1
|
Lei XT, Pu DL, Shan G, Wu QN. Atorvastatin ameliorated myocardial fibrosis by inhibiting oxidative stress and modulating macrophage polarization in diabetic cardiomyopathy. World J Diabetes 2024; 15:1070-1073. [PMID: 38983803 PMCID: PMC11229961 DOI: 10.4239/wjd.v15.i6.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 06/11/2024] Open
Abstract
In this editorial, we commented on the article published in the recent issue of the World Journal of Diabetes. Diabetic cardiomyopathy (DCM) is characterized by myocardial fibrosis, ventricular hypertrophy and diastolic dysfunction in diabetic patients, which can cause heart failure and threaten the life of patients. The pathogenesis of DCM has not been fully clarified, and it may involve oxidative stress, inflammatory stimulation, apoptosis, and autophagy. There is lack of effective therapies for DCM in the clinical practice. Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques, and exhibit definite cardiovascular protective effects. Studies have shown that statins also have anti-inflammatory and antioxidant effects. We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and anti-inflammatory effects of macrophage polarization on diabetic myocardium, and thereby improving DCM.
Collapse
Affiliation(s)
- Xiao-Tian Lei
- Department of Endocrinology, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dan-Lan Pu
- Department of Endocrinology, Chongqing Yubei District People's Hospital, Chongqing 400030, China
| | - Geng Shan
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing 402360, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing 402360, China
| |
Collapse
|
2
|
He R, Jia B, Peng D, Chen W. Caged Polyprenylated Xanthones in Garcinia hanburyi and the Biological Activities of Them. Drug Des Devel Ther 2023; 17:3625-3660. [PMID: 38076632 PMCID: PMC10710250 DOI: 10.2147/dddt.s426685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products.
Collapse
Affiliation(s)
- Ruixi He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Buyun Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
3
|
Xing X, Guo J, Mo J, Li H, Zhang H, Shao B, Wang Y, Li H, Wang J, Leung CL, Jiang Y, Yin W, Chen H, He Q. Qili Qiangxin capsules for chronic heart failure: A GRADE-assessed clinical evidence and preclinical mechanism. Front Cardiovasc Med 2023; 9:1090616. [PMID: 36712277 PMCID: PMC9873992 DOI: 10.3389/fcvm.2022.1090616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Chronic heart failure (CHF) has become an increasing concern with the aging of the population. This study aims to evaluate the effectiveness and safety of Qili Qiangxin capsules (QLQX) for CHF. Methods A systematic review and meta-analysis on clinical studies was conducted. The mechanisms of preclinical studies were summarized. Results We searched six electronic databases by 20 July 2022, and finally, 7 preclinical experiments (PEs) and 24 randomized controlled trials were included. The risk of bias was accessed by the SYRCLE and RoB 2.0 tool, respectively. PEs indicated that QLQX suppresses myocardial apoptosis, inhibits renin-angiotensin-aldosterone system activation, improves water retention, and enhances cardiocyte remodeling. In clinical studies, compared with routine treatment, QLQX could improve the indicators: clinical efficacy rate (RR = 1.16, 95% CI [1.12, 1.22], GRADE: moderate), left ventricular end-diastolic dimension (SMD = -1.04, 95% CI [-1.39, -0.70], GRADE: low), left ventricular ejection fraction (SMD = 1.20, 95% CI [0.97, 1.43], GRADE: moderate), 6-minute walk distance (SMD = 1.55, 95% CI [0.89, 2.21], GRADE: low), brain natriuretic peptide (SMD = -0.78, 95% CI [-1.06, -0.51], GRADE: low), N-terminal pro-brain natriuretic peptide (SMD = -2.15, 95% CI [-3.60, -0.71], GRADE: low), and adverse events (RR = 0.46, 95% CI [0.25, 0.87], GRADE: low). Discussion In summary, QLQX exerts a potential mechanism of utility on myocardial apoptosis and cardiac function and has noteworthy clinical adjuvant efficacy and safety in patients with CHF. Systematic review registration https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Xiaoxiao Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianbo Guo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juefei Mo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huashan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Shao
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yifan Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Haidi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Jianan Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Cheuk Lung Leung
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weixian Yin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyong Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qingyong He
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
5
|
Liu A, Zhang Y, Xun S, Zhou G, Lin L, Mei Y. Fibroblast growth factor 12 attenuated cardiac remodeling via suppressing oxidative stress. Peptides 2022; 153:170786. [PMID: 35304156 DOI: 10.1016/j.peptides.2022.170786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factors (FGFs) mediate key cardiac functions from development to homeostasis and disease. The current research was to explore the effects of FGF12 in the fibrosis of cardiac function and heart failure, and whether FGF12 alleviated cardiac fibrosis via inhibition of oxidative stress. Ligation of left coronary artery in mice induced heart failure and myocardial infarction (MI). Angiotensin II (Ang II) was administered to cardiac fibroblasts (CFs). FGF12 upregulation or FGF12 transgenic (Tg) mice could improve cardiac dysfunction of MI mice, and attenuated cardiac fibrosis of heart failure induced by MI in mice. FGF12 overexpression suppressed the increases of collagen I, collagen III and fibronectin which was induced by Ang II in CFs. The oxidative stress was enhanced in the heart of MI mice and CFs treated with Ang II, and these enhances were attenuated via FGF12 overexpression. Superoxide dismutase (SOD) overexpression inhibited the enhancements of collagen I, collagen III and fibronectin in the heart of MI mice, and in the CFs treated with Ang II. Overexpression of nicotinamide adenine dinucleotide phosphate oxidases (Nox1) reversed the attenuating influences of FGF12 on the enhancements of collagen I, collagen III and fibronectin in the CFs induced by Ang II. These outcomes showed that FGF12 upregulation can improve cardiac dysfunction and heart fibrosis of heart failure. FGF12 attenuates oxidative stress to suppress the cardiac fibrosis.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Antioxidants in Arrhythmia Treatment—Still a Controversy? A Review of Selected Clinical and Laboratory Research. Antioxidants (Basel) 2022; 11:antiox11061109. [PMID: 35740006 PMCID: PMC9220256 DOI: 10.3390/antiox11061109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Antioxidants are substances that can prevent damage to cells caused by free radicals. Production of reactive oxygen species and the presence of oxidative stress play an important role in cardiac arrhythmias. Currently used antiarrhythmic drugs have many side effects. The research on animals and humans using antioxidants (such as vitamins C and E, resveratrol and synthetic substances) yields many interesting but inconclusive results. Natural antioxidants, such as vitamins C and E, can reduce the recurrence of atrial fibrillation (AF) after successful electrical cardioversion and protect against AF after cardiac surgery, but do not affect the incidence of atrial arrhythmias in critically ill patients with trauma. Vitamins C and E may also effectively treat ventricular tachycardia, ventricular fibrillation and long QT-related arrhythmias. Another natural antioxidant—resveratrol—may effectively treat AF and ventricular arrhythmias caused by ischaemia–reperfusion injury. It reduces the mortality associated with life-threatening ventricular arrhythmias and can be used to prevent myocardial remodelling. Statins also show antioxidant activity. Their action is related to the reduction of oxidative stress and anti-inflammatory effect. Therefore, statins can reduce the post-operative risk of AF and may be useful in lowering its recurrence rate after successful cardioversion. Promising results also apply to polyphenols, nitric oxide synthase inhibitors and MitoTEMPO. Although few clinical trials have been conducted, the use of antioxidants in treating arrhythmias is an interesting prospect.
Collapse
|
7
|
Yeh JJ, Lai M, Lin CL, Lu KH, Kao CH. Effects of statins on the risks of ischemic stroke and heart disease in human immunodeficiency virus infection, influenza and severe acute respiratory syndrome-associated coronavirus: respiratory virus infection with steroid use. Postgrad Med 2022; 134:589-597. [PMID: 35590450 DOI: 10.1080/00325481.2022.2080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We sought to fill the research gap on the effects of statins on the risks of ischemic stroke and heart disease among individuals with human immunodeficiency virus infection, influenza, and severe acute respiratory syndrome associated-coronavirus (HIS) disorders. METHODS We enrolled a HIS cohort treated with statins (n = 4921) and a HIS cohort not treated with statins (n = 4921). The cumulative incidence of ischemic stroke and heart disease was analyzed using a time-dependent Cox proportional regression analysis. We analyzed the adjusted hazard ratio (aHR) and 95% confidence interval (CI) of ischemic stroke and heart disease for statins users relative to nonusers based on sex, age, comorbidities and medications. RESULTS The aHR (95% CI) was 0.38 (0.22-0.65) for ischemic stroke. The aHR (95% CI) of heart disease was 0.50 (0.46-0.55). The aHRs (95% CI) of statin users with low, medium, and high adherence (statin use covering <33%, 33%-66%, and >66%, respectively, of the study period) for the risks of ischemic stroke were 0.50 (0.27-0.92), 0.31 (0.10-1.01), and 0.16 (0.04-0.68) and for heart disease were 0.56 (0.51-0.61), 0.40 (0.33-0.48), and 0.44 (0.38-0.51), respectively, compared with statin nonusers. CONCLUSION Statin use was associated with lower aHRs for ischemic stroke and heart disease in those with HIS disorders with comorbidities.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Geriatric Medicine, and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Meichu Lai
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Hua Lu
- Department of Family Medicine, Geriatric Medicine, and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Vahedian-Azimi A, Shojaie S, Banach M, Heidari F, Cicero AFG, Khoshfetrat M, Jamialahmadi T, Sahebkar A. Statin therapy in chronic viral hepatitis: a systematic review and meta-analysis of nine studies with 195,602 participants. Ann Med 2021; 53:1227-1242. [PMID: 34296976 PMCID: PMC8317925 DOI: 10.1080/07853890.2021.1956686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Conflicting data suggest that statins could cause chronic liver disease in certain group of patients, while improving prognosis in those with chronic viral hepatitis (CVH). PURPOSE To quantify the potential protective role of statins on some main liver-related health outcomes in clinical studies on CVH patients.Data Sources: The search strategy was explored by a medical librarian using bibliographic databases, from January 2015 to April 2020.Data synthesis: The results showed no significant difference in the risk of mortality between statin users and non-users in the overall analysis. However, the risk of mortality significantly reduced by 39% in statin users who were followed for more than three years. Moreover, the risk of HCC, fibrosis, and cirrhosis in those on statins decreased by 53%, 45% and 41%, respectively. Although ALT and AST reduced slightly following statin therapy, this reduction was not statistically significant. LIMITATIONS A significant heterogeneity among studies was observed, resulting from differences in clinical characteristics between statin users and non-users, study designs, population samples, diseases stage, comorbidities, and confounding covariates. CONCLUSION Not only long-term treatment with statins seems to be safe in patients affected by hepatitis, but also it significantly improves their prognosis.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajad Shojaie
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Farshad Heidari
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Arrigo F. G. Cicero
- Atherosclerosis Research Unit, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Masoum Khoshfetrat
- Department of Anesthesiology and Critical Care, Khatamolanbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front Physiol 2021; 12:746494. [PMID: 34707513 PMCID: PMC8543018 DOI: 10.3389/fphys.2021.746494] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammation has been recognized as a major pathophysiological contributor to the entire spectrum of human heart failure (HF), including HF with reduced ejection fraction, HF with preserved ejection fraction, acute HF and cardiogenic shock. Nevertheless, the results of several trials attempting anti-inflammatory strategies in HF patients have not been consistent or motivating and the clinical implementation of anti-inflammatory treatments for HF still requires larger and longer trials, as well as novel and/or more specific drugs. The present work reviews the different inflammatory mechanisms contributing to each type of HF, the major inflammatory mediators involved, namely tumor necrosis factor alpha, the interleukins 1, 6, 8, 10, 18, and 33, C-reactive protein and the enzymes myeloperoxidase and inducible nitric oxide synthase, and their effects on heart function. Furthermore, several trials targeting these mediators or involving other anti-inflammatory treatments in human HF are also described and analyzed. Future therapeutic advances will likely involve tailored anti-inflammatory treatments according to the patient's inflammatory profile, as well as the development of resolution pharmacology aimed at stimulating resolution of inflammation pathways in HF.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
- Departamento de Medicina Intensiva, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Janete Quelhas-Santos
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| |
Collapse
|
10
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
11
|
Hu L, Xu YN, Wang Q, Liu MJ, Zhang P, Zhao LT, Liu F, Zhao DY, Pei HN, Yao XB, Hu HG. Aerobic exercise improves cardiac function in rats with chronic heart failure through inhibition of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:340. [PMID: 33708967 PMCID: PMC7944272 DOI: 10.21037/atm-20-8250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background To explore the beneficial effects and underlying mechanisms of aerobic exercise on chronic heart failure (CHF). Methods A CHF rat model was induced via left anterior descending coronary artery ligation. Four weeks post-surgery, CHF rats received aerobic exercise training over an 8-week period and cardiac function indexes including xxx were analyzed. To investigate the mechanisms involved in the aerobic exercise-induced benefits on CHF, overexpression of the long non-coding RNA MALAT1 was examined both in vivo and in vitro. Furthermore, the interaction between MALAT1 and the microRNA miR-150-5p and the downstream PI3K/Akt signaling pathway was investigated. Results Compared to the control group, the CHF rats showed evidence of left ventricular dysfunction including aggravated cardiac function indexes and lung to body weight ratio. The Masson staining demonstrated a significant degree of blue-stained fibrotic myocardial tissue in CHF rats compared to control rats. Furthermore, the levels of collagen I and collagen II were also markedly increased in CHF rats. Aerobic exercise improved cardiac function and left ventricular remodeling in rats with CHF. There was a significant reduction in the levels of the reactive oxygen species (ROS), inflammatory cytokines including TNF-α, IL-6, and IL-1β, and inflammatory mediums containing the matrix metalloproteinases (MMPs) MMP-2 and MMP-9. Moreover, CHF rats receiving aerobic exercise showed decreased myocardial apoptosis and increased expression of autophagy-related proteins including beclin-1 and LC3B-II. Overexpression of the lncRNA MALAT1 eliminated all the beneficial effects related to aerobic exercise in CHF rats. Subsequent investigations demonstrated that miR-150-5p expression was up-regulated in CHF-Tr rats and down-regulated in CHF-Tr-MALAT1 rats. Furthermore, the downstream PI3K/Akt signaling pathway was re-activated in CHF-Tr-MALAT1 rats. In vitro experiments revealed that overexpression of MALAT1 reduced the miR-150-5p levels, resulting in increased cellular apoptosis and less autophagy. In addition, overexpression of MALAT1 suppressed the downstream PI3K/Akt signaling pathway. Restoring miR-150-5p level with a miR-150-5p mimic decreased the cellular apoptosis and increased autophagy, and the downstream PI3K/Akt signaling pathway was re-activated. Conclusions Aerobic exercise improved cardiac function through inhibition of the lncRNA MALAT1 in CHF, and the potential mechanisms may be mediated via the miR-150-5p/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ling Hu
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, China
| | - Ya-Nan Xu
- Department of Cardiopulmonary Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mei-Jie Liu
- Medical Experiment Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital affiliated with Tsinghua University, Beijing, China
| | - Lan-Ting Zhao
- Department of Cardiology, Beijing Tsinghua Changgung Hospital affiliated with Tsinghua University, Beijing, China
| | - Fang Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital affiliated with Tsinghua University, Beijing, China
| | - Dong-Yan Zhao
- Department of Cardiopulmonary Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - He-Nan Pei
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Xing-Bao Yao
- Department of Sports Injury, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Hua-Gang Hu
- Research Office, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
12
|
Shomali T, Ashrafi M. Statins, cancer, and oxidative stress. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Bessa J, Albino-Teixeira A, Reina-Couto M, Sousa T. Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clin Chim Acta 2020; 509:310-335. [PMID: 32710940 DOI: 10.1016/j.cca.2020.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is localized at the interface between the blood and surrounding tissues, playing a pivotal role in the maintenance of tissue-fluid homeostasis and in the regulation of host defense, inflammation, vascular tone and remodeling, angiogenesis and haemostasis. The dysfunctional endothelium was shown to be implicated in the pathophysiology of several endothelial-dependent disorders, such as arterial hypertension, coronary artery disease, heart failure and chronic kidney disease, in which it is an early predictor of cardiovascular events. Endocan is a soluble dermatan sulphate proteoglycan mainly secreted by the activated endothelium. It is upregulated by several proinflammatory cytokines and proangiogenic factors and may itself contribute to the inflammatory status. In addition of being a surrogate marker of inflammation and endothelial dysfunction, it seems to be involved in the regulation of several proliferative and neovascularization processes. Therefore, its utility as a biomarker in a wide spectrum of diseases has been increasingly explored. Here, we review the current evidence concerning the role of endocan in several human cardiovascular and renal diseases, where it seems to be a promising biomarker for risk stratification, prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- João Bessa
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Univ. Porto, Porto, Portugal
| | - Marta Reina-Couto
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Univ. Porto, Porto, Portugal; Departamento de Medicina Intensiva, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Univ. Porto, Porto, Portugal.
| |
Collapse
|
14
|
Veloso CD, Belew GD, Ferreira LL, Grilo LF, Jones JG, Portincasa P, Sardão VA, Oliveira PJ. A Mitochondrial Approach to Cardiovascular Risk and Disease. Curr Pharm Des 2020; 25:3175-3194. [PMID: 31470786 DOI: 10.2174/1389203720666190830163735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a leading risk factor for mortality worldwide and the number of CVDs victims is predicted to rise through 2030. While several external parameters (genetic, behavioral, environmental and physiological) contribute to cardiovascular morbidity and mortality; intrinsic metabolic and functional determinants such as insulin resistance, hyperglycemia, inflammation, high blood pressure and dyslipidemia are considered to be dominant factors. METHODS Pubmed searches were performed using different keywords related with mitochondria and cardiovascular disease and risk. In vitro, animal and human results were extracted from the hits obtained. RESULTS High cardiac energy demand is sustained by mitochondrial ATP production, and abnormal mitochondrial function has been associated with several lifestyle- and aging-related pathologies in the developed world such as diabetes, non-alcoholic fatty liver disease (NAFLD) and kidney diseases, that in turn can lead to cardiac injury. In order to delay cardiac mitochondrial dysfunction in the context of cardiovascular risk, regular physical activity has been shown to improve mitochondrial parameters and myocardial tolerance to ischemia-reperfusion (IR). Furthermore, pharmacological interventions can prevent the risk of CVDs. Therapeutic agents that can target mitochondria, decreasing ROS production and improve its function have been intensively researched. One example is the mitochondria-targeted antioxidant MitoQ10, which already showed beneficial effects in hypertensive rat models. Carvedilol or antidiabetic drugs also showed protective effects by preventing cardiac mitochondrial oxidative damage. CONCLUSION This review highlights the role of mitochondrial dysfunction in CVDs, also show-casing several approaches that act by improving mitochondrial function in the heart, contributing to decrease some of the risk factors associated with CVDs.
Collapse
Affiliation(s)
- Caroline D Veloso
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Getachew D Belew
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luciana L Ferreira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| |
Collapse
|
15
|
Dayalan Naidu S, Dinkova-Kostova AT. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol 2020; 10:200105. [PMID: 32574549 PMCID: PMC7333886 DOI: 10.1098/rsob.200105] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Redox imbalance and persistent inflammation are the underlying causes of most chronic diseases. Mammalian cells have evolved elaborate mechanisms for restoring redox homeostasis and resolving acute inflammatory responses. One prominent mechanism is that of inducing the expression of antioxidant, anti-inflammatory and other cytoprotective proteins, while also suppressing the production of pro-inflammatory mediators, through the activation of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2). At homeostatic conditions, NRF2 is a short-lived protein, which avidly binds to Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 functions as (i) a substrate adaptor for a Cullin 3 (CUL3)-based E3 ubiquitin ligase that targets NRF2 for ubiquitination and proteasomal degradation, and (ii) a cysteine-based sensor for a myriad of physiological and pharmacological NRF2 activators. Here, we review the intricate molecular mechanisms by which KEAP1 senses electrophiles and oxidants. Chemical modification of specific cysteine sensors of KEAP1 results in loss of NRF2-repressor function and alterations in the expression of NRF2-target genes that encode large networks of diverse proteins, which collectively restore redox balance and resolve inflammation, thus ensuring a comprehensive cytoprotection. We focus on the cyclic cyanoenones, the most potent NRF2 activators, some of which are currently in clinical trials for various pathologies characterized by redox imbalance and inflammation.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Dias AM, Cordeiro G, Estevinho MM, Veiga R, Figueira L, Reina‐Couto M, Magro F. Gut bacterial microbiome composition and statin intake-A systematic review. Pharmacol Res Perspect 2020; 8:e00601. [PMID: 32476298 PMCID: PMC7261966 DOI: 10.1002/prp2.601] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, the gut microbiome has become an important field of interest. Indeed, the microbiome has been associated to numerous drug interactions and it is thought to influence the efficacy of pharmacologic treatments. Although statins are widely prescribed medications, there remains considerable variability in its therapeutic response. In this context, we aimed to investigate how statins modulate the gut microbiome and, reversely, how can the microbiome influence the course of anti-hypercholesterolemic treatment. We conducted a systematic review by searching four online databases, in accordance with PRISMA guidelines. Studies addressing gut microbiome changes following statin treatment and those assessing statins' response and associating it with patients' microbiome were included. Due to the limited number of results, we decided to include studies enrolling both humans and animals. We summarized information from three human and seven animal studies and aimed to assess the influence of gut microbiome composition on statin response (Outcome 1) and to evaluate the impact of statin treatment on the gut microbiome (Outcome 2). An association between a certain microbiome composition that promoted the lipid-lowering effect of statins was found. However, what kind of microorganisms and how they can exert this effect remains uncertain. Furthermore, statins might have a role in the modulation of the gut microbiome, but then again, it is still unknown whether this change is directly caused by the drug or another metabolic mechanism. Even though gut microbiota may have several potential therapeutic implications, its use as a personalized predictive biomarker requires further studies.
Collapse
Affiliation(s)
- Andreia M. Dias
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
| | - Gonçalo Cordeiro
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
| | - Maria M. Estevinho
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
| | - Rui Veiga
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of Intensive MedicineSão João Hospital University CentrePortoPortugal
| | - Luis Figueira
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of OphthalmologySão João Hospital University CentrePortoPortugal
| | - Marta Reina‐Couto
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of Intensive MedicineSão João Hospital University CentrePortoPortugal
| | - Fernando Magro
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of GastroenterologySão João Hospital University CentrePortoPortugal
| | | |
Collapse
|
17
|
Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1954398. [PMID: 32454933 PMCID: PMC7232723 DOI: 10.1155/2020/1954398] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
The global population above 60 years has been growing exponentially in the last decades, which is accompanied by an increase in the prevalence of age-related chronic diseases, highlighting cardiovascular diseases (CVDs), such as hypertension, atherosclerosis, and heart failure. Aging is the main risk factor for these diseases. Such susceptibility to disease is explained, at least in part, by the increase of oxidative stress, in which it damages cellular components such as proteins, DNA, and lipids. In addition, the chronic inflammatory process in aging “inflammaging” also contributes to cell damage, creating a stressful environment which drives to the development of CVDs. Taken together, it is possible to identify the molecular connection between oxidative stress and the inflammatory process, especially by the crosstalk between the transcription factors Nrf-2 and NF-κB which are mediated by redox signalling and are involved in aging. Therapies that control this process are key targets in the prevention/combat of age-related CVDs. In this review, we show the basics of inflammation and oxidative stress, including the crosstalk between them, and the implications on age-related CVDs.
Collapse
|
18
|
Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, Emdin M, Giannoni A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol 2020; 27:494-510. [DOI: 10.1177/2047487319870344] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Both oxidative stress and inflammation are enhanced in chronic heart failure. Dysfunction of cardiac mitochondria is a hallmark of heart failure and a leading cause of oxidative stress, which in turn exerts detrimental effects on cellular components, including mitochondria themselves, thus generating a vicious circle. Oxidative stress also causes myocardial tissue damage and inflammation, contributing to heart failure progression. Furthermore, a subclinical inflammatory state may be caused by heart failure comorbidities such as obesity, diabetes mellitus or sleep apnoeas. Some markers of both oxidative stress and inflammation are enhanced in chronic heart failure and hold prognostic significance. For all these reasons, antioxidants or anti-inflammatory drugs may represent interesting additional therapies for subjects either at high risk or with established heart failure. Nonetheless, only a few clinical trials on antioxidants have been carried out so far, with several disappointing results except for vitamin C, elamipretide and coenzyme Q10. With regard to anti-inflammatory drugs, only preliminary data on the interleukin-1 antagonist anakinra are currently available. Therefore, a comprehensive, deep understanding of our current knowledge on oxidative stress and inflammation in chronic heart failure is key to providing some suggestions for future research on this topic.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Chiara Borrelli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luigi F Saccaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
19
|
Gu Y, Yang X, Liang H, Li D. Comprehensive evaluation of effects and safety of statin on the progression of liver cirrhosis: a systematic review and meta-analysis. BMC Gastroenterol 2019; 19:231. [PMID: 31888534 PMCID: PMC6938024 DOI: 10.1186/s12876-019-1147-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Statin has been more and more widely used in chronic liver disease, however, existed studies have attained contradictory results. According to the present study, we aimed to test the efficacy and safety of statin via a meta-analysis. Methods Different databases were searched for full-text publication based on inclusion and exclusion criteria. For data-pooling, fixed-effect model was applied if heterogeneity wasn’t detected. Otherwise, random-effect model was adopted. Heterogeneity was detected by I squire (I2) test. All results of analysis were illustrated as forest plots. Publication bias was assessed using the Begg’s adjusted rank correlation test. Standard mean difference (SMD) was calculated in continuous variables. Pooled hazard ratio or odds ratio was calculated in catergorical variables. Results Seventeen clinical studies were finally included. Hepatic portal hemodynamic parameters were improved in statin users for a short-term response. For a long-term follow-up, statin treatment surprisingly decreased mortality rate (HR = 0.782, 95% CI: 0.718–0.846, I2 > 50%) and lower the occurrence of hepatocellular carcinoma (HR = 0.75, 95% CI: 0.64–0.86, I2 > 50%) in liver cirrhosis. Statin seemed not to decrease the risk of esophageal variceal bleeding and spontaneous bacterial peritonitis. However, statin was proved to decrease the risk of hepatic encephalopathy and ascites. Incidence of drug related adverse events didn’t increase in statin users. Dose-dependent effects of statin on hepatocellular carcinoma development, decompensated cirrhosis events occurrence, and liver cirrhosis progression. Conclusion Statin influenced parameters of hepatic portal vessel pressure in short-term treatment. Prognosis of liver cirrhosis benefited from statin treatment in long term follow-up. The efficacy and safety of statin in liver cirrhosis treatment is confirmed. To date, similar study is hardly seen before.
Collapse
Affiliation(s)
- Yue Gu
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xueqin Yang
- Department of Traditional Chinese Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hang Liang
- Department of Pediatric Respiratory II, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Deli Li
- Department of Pediatric Respiratory II, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
20
|
Tian C, Gao L, Zhang A, Hackfort BT, Zucker IH. Therapeutic Effects of Nrf2 Activation by Bardoxolone Methyl in Chronic Heart Failure. J Pharmacol Exp Ther 2019; 371:642-651. [PMID: 31601682 DOI: 10.1124/jpet.119.261792] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic heart failure (CHF) in many tissues. Increasing evidence suggests that systemic activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling can protect against postinfarct cardiac remodeling by reducing oxidative stress. However, it remains to be elucidated if Nrf2 activation exerts therapeutic effects in the CHF state. Here, we investigated the beneficial hemodynamic effects of bardoxolone methyl (2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester, CDDO-Me), a pharmacological activator of Nrf2, in a rodent model of CHF. Based on echocardiographic analysis, rats at 12 weeks post-myocardial infarction (MI) were randomly split into four groups. CDDO-Me (5 mg/kg, i.p.) was administered daily for another 2 weeks in sham and CHF rats and compared with vehicle treatment. Echocardiographic and hemodynamic analysis suggest that short-term CDDO-Me administration increased stroke volume and cardiac output in CHF rats and decreased left ventricle end-diastolic pressure. Molecular studies revealed that CDDO-Me-induced cardiac functional improvement was attributed to an increase of both Nrf2 transcription and translation, and a decrease of oxidative stress in the noninfarcted areas of the heart. Furthermore, CDDO-Me reduced NF-κB binding and increased Nrf2 binding to the CREB-binding protein, which may contribute to the selective increase of Nrf2 downstream targets, including NADPH Oxidase Quinone 1, Heme Oxygenase 1, Catalase, and Glutamate-Cysteine Ligase Catalytic Subunit, and the attenuation of myocardial inflammation in CHF rats. Our findings suggest that Nrf2 activation may provide beneficial cardiac effects in MI-mediated CHF. SIGNIFICANCE STATEMENT: Chronic heart failure (CHF) is the leading cause of death among the aged worldwide. The imbalance between pro- and antioxidant pathways is a determinant in the pathogenesis of CHF. Systemic activation of Nrf2 and antioxidant protein signaling by bardoxolone methyl may have beneficial effects on cardiac function and result in improvements by enhancing antioxidant enzyme expression and attenuating myocardial inflammation.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Andi Zhang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
21
|
The Mitochondrial Antioxidant SS-31 Modulates Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy in Type 2 Diabetes. J Clin Med 2019; 8:jcm8091322. [PMID: 31466264 PMCID: PMC6780723 DOI: 10.3390/jcm8091322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has been shown to play a central role in the pathophysiology of type 2 diabetes (T2D), and mitochondria-targeted agents such as SS-31 are emerging as a promising strategy for its treatment. We aimed to study the effects of SS-31 on leukocytes from T2D patients by evaluating oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Sixty-one T2D patients and 53 controls were included. Anthropometric and analytical measurements were performed. We also assessed reactive oxygen species (ROS) production, calcium content, the expression of ER stress markers GRP78, CHOP, P-eIF2α, and autophagy-related proteins Beclin1, LC3 II/I, and p62 in leukocytes from T2D and control subjects treated or not with SS-31. Furthermore, we have evaluated the action of SS-31 on leukocyte-endothelium interactions. T2D patients exhibited elevated ROS concentration, calcium levels and presence of ER markers (GRP78 and CHOP gene expression, and GRP78 and P-eIF2α protein expression), all of which were reduced by SS-31 treatment. SS-31 also led to a drop in BECN1 gene expression, and Beclin1 and LC3 II/I protein expression in T2D patients. In contrast, the T2D group displayed reduced p62 protein levels that were restored by SS-31. SS-20 (with non-antioxidant activity) did not change any analyzed parameter. In addition, SS-31 decreased rolling flux and leukocyte adhesion, and increased rolling velocity in T2D patients. Our findings suggest that SS-31 exerts potentially beneficial effects on leukocytes of T2D patients modulating oxidative stress and autophagy, and ameliorating ER stress.
Collapse
|
22
|
Nrf2/Keap1/ARE Signaling Mediated an Antioxidative Protection of Human Placental Mesenchymal Stem Cells of Fetal Origin in Alveolar Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2654910. [PMID: 31217836 PMCID: PMC6537011 DOI: 10.1155/2019/2654910] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
The oxidative stresses are a major insult in pulmonary injury such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), two clinical manifestations of acute respiratory failure with substantially high morbidity and mortality. Mesenchymal stem cells (MSCs) hold a promise in treatments of many human diseases, mainly owing to their capacities of immunoregulation and antioxidative activity. The strong immunoregulatory role of human placental MSCs of fetal origin (hfPMSCs) has been previously demonstrated; their antioxidant activity, however, has yet been interrogated. In this report, we examined the antioxidative activity of hfPMSCs by accessing the ability to scavenge oxidants and radicals and to protect alveolar epithelial cells from antioxidative injury using both a cell coculture model and a conditioned culture medium (CM) of hfPMSCs. Results showed a comparable antioxidative capacity of the CM with 100 μM of vitamin C (VC) in terms of the total antioxidant capacity (T-AOC), scavenging abilities of free radicals DPPH, hydroxyl radical (·OH), and superoxide anion radical (O2−), as well as activities of antioxidant enzymes of SOD and GSH-PX. Importantly, both of the CM alone and cocultures of hfPMSCs displayed a protection of A549 alveolar epithelial cells from oxidative injury of 600 μM hydrogen peroxide (H2O2) exposure, as determined in monolayer and transwell coculture models, respectively. Mechanistically, hfPMSCs and their CM could significantly reduce the apoptotic cell fraction of alveolar epithelial A549 cells exposed to H2O2, accompanied with an increased expression of antiapoptotic proteins Bcl-2, Mcl-1, Nrf-2, and HO-1 and decreased proapoptotic proteins Bax, caspase 3, and Keap1, in comparison with naïve controls. Furthermore, hfPMSCs-CM (passage 3) collected from cultures exposed an inhibition of the Nrf2/Keap1/ARE signaling pathway which led to a significant reduction in caspase 3 expression in A549 cells, although the addition of Nrf2 inhibitor ML385 had no effect on the antioxidative activity of hfPMSCs-CM. These data clearly suggested that hfPMSCs protected the H2O2-induced cell oxidative injury at least in part by regulating the Nrf2-Keap1-ARE signaling-mediated cell apoptosis. Our study thus provided a new insight into the antioxidative mechanism and novel functions of hfPMSCs as antioxidants in disease treatments, which is warranted for further investigations.
Collapse
|
23
|
Wilmes V, Scheiper S, Roehr W, Niess C, Kippenberger S, Steinhorst K, Verhoff MA, Kauferstein S. Increased inducible nitric oxide synthase (iNOS) expression in human myocardial infarction. Int J Legal Med 2019; 134:575-581. [DOI: 10.1007/s00414-019-02051-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
|
24
|
Pontes HBD, Pontes JCDV, Azevedo Neto ED, Vendas GSDC, Miranda JVC, Dias LDES, Oliva JVDG, Almeida MHMD, Chaves IDO, Sampaio TL, Santos CHMD, Dourado DM. Evaluation of the Effects of Atorvastatin and Ischemic Postconditioning Preventing on the Ischemia and Reperfusion Injury: Experimental Study in Rats. Braz J Cardiovasc Surg 2018; 33:72-81. [PMID: 29617505 PMCID: PMC5873777 DOI: 10.21470/1678-9741-2017-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Reperfusion injury leads to systemic morphological and functional pathological alterations. Some techniques are already estabilished to attenuate the damage induced by reperfusion. Ischemic preconditioning is one of the standard procedures. In the last 20 years, several experimental trials demonstrated that the ischemic postconditioning presents similar effectiveness. Recently experimental trials demonstrated that statins could be used as pharmacological preconditioning. METHODS 41 Wistar rats (Rattus norvegicus albinus) were distributed in 5 groups: Ischemia and Reperfusion (A), Ischemic Postconditioning (B), Statin (C), Ischemic Postconditioning + Statins (D) and SHAM (E). After euthanasia, lungs, liver, kidneys and ileum were resected and submitted to histopathological analysis. RESULTS The average of lung parenchymal injury was A=3.6, B=1.6, C=1.2, D=1.2, E=1 (P=0.0029). The average of liver parenchymal injury was A=3, B=1.5, C=1.2, D=1.2, E = 0 (P<0.0001). The average of renal parenchymal injury was A=4, B=2.44, C=1.22, D=1.11, E=1 (P<0.0001). The average of intestinal parenchymal injury was A=2, B=0.66, C=0, D=0, E=0 (P=0.0006). The results were submitted to statistics applying Kruskal-Wallis test, estabilishing level of significance P<0.05. CONCLUSION Groups submitted to ischemic postconditioning, to pre-treatment with statins and both methods associated demonstrated less remote reperfusion injuries, compared to the group submitted to ischemia and reperfusion without protection.
Collapse
|
25
|
Taty Zau JF, Costa Zeferino R, Sandrine Mota N, Fernandes Martins G, Manoel Serra S, Bonates da Cunha T, Medeiros Lima D, de Bragança Pereira B, Matos do Nascimento E, Wilhelm Filho D, Curi Pedrosa R, Coury Pedrosa R. Exercise through a cardiac rehabilitation program attenuates oxidative stress in patients submitted to coronary artery bypass grafting. Redox Rep 2018; 23:94-99. [PMID: 29279041 PMCID: PMC6748685 DOI: 10.1080/13510002.2017.1418191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiovascular disease is the main cause of morbidity and mortality in the world and oxidative stress has been implicated in the pathogenesis. Cardiac rehabilitation in patients with coronary artery disease submitted to coronary artery bypass grafting may prevent cardiovascular events probably through the attenuation of oxidative stress. The aim of this study was to evaluate the benefits of a cardiac rehabilitation program in the control of the systemic oxidative stress. METHODS The studied population consisted of 40 patients, with chronic stable coronary artery disease submitted to coronary artery bypass grafting, who attended a cardiac rehabilitation program. Biomarkers of oxidative stress were evaluated in the blood of these patients at different moments. RESULTS After the onset of cardiac rehabilitation, there was a significant and progressive decrease in thiobarbituric acid reactive substances levels and protein carbonyls, an initial increase and subsequent decrease in superoxide dismutase, catalase and glutathione peroxidase activities. Also, a progressive increase of uric acid, while ferric reducing antioxidant power levels increased only at the end of the cardiac rehabilitation and a tendency to increase of glutathione contents. CONCLUSIONS The results suggest that regular exercise through a cardiac rehabilitation program can attenuate oxidative stress in chronic coronary artery disease patients submitted to coronary artery bypass grafting.
Collapse
Affiliation(s)
- José Francisco Taty Zau
- Cardiology Department, University
Hospital Clementino Fraga Filho, Rio de Janeiro,
Brazil
- Cardiology Institute Edson Saad,
Universidade Federal do Rio de janeiro-UFRJ, Rio de Janeiro,
Brazil
| | - Rodrigo Costa Zeferino
- Biochemistry Department, Laboratory of
Experimental Biochemistry, Universidade Federal de Santa
Catarina-UFSC, Florianópolis,
Brazil
| | - Nádia Sandrine Mota
- Biochemistry Department, Laboratory of
Experimental Biochemistry, Universidade Federal de Santa
Catarina-UFSC, Florianópolis,
Brazil
| | - Gerez Fernandes Martins
- Instituto Aloysio de Castro-IECAC,
Universidade Estadual do Rio de Janeiro-UERJ, Rio de Janeiro,
Brazil
| | - Salvador Manoel Serra
- Instituto Aloysio de Castro-IECAC,
Universidade Estadual do Rio de Janeiro-UERJ, Rio de Janeiro,
Brazil
| | - Therezil Bonates da Cunha
- Instituto Aloysio de Castro-IECAC,
Universidade Estadual do Rio de Janeiro-UERJ, Rio de Janeiro,
Brazil
| | - Daniel Medeiros Lima
- Instituto Aloysio de Castro-IECAC,
Universidade Estadual do Rio de Janeiro-UERJ, Rio de Janeiro,
Brazil
| | - Basilio de Bragança Pereira
- Cardiology Department, University
Hospital Clementino Fraga Filho, Rio de Janeiro,
Brazil
- Cardiology Institute Edson Saad,
Universidade Federal do Rio de janeiro-UFRJ, Rio de Janeiro,
Brazil
- Department of Biostatistics and Applied
Statistics, Faculty of Medicine, Alberto Luiz Coimbra Institute of Graduate
Studies and Research in Engineering, Universidade Federal do Rio de
Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Emília Matos do Nascimento
- Department of Biostatistics and Applied
Statistics, Faculty of Medicine, Alberto Luiz Coimbra Institute of Graduate
Studies and Research in Engineering, Universidade Federal do Rio de
Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Danilo Wilhelm Filho
- Ecology and Zoology Department,
Universidade Federal de Santa Catarina-UFSC,
Florianópolis, Brazil
| | - Rozangela Curi Pedrosa
- Biochemistry Department, Laboratory of
Experimental Biochemistry, Universidade Federal de Santa
Catarina-UFSC, Florianópolis,
Brazil
| | - Roberto Coury Pedrosa
- Cardiology Department, University
Hospital Clementino Fraga Filho, Rio de Janeiro,
Brazil
- Cardiology Institute Edson Saad,
Universidade Federal do Rio de janeiro-UFRJ, Rio de Janeiro,
Brazil
| |
Collapse
|
26
|
Sulaiman MA, Al-Farsi YM, Al-Khaduri MM, Saleh J, Waly MI. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int J Womens Health 2018; 10:763-771. [PMID: 30568513 PMCID: PMC6276615 DOI: 10.2147/ijwh.s166461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Literature emerging from Western countries has reported increased levels of serum oxidative stress markers among polycystic ovarian syndrome (PCOS) women. In the Arab region, there is limited research about the association between oxidative stress and PCOS. This study aimed to compare sociodemographic and clinical characteristics, sex hormones, and oxidative stress indices between PCOS women and non-PCOS women and to investigate the correlation between oxidative stress biomarkers and sex hormones. Methods This hospital-based case-control study was conducted among reproductive-aged women. The study included 51 women diagnosed with PCOS (as per Rotterdam 2003 criteria) and 45 control women who were not diagnosed with PCOS. Serum samples were collected to measure the mean levels of the following sex hormones: total testosterone, dehydroepiandrosterone sulfate, estradiol and progesterone, as well as to measure biomarkers of oxidative stress including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione (GSH), and total antioxidant capacity (TAC). Results PCOS women exhibited clinical characteristics including irregular menses, hirsutism, and acne compared to the control group (P≤0.05). Significant differences were observed in the waist-hip ratio of PCOS women compared to controls (P=0.004). GPx and GR activity levels appeared to be higher among PCOS women compared to controls; however, no statistically significant differences were observed between the two groups (P>0.05). PCOS women had lower GSH and TAC levels compared to controls with a statistically significant difference observed for GSH levels (P=0.006). Correlation analysis showed a significant negative correlation between estradiol and TAC in the total sample (r=-0.284, P=0.005). Conclusion This study provides supportive evidence that oxidative stress might play a role in the pathogenesis of PCOS and, hence, oxidative stress parameters could be suggested as diagnostic markers for early diagnosis of high-risk groups. Also, the study provides supportive evidence that obesity and sex hormones, particularly estradiol, in PCOS may contribute to enhanced oxidative stress.
Collapse
Affiliation(s)
- Maha Ah Sulaiman
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Sultanate of Oman,
| | - Yahya M Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Sultanate of Oman,
| | - Maha M Al-Khaduri
- Department of Obstetrics and Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Sultanate of Oman
| | - Jumana Saleh
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Sultanate of Oman
| | - Mostafa I Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoudh, Sultanate of Oman.,Nutrition Department, High Institute of Public Health, Alexandria, Egypt
| |
Collapse
|
27
|
Nikolic Turnic TR, Jakovljevic VL, Djuric DM, Jeremic NS, Jeremic JN, Milosavljevic IM, Srejovic IM, Selakovic DV, Zivkovic VI. Efficiency of atorvastatin and simvastatin in improving cardiac function during the different degrees of hyperhomocysteinemia. Can J Physiol Pharmacol 2018; 96:1040-1049. [DOI: 10.1139/cjpp-2018-0102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to assess the impact of atorvastatin and simvastatin on myocardial contractility during the different degrees of hyperhomocysteinemia (HHcy) in rats. Study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. Animals were exposed to pharmacology treatment with atorvastatin in dose of 3 mg/kg per day i.p. or simvastatin in dose of 5 mg/kg per day i.p. at the same time every day, according to equivalent therapeutic doses of these statins (10 mg atorvastatin = 20 mg simvastatin). After the dietary manipulation and pharmacological treatment and confirmation of HHcy, all animals were sacrificed, hearts were isolated, and cardiac function was tested according to the Langendorff technique. Size of recovery of maximum rate of left ventricular development (dp/dtmax), minimum rate of left ventricular development (dp/dtmin), systolic left ventricular development, diastolic left ventricular development, heart rate, and coronary flow at the 40, 60, 80, 100, and 120 cmH2O coronary perfusion pressure were measured in state of physiological condition (homocysteine less than 15 μmol/L), mild HHcy, and moderate HHcy. Atorvastatin treatment significantly attenuated homocysteine-induced impairment of myocyte contractility and dominantly decreased dp/dtmax, dp/dtmin, and heart rate and induced greater changes in systolic left ventricular development compared with simvastatin. Treatment with atorvastatin seems able to revert systolic abnormalities and improve contractility during the different degrees of HHcy.
Collapse
Affiliation(s)
- Tamara R. Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, IM Sechenov 1st Moscow State Medical University, Moscow, Russian Federation
| | - Dragan M. Djuric
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena S. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana N. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora M. Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica V. Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir I. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
28
|
Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova‐Kostova AT. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res 2018; 62:e1700908. [PMID: 29710398 PMCID: PMC6175120 DOI: 10.1002/mnfr.201700908] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Cruciferous vegetables are rich sources of glucosinolates which are the biogenic precursor molecules of isothiocyanates (ITCs). The relationship between the consumption of cruciferous vegetables and chemoprotection has been widely documented in epidemiological studies. Phenethyl isothiocyanate (PEITC) occurs as its glucosinolate precursor gluconasturtiin in the cruciferous vegetable watercress (Nasturtium officinale). PEITC has multiple biological effects, including activation of cytoprotective pathways, such as those mediated by the transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the transcription factor heat shock factor 1 (HSF1), and can cause changes in the epigenome. However, at high concentrations, PEITC leads to accumulation of reactive oxygen species and cytoskeletal changes, resulting in cytotoxicity. Underlying these activities is the sulfhydryl reactivity of PEITC with cysteine residues in its protein targets. This chemical reactivity highlights the critical importance of the dose of PEITC for achieving on-target selectivity, which should be carefully considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Takafumi Suzuki
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Masayuki Yamamoto
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Jed W. Fahey
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of International HealthCenter for Human NutritionJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Albena T. Dinkova‐Kostova
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Jacqui Wood Cancer CentreDivision of Cancer ResearchSchool of MedicineUniversity of DundeeDundeeDD1 9SYScotlandUK
| |
Collapse
|
29
|
Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K, Philippou A, Vavuranakis M, Stefanadis C, Tousoulis D, Papavassiliou AG. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:256. [PMID: 30069458 DOI: 10.21037/atm.2018.06.21] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are the source of cellular energy production and are present in different types of cells. However, their function is especially important for the heart due to the high demands in energy which is achieved through oxidative phosphorylation. Mitochondria form large networks which regulate metabolism and the optimal function is achieved through the balance between mitochondrial fusion and mitochondrial fission. Moreover, mitochondrial function is upon quality control via the process of mitophagy which removes the damaged organelles. Mitochondrial dysfunction is associated with the development of numerous cardiac diseases such as atherosclerosis, ischemia-reperfusion (I/R) injury, hypertension, diabetes, cardiac hypertrophy and heart failure (HF), due to the uncontrolled production of reactive oxygen species (ROS). Therefore, early control of mitochondrial dysfunction is a crucial step in the therapy of cardiac diseases. A number of anti-oxidant molecules and medications have been used but the results are inconsistent among the studies. Eventually, the aim of future research is to design molecules which selectively target mitochondrial dysfunction and restore the capacity of cellular anti-oxidant enzymes.
Collapse
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.,Division of Cardiovascular, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Tsigkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marinos Kosmopoulos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimosthenis Theodosiadis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Spyridon Simantiris
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nikoletta Maria Tagkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Tsimpiktsioglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiota K Stampouloglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Mourouzis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Anastasios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Dimitris Tousoulis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
30
|
Tian C, Gao L, Zimmerman MC, Zucker IH. Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol 2018; 314:H928-H939. [PMID: 29373037 DOI: 10.1152/ajpheart.00602.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The imbalance between the synthesis of reactive oxygen species and their elimination by antioxidant defense systems results in macromolecular damage and disruption of cellular redox signaling, affecting cardiac structure and function, thus contributing to contractile dysfunction, myocardial hypertrophy, and fibrosis in chronic heart failure [chronic heart failure (CHF)]. The Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is an important antioxidant defense mechanism and is closely associated with oxidative stress-mediated cardiac remodeling in CHF. In the present study, we investigated the regulation of myocardial Nrf2 in the postmyocardial infarction (post-MI) state. Six weeks post-MI, Nrf2 protein was downregulated in the heart, resulting in a decrease of Nrf2-targeted antioxidant enzymes, whereas paradoxically the transcription of Nrf2 was increased, suggesting that translational inhibition of Nrf2 may contribute to the dysregulation in CHF. We therefore hypothesized that microRNAs may be involved in the translational repression of Nrf2 mRNA in the setting of CHF. Using quantitative real-time PCR analysis, we found that three microRNAs, including microRNA-27a, microRNA-28-3p, and microRNA-34a, were highly expressed in the left ventricle of infarcted hearts compared with other organs. Furthermore, in vitro analysis revealed that cultured cardiac myocytes and fibroblasts expressed these three microRNAs in response to TNF-α stimulation. These microRNAs were preferentially incorporated into exosomes and secreted into the extracellular space in which microRNA-enriched exosomes mediated intercellular communication and Nrf2 dysregulation. Taken together, these results suggest that increased local microRNAs induced by MI may contribute to oxidative stress by the inhibition of Nrf2 translation in CHF. NEW & NOTEWORTHY The results of this work provide a novel mechanism mediated by microRNA-enriched exosomes, contributing to the nuclear factor erythroid 2-related factor 2 dysregulation and subsequent oxidative stress. Importantly, these new findings will provide a promising strategy to improve the therapeutic efficacy through targeting nuclear factor erythroid 2-related factor 2-related microRNAs in the chronic heart failure state, which show potentially clinical applications.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
31
|
Atilano-Roque A, Joy MS. Characterization of simvastatin acid uptake by organic anion transporting polypeptide 3A1 (OATP3A1) and influence of drug-drug interaction. Toxicol In Vitro 2017; 45:158-165. [PMID: 28887287 DOI: 10.1016/j.tiv.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/04/2017] [Accepted: 09/01/2017] [Indexed: 12/30/2022]
Abstract
Human organic anion transporting polypeptide 3A1 (OATP3A1) is predominately expressed in the heart. The ability of OATP3A1 to transport statins into cardiomyocytes is unknown, although other OATPs are known to mediate the uptake of statin drugs in liver. The pleiotropic effects and uptake of simvastatin acid were analyzed in primary human cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. Treatment with simvastatin acid reduced indoxyl sulfate-mediated reactive oxygen species and modulated OATP3A1 expression in cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. We observed a pH-dependent effect on OATP3A1 uptake, with more efficient simvastatin acid uptake at pH5.5 in HEK293 cells transfected with the OATP3A1 gene. The Michaelis-Menten constant (Km) for simvastatin acid uptake by OATP3A1 was 0.017±0.002μM and the Vmax was 0.995±0.027fmol/min/105 cells. Uptake of simvastatin acid was significantly increased by known (benzylpenicillin and estrone-3-sulfate) and potential (indoxyl sulfate and cyclosporine) substrates of OATP3A1. In conclusion, the presence of OATP3A1 in cardiomyocytes suggests that this transporter may modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes.
Collapse
Affiliation(s)
- Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
32
|
Nikolic T, Zivkovic V, Srejovic I, Stojic I, Jeremic N, Jeremic J, Radonjic K, Stankovic S, Obrenovic R, Djuric D, Jakovljevic V. Effects of atorvastatin and simvastatin on oxidative stress in diet-induced hyperhomocysteinemia in Wistar albino rats: a comparative study. Mol Cell Biochem 2017. [PMID: 28620818 DOI: 10.1007/s11010-017-3099-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Considering the well-known antioxidant properties of statins, it seems important to assess their impact on major markers of oxidative stress (superoxide anion radical, nitric oxide, and index of lipid peroxidation) to compare the antioxidative potentials of atorvastatin and simvastatin during the different degrees of hyperhomocysteinemia (HHcy) in rats. This study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. For 4 weeks, the animals were fed with one of the following diets: standard rodent chow, diet enriched in methionine with no deficiency in B vitamins (folic acid, B6, and B12), or diet enriched in methionine and deficient in B vitamins (folic acid, B6, and B12). At the same time, animals were treated with atorvastatin at doses of 3 mg/kg/day i.p. or simvastatin at doses of 5 mg/kg/day i.p. Levels of superoxide anion radical and TBARS were significantly decreased by administration of simvastatin in normal and high-homocysteine (Hcy) groups (p < 0.05). At 4 weeks after feeding with purified diets, the concentrations of the GSH, CAT, and SOD antioxidants were significantly affected among all groups (p < 0.05). Our results indicated that statin therapy had variable effects on the redox status in hyperhomocysteinemic rats, and simvastatin demonstrated stronger antioxidant effects than did atorvastatin.
Collapse
Affiliation(s)
- T Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - V Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Stojic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - J Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - K Radonjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - S Stankovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - R Obrenovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Djuric
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - V Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia. .,Department of Human Pathology, University IM Sechenov, 1st Moscow State Medical, Moscow, Russia.
| |
Collapse
|