating was mainly assessed using the prepulse inhibition of the startle reflex program. Spontaneous locomotor activity and motor coordination abilities were evaluated using the spontaneous activity chamber, cylinder test, accelerating rotor-rod, and narrowing balance beam tests. RESULTS Slc20a2 homozygous knockout (Slc20a2-HO) mice showed congenital and global developmental delay, lean body mass, skeletal malformation, and a high proportion of unilateral or bilateral eye defects. Brain calcifications were detected in the hypothalamus, ventral thalamus, and midbrain early at postnatal day 80 in Slc20a2-HO mice, but were seldom found in Slc20a2 heterozygous knockout (Slc20a2-HE) mice, even at extremely old age. Slc20a2-HO mice exhibited spatial learning memory impairments and sensorimotor gating deficits while exhibiting normal working and episodic memories. The general locomotor activity, motor balance, and coordination abilities were not statistically different between Slc20a2-HO and wild-type mice after adjusting for body weight, which was a major confounding factor in our motor function evaluations. CONCLUSION The human PFBC-related phenotypes were highly similar to those in Slc20a2-HO mice. Therefore, Slc20a2-HO mice might be suitable for the future evaluation of neuropharmacological intervention strategies targeting cognitive and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Yaqiong Ren
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Lei Shi
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Stenhouse C, Halloran KM, Newton MG, Gaddy D, Suva LJ, Bazer FW. Novel mineral regulatory pathways in ovine pregnancy: I. phosphate, klotho signaling, and sodium-dependent phosphate transporters. Biol Reprod 2021; 104:1084-1096. [PMID: 33624764 DOI: 10.1093/biolre/ioab028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Appropriate mineralization of the fetal skeleton requires an excess of phosphate in the fetus compared to the mother. However, mechanisms for placental phosphate transport are poorly understood. This study aimed to identify phosphate regulatory pathways in ovine endometria and placentae throughout gestation. Suffolk ewes were bred with fertile rams upon visual detection of estrus (Day 0). On Days 9, 12, 17, 30, 70, 90, 110, and 125 of pregnancy (n = 3-14/Day), ewes were euthanized and hysterectomized. Phosphate abundance varied across gestational days in uterine flushings, allantoic fluid, and homogenized endometria and placentae (P < 0.05). The expression of mRNAs for sodium-dependent phosphate transporters (SLC20A1 and SLC20A2) and klotho signaling mediators (FGF7, FGF21, FGF23, FGFR1-4, KL, KLB, ADAM10, and ADAM17) were quantified by qPCR. Day 17 conceptus tissue expressed SLC20A1, SLC20A2, KLB, FGF7, FGF21, FGF23, FGFR1, and FGFR2 mRNAs. Both sodium-dependent phosphate transporters and klotho signaling mediators were expressed in endometria and placentae throughout gestation. Gestational day influenced the expression of SLC20A1, ADAM10, ADAM17, FGF21, FGFR1, and FGFR3 mRNAs in both endometria and placentae (P < 0.05). Gestational day influenced endometrial expression of FGF7 (P < 0.001), and placental expression of FGF23 (P < 0.05). Immunohistochemistry confirmed that both FGF23 and KL proteins were expressed in endometria and placentae throughout gestation. The observed spatiotemporal profile of KL-FGF signaling suggests a potential role in the establishment of pregnancy and regulation of fetal growth. This study provides a platform for further mechanistic investigation into the role for KL-FGF signaling in the regulation of phosphate transport at the ovine maternal-conceptus interface.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Katherine M Halloran
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Makenzie G Newton
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Ying Y, Pan P, Zou C, Wang Y, Tang Y, Hou X, Li Y, Xu Q, Lin L, Lu J, Ge RS. Tebuconazole exposure disrupts placental function and causes fetal low birth weight in rats. CHEMOSPHERE 2021; 264:128432. [PMID: 33049508 DOI: 10.1016/j.chemosphere.2020.128432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TEB) is one of the widely used broad-spectrum triazole fungicides. Its accumulation in mammals leads to various endocrine disruptions. However, it is unclear whether the exposure of TEB during pregnancy affects the growth and development of fetus and placenta. Here, TEB was exposed to pregnant Sprague-Dawley female rats from gestational days 12-21 of 0, 25, 50 or 100 mg/kg for 10 days. TEB reduced placental estradiol levels. TEB disrupted the structure and function of the placenta, leading to hypertrophy, fibrin exudation, edema, calcification, arterial fibroblast proliferation, and trophoblastic infarction. RNA-seq analysis showed that TEB mainly down-regulated the expression of iron transport genes and up-regulated the expression of genes for immune/inflammatory responses. Further qPCR showed that TEB down-regulated Tfrc, Hamp, Eif2ak2 and up-regulated the expression of Cd34, Cd36, Jag1, Pln, Cyp1a1, Esrra, and Aqp1 at 50 and 100 mg/kg. Western blot and semi-quantitative immunohistochemical staining also demonstrated that TEB lowered the levels of TFRC and EIF2AK2 and increased the levels of CD34, CD36, JAG1, CYP1A1, and ESRRA at 50 and 100 mg/kg. In conclusion, TEB severely damages the structure and function of the placenta, leading to hypertrophy of the placenta, low birth weight and feminization of the male fetus possibly via several pathways including iron transport and TNF signaling.
Collapse
Affiliation(s)
- Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Xiaohong Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Yang Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Qiang Xu
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Liben Lin
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Jieqiang Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
13
|
Saranza G, Grütz K, Klein C, Westenberger A, Lang AE. Primary brain calcification due to a homozygous MYORG mutation causing isolated paroxysmal kinesigenic dyskinesia. Brain 2020; 143:e36. [PMID: 32303062 DOI: 10.1093/brain/awaa086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Gerard Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Nicolas G, Grangeon L, Wallon D. Reply: Primary brain calcification due to a homozygous MYORG mutation causing isolated paroxysmal kinesigenic dyskinesia. Brain 2020; 143:e37. [DOI: 10.1093/brain/awaa087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gaël Nicolas
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Lou Grangeon
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - David Wallon
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
15
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
16
|
Xu X, Li X, Sun H, Cao Z, Gao R, Niu T, Wang Y, Ma T, Chen R, Wang C, Yang Z, Liu JY. Murine Placental-Fetal Phosphate Dyshomeostasis Caused by an Xpr1 Deficiency Accelerates Placental Calcification and Restricts Fetal Growth in Late Gestation. J Bone Miner Res 2020; 35:116-129. [PMID: 31498925 DOI: 10.1002/jbmr.3866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022]
Abstract
Phosphorus is a necessary component of all living organisms. This nutrient is mainly transported from the maternal blood to the fetus via the placenta, and insufficient phosphorus availability via the placenta disturbs the normal development of the fetus, especially fetal bone formation in late gestation. Key proteins (phosphate transporters and exporters) that are responsible for the maintenance of placental-fetal phosphorus homeostasis have been identified. A deficiency in the phosphate transporter Pit2 has been shown to result in placental calcification and the retardation of fetal development in mice. What roles does XPR1 (the only known phosphate exporter) play in maintaining placental-fetal phosphorus homeostasis? In this study, we found that Xpr1 expression is strong in the murine placenta and increases with age during gestation. We generated a global Xpr1 knockout mouse and found that heterozygous (Xpr1+/- ) and homozygous (Xpr1-/- ) fetuses have lower inorganic phosphate (Pi) levels in amniotic fluid and serum and a decreased skeletal mineral content. Xpr1-deficient placentas show abnormal Pi exchange during gestation. Therefore, Xpr1 deficiency in the placenta disrupts placental-fetal Pi homeostasis. We also discovered that the placentas of the Xpr1+/- and Xpr1-/- embryos are severely calcified. Mendelian inheritance statistics for offspring outcomes indicated that Xpr1-deficient embryos are significantly reduced in late gestation. In addition, Xpr1-/- mice die perinatally and a small proportion of Xpr1+/- mice die neonatally. RNA sequence (RNA-Seq) analysis of placental mRNA revealed that many of the transcripts are significantly differentially expressed due to Xpr1 deficiency and are linked to dysfunction of the placenta. This study is the first to reveal that XPR1 plays an important role in maintaining placental-fetal Pi homeostasis, disruption of which causes severe placental calcification, delays normal placental function, and restricts fetal growth. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiunan Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Niu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tingbin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Nahar K, Lebouvier T, Andaloussi Mäe M, Konzer A, Bergquist J, Zarb Y, Johansson B, Betsholtz C, Vanlandewijck M. Astrocyte-microglial association and matrix composition are common events in the natural history of primary familial brain calcification. Brain Pathol 2019; 30:446-464. [PMID: 31561281 PMCID: PMC7317599 DOI: 10.1111/bpa.12787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfbret/ret and Slc20a2-/- mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfbret/ret mice were large, solitary and smooth surfaced, the nodules in Slc20a2-/- mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfbret/ret mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2-/- mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.
Collapse
Affiliation(s)
- Khayrun Nahar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Neurology, CHRU Lille, Lille, France.,Inserm U1171, Lille, France
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne Konzer
- Scientific Service Group Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Bergquist
- Department of Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Bengt Johansson
- Electron Microscopy Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
18
|
Beck‐Cormier S, Lelliott CJ, Logan JG, Lafont DT, Merametdjian L, Leitch VD, Butterfield NC, Protheroe HJ, Croucher PI, Baldock PA, Gaultier‐Lintia A, Maugars Y, Nicolas G, Banse C, Normant S, Magne N, Gérardin E, Bon N, Sourice S, Guicheux J, Beck L, Williams GR, Bassett JHD. Slc20a2, Encoding the Phosphate Transporter PiT2, Is an Important Genetic Determinant of Bone Quality and Strength. J Bone Miner Res 2019; 34:1101-1114. [PMID: 30721528 PMCID: PMC6618161 DOI: 10.1002/jbmr.3691] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/25/2022]
Abstract
Osteoporosis is characterized by low bone mineral density (BMD) and fragility fracture and affects over 200 million people worldwide. Bone quality describes the material properties that contribute to strength independently of BMD, and its quantitative analysis is a major priority in osteoporosis research. Tissue mineralization is a fundamental process requiring calcium and phosphate transporters. Here we identify impaired bone quality and strength in Slc20a2-/- mice lacking the phosphate transporter SLC20A2. Juveniles had abnormal endochondral and intramembranous ossification, decreased mineral accrual, and short stature. Adults exhibited only small reductions in bone mass and mineralization but a profound impairment of bone strength. Bone quality was severely impaired in Slc20a2-/- mice: yield load (-2.3 SD), maximum load (-1.7 SD), and stiffness (-2.7 SD) were all below values predicted from their bone mineral content as determined in a cohort of 320 wild-type controls. These studies identify Slc20a2 as a physiological regulator of tissue mineralization and highlight its critical role in the determination of bone quality and strength. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Sarah Beck‐Cormier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | | | - John G Logan
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | | | - Laure Merametdjian
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
- Centre Hospitalier Universitaire (CHU) NantesPôles Hospitalo‐Universitaires (PHU4) ‐ Ostéo‐articulaire ‐ Tête et Cou ‐ Odontologie ‐ Neurochirurgie ‐ Neuro‐traumatologie (OTONN)NantesFrance
| | - Victoria D Leitch
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - Natalie C Butterfield
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - Hayley J Protheroe
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - Peter I Croucher
- The Garvan Institute of Medical ResearchSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) AustraliaSydneyNSWAustralia
| | - Paul A Baldock
- The Garvan Institute of Medical ResearchSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) AustraliaSydneyNSWAustralia
| | | | - Yves Maugars
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Centre Hospitalier Universitaire (CHU) NantesPôles Hospitalo‐Universitaires (PHU4) ‐ Ostéo‐articulaire ‐ Tête et Cou ‐ Odontologie ‐ Neurochirurgie ‐ Neuro‐traumatologie (OTONN)NantesFrance
| | - Gael Nicolas
- INSERM U1245Université de Rouen Normandie (UNIROUEN)RouenFrance
- Department of GeneticsRouen University HospitalRouenFrance
- Centre National de Référence pour les Malades Alzheimer Jeunes (CNR‐MAJ)Normandy Center for Genomic and Personalized MedicineRouenFrance
| | | | | | - Nicolas Magne
- Department of NeuroradiologyRouen University HospitalRouenFrance
| | | | - Nina Bon
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | - Sophie Sourice
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | - Jérôme Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
- Centre Hospitalier Universitaire (CHU) NantesPôles Hospitalo‐Universitaires (PHU4) ‐ Ostéo‐articulaire ‐ Tête et Cou ‐ Odontologie ‐ Neurochirurgie ‐ Neuro‐traumatologie (OTONN)NantesFrance
| | - Laurent Beck
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | - Graham R Williams
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - J H Duncan Bassett
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| |
Collapse
|
19
|
Pericytes in Primary Familial Brain Calcification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:247-264. [PMID: 31147881 DOI: 10.1007/978-3-030-16908-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells along capillaries that are critical for the development of a functional vascular bed in the central nervous system and other organs. Pericyte functions in the adult brain are less well understood. Pericytes have been suggested to mediate functional hyperemia at the capillary level, regulate the blood-brain barrier and to give rise to scar tissue after spinal cord injury. Furthermore, pericyte loss has been suggested to precede cognitive decline in mouse models of Alzheimer's disease. Despite this observation, there is no convincing causality between pericyte loss and the pathogenesis of Alzheimer's disease. However, recent loss-of-function mutations in PDGFB and PDGFRB genes have implicated pericytes as the principle cell type affected in primary familiar brain calcification (PFBC), a neuropsychiatric disorder with dominant inheritance. Here we review the role of the PDGFB/PDGFRB signaling pathway in pericyte development and briefly discuss homeostatic functions of pericytes in the brain. We provide an overview of recent studies with mouse models of PFBC and discuss suggested pathogenic mechanisms for PFBC with special reference to pericytes.
Collapse
|
20
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
21
|
Wallingford MC, Benson C, Chavkin NW, Chin MT, Frasch MG. Placental Vascular Calcification and Cardiovascular Health: It Is Time to Determine How Much of Maternal and Offspring Health Is Written in Stone. Front Physiol 2018; 9:1044. [PMID: 30131710 PMCID: PMC6090024 DOI: 10.3389/fphys.2018.01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is the deposition of calcium phosphate minerals in vascular tissue. Vascular calcification occurs by both active and passive processes. Extent and tissue-specific patterns of vascular calcification are predictors of cardiovascular morbidity and mortality. The placenta is a highly vascularized organ with specialized vasculature that mediates communication between two circulatory systems. At delivery the placenta often contains calcified tissue and calcification can be considered a marker of viral infection, but the mechanisms, histoanatomical specificity, and pathophysiological significance of placental calcification are poorly understood. In this review, we outline the current understanding of vascular calcification mechanisms, biomedical consequences, and therapeutic interventions in the context of histoanatomical types. We summarize available placental calcification data and clinical grading systems for placental calcification. We report on studies that have examined the association between placental calcification and acute adverse maternal and fetal outcomes. We then review the intersection between placental dysfunction and long-term cardiovascular health, including subsequent occurrence of maternal vascular calcification. Possible maternal phenotypes and trigger mechanisms that may predispose for calcification and cardiovascular disease are discussed. We go on to highlight the potential diagnostic value of placental calcification. Finally, we suggest avenues of research to evaluate placental calcification as a research model for investigating the relationship between placental dysfunction and cardiovascular health, as well as a biomarker for placental dysfunction, adverse clinical outcomes, and increased risk of subsequent maternal and offspring cardiovascular events.
Collapse
Affiliation(s)
- Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States.,Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Ciara Benson
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nicholas W Chavkin
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,School of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States
| | - Michael T Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Mice Knocked Out for the Primary Brain Calcification–Associated Gene Slc20a2 Show Unimpaired Prenatal Survival but Retarded Growth and Nodules in the Brain that Grow and Calcify Over Time. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1865-1881. [DOI: 10.1016/j.ajpath.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/30/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
|
23
|
Yamada S, Wallingford MC, Borgeia S, Cox TC, Giachelli CM. Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice. Biochem Biophys Res Commun 2018; 495:553-559. [PMID: 29133259 PMCID: PMC5739526 DOI: 10.1016/j.bbrc.2017.11.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/31/2023]
Abstract
Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Suhaib Borgeia
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Timothy C Cox
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Nicolas G, Sanchez-Contreras M, Ramos EM, Lemos RR, Ferreira J, Moura D, Sobrido MJ, Richard AC, Lopez AR, Legati A, Deleuze JF, Boland A, Quenez O, Krystkowiak P, Favrole P, Geschwind DH, Aran A, Segel R, Levy-Lahad E, Dickson DW, Coppola G, Rademakers R, de Oliveira JRM. Brain calcifications and PCDH12 variants. NEUROLOGY-GENETICS 2017; 3:e166. [PMID: 28804758 PMCID: PMC5530423 DOI: 10.1212/nxg.0000000000000166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To assess the potential connection between PCDH12 and brain calcifications in a patient carrying a homozygous nonsense variant in PCDH12 and in adult patients with brain calcifications. METHODS We performed a CT scan in 1 child with a homozygous PCDH12 nonsense variant. We screened DNA samples from 53 patients with primary familial brain calcification (PFBC) and 26 patients with brain calcification of unknown cause (BCUC). RESULTS We identified brain calcifications in subcortical and perithalamic regions in the patient with a homozygous PCDH12 nonsense variant. The calcification pattern was different from what has been observed in PFBC and more similar to what is described in in utero infections. In patients with PFBC or BCUC, we found no protein-truncating variant and 3 rare (minor allele frequency <0.001) PCDH12 predicted damaging missense heterozygous variants in 3 unrelated patients, albeit with no segregation data available. CONCLUSIONS Brain calcifications should be added to the phenotypic spectrum associated with PCDH12 biallelic loss of function, in the context of severe cerebral developmental abnormalities. A putative role for PCDH12 variants remains to be determined in PFBC.
Collapse
Affiliation(s)
- Gaël Nicolas
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Monica Sanchez-Contreras
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Eliana Marisa Ramos
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Roberta R Lemos
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Joana Ferreira
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Denis Moura
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria J Sobrido
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Anne-Claire Richard
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Alma Rosa Lopez
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Andrea Legati
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Jean-François Deleuze
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Anne Boland
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Pierre Krystkowiak
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Pascal Favrole
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Daniel H Geschwind
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Adi Aran
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Reeval Segel
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Ephrat Levy-Lahad
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Dennis W Dickson
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovanni Coppola
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Rosa Rademakers
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - João R M de Oliveira
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
25
|
Phosphate Transporters Expression in Patients with Primary Familial Brain Calcifications. J Mol Neurosci 2017; 62:276-280. [DOI: 10.1007/s12031-017-0934-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
|
26
|
Bezerra DP, Oliveira JRM. New Studies on Knockout Mouse for the SLC20A2 Gene Show Much More Than Brain Calcifications. J Mol Neurosci 2016; 59:565-6. [PMID: 27380911 DOI: 10.1007/s12031-016-0778-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Affiliation(s)
- D P Bezerra
- Keizo Asami Laboratory-Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Biological Sciences Graduate Program, UFPE, Recife, PE, Brazil
| | - J R M Oliveira
- Keizo Asami Laboratory-Federal University of Pernambuco (UFPE), Recife, PE, Brazil. .,Biological Sciences Graduate Program, UFPE, Recife, PE, Brazil. .,Neuropsychiatry Department, UFPE, Recife, PE, Brazil.
| |
Collapse
|