1
|
Najafi L, Moasses Z, Bahmanpour S. The marijuana, cannabinoids, and female reproductive system. J Appl Toxicol 2025; 45:47-60. [PMID: 38754862 DOI: 10.1002/jat.4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The marijuana is considered as widely used recreational illicit drug that has become popular among women of reproductive age. It is believed that the marijuana use may have negative impacts on the female fertility. However, the exact mechanisms of its reproductive toxicity remain unclear. The studies suggest that the exogenous cannabinoids may interfere with endocannabinoid system and disrupt hypothalamic-pituitary-ovary axis. Consequently, it impacts the female fertility by disruption of normal secretion of ovarian sex hormones and menstrual cycles. However, other studies have shown that medical marijuana is useful analgesic agent for pain management. But, given that the wide range of cannabinoids side effects are reported, it seems that caution should be taken in the recreational use of these substances. In summary, this article aimed to review the possible impacts of marijuana and its derivatives on the main female reproductive organs and embryonic growth and development.
Collapse
Affiliation(s)
- Leila Najafi
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zia Moasses
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Capolupo I, Miranda MR, Musella S, Di Sarno V, Manfra M, Ostacolo C, Bertamino A, Campiglia P, Ciaglia T. Exploring Endocannabinoid System: Unveiling New Roles in Modulating ER Stress. Antioxidants (Basel) 2024; 13:1284. [PMID: 39594426 PMCID: PMC11591047 DOI: 10.3390/antiox13111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is the organelle mainly involved in maintaining cellular homeostasis and driving correct protein folding. ER-dependent defects or dysfunctions are associated with the genesis/progression of several pathological conditions, including cancer, inflammation, and neurodegenerative disorders, that are directly or indirectly correlated to a wide set of events collectively named under the term "ER stress". Despite the recent increase in interest concerning ER activity, further research studies are needed to highlight all the mechanisms responsible for ER failure. In this field, recent discoveries paved the way for the comprehension of the strong interaction between ER stress development and the endocannabinoid system. The activity of the endocannabinoid system is mediated by the activation of cannabinoid receptors (CB), G protein-coupled receptors that induce a decrease in cAMP levels, with downstream anti-inflammatory effects. CB activation drives, in most cases, the recovery of ER homeostasis through the regulation of ER stress hallmarks PERK, ATF6, and IRE1. In this review, we focus on the CB role in modulating ER stress, with particular attention to the cellular processes leading to UPR activation and oxidative stress response extinguishment, and to the mechanisms underlying natural cannabinoids' modulation of this complex cellular machine.
Collapse
Affiliation(s)
- Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| |
Collapse
|
3
|
Nayyar D, Said JM, McCarthy H, Hryciw DH, O'Keefe L, McAinch AJ. Effect of a High Linoleic Acid Diet on Pregnant Women and Their Offspring. Nutrients 2024; 16:3019. [PMID: 39275331 PMCID: PMC11397513 DOI: 10.3390/nu16173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Nutritional intake during pregnancy can affect gestational length, fetal development, and impact postnatal growth and health in offspring. Perturbations in maternal nutrition with either an excess or deficiency in nutrients during pregnancy may have harmful effects on the offspring's development and increase the risk of developing chronic diseases later in life. In pregnancy, nutrients transfer from the mother to the fetus via the placenta. Essential fatty acids, linoleic acid (LA) and alpha linoleic acid (ALA), can only be obtained in the diet. In Western countries, the ratio of LA and ALA in the diet has increased dramatically in recent decades. Some animal and human studies have found a correlation between maternal intake of LA and birth weight; however, the association varies. In contrast, some human studies have demonstrated inconclusive findings regarding the correlation between cord blood levels of LA and birth outcomes. In addition, high dietary LA intake in animal studies in pregnancy increased the production of inflammatory markers such as prostaglandins, leukotrienes, cytokines, and tumour necrosis factor-alpha. This review aims to highlight the effect of high dietary LA intake during pregnancy on birth outcomes, obesity, maternal inflammatory markers, and the transfer of fatty acids across the placenta.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Joanne M Said
- Department of Maternal Fetal Medicine, Joan Kirner Women's & Children's Sunshine Hospital, Western Health, St Albans, VIC 3021, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Helen McCarthy
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Lannie O'Keefe
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
4
|
Motamedi S, Amleshi RS, Javar BA, Shams P, Kohlmeier KA, Shabani M. Cannabis during pregnancy: A way to transfer an impairment to later life. Birth Defects Res 2023; 115:1327-1344. [PMID: 37318343 DOI: 10.1002/bdr2.2207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023]
Abstract
Epidemiological studies examining the influence of cannabis across the lifespan show that exposure to cannabis during gestation or during the perinatal period is associated with later-life mental health issues that manifest during childhood, adolescence, and adulthood. The risk of later-life negative outcomes following early exposure is particularly high in persons who have specific genetic variants, implying that cannabis usage interacts with genetics to heighten mental health risks. Prenatal and perinatal exposure to psychoactive components has been shown in animal research to be associated with long-term effects on neural systems relevant to psychiatric and substance use disorders. The long-term molecular, epigenetic, electrophysiological, and behavioral consequences of prenatal and perinatal exposure to cannabis are discussed in this article. Animal and human studies, as well as in vivo neuroimaging methods, are used to provide insights into the changes induced in the brain by cannabis. Here, based on the literature from both animal models and humans, it can be concluded that prenatal cannabis exposure alters the developmental route of several neuronal regions with correlated functional consequences evidenced as changes in social behavior and executive functions throughout life.
Collapse
Affiliation(s)
- Sina Motamedi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saboori Amleshi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnoush Akbari Javar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Health Foresight and Innovation Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Shams
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Kozlosky D, Barrett E, Aleksunes LM. Regulation of Placental Efflux Transporters during Pregnancy Complications. Drug Metab Dispos 2022; 50:1364-1375. [PMID: 34992073 PMCID: PMC9513846 DOI: 10.1124/dmd.121.000449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
The placenta is essential for regulating the exchange of solutes between the maternal and fetal circulations. As a result, the placenta offers support and protection to the developing fetus by delivering crucial nutrients and removing waste and xenobiotics. ATP-binding cassette transporters, including multidrug resistance protein 1, multidrug resistance-associated proteins, and breast cancer resistance protein, remove chemicals through active efflux and are considered the primary transporters within the placental barrier. Altered transporter expression at the barrier could result in fetal exposure to chemicals and/or accumulation of xenobiotics within trophoblasts. Emerging data demonstrate that expression of these transporters is changed in women with pregnancy complications, suggesting potentially compromised integrity of placental barrier function. The purpose of this review is to summarize the regulation of placental efflux transporters during medical complications of pregnancy, including 1) placental inflammation/infection and chorioamnionitis, 2) hypertensive disorders of pregnancy, 3) metabolic disorders including gestational diabetes and obesity, and 4) fetal growth restriction/altered fetal size for gestational age. For each disorder, we review the basic pathophysiology and consider impacts on the expression and function of placental efflux transporters. Mechanisms of transporter dysregulation and implications for fetal drug and toxicant exposure are discussed. Understanding how transporters are up- or downregulated during pathology is important in assessing possible exposures of the fetus to potentially harmful chemicals in the environment as well as the disposition of novel therapeutics intended to treat placental and fetal diseases. SIGNIFICANCE STATEMENT: Diseases of pregnancy are associated with reduced expression of placental barrier transporters that may impact fetal pharmacotherapy and exposure to dietary and environmental toxicants.
Collapse
Affiliation(s)
- Danielle Kozlosky
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| | - Emily Barrett
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| |
Collapse
|
6
|
BANERJEE SOHINI, DEACON ALYSSA, SUTER MELISSAA, AAGAARD KJERSTIM. Understanding the Placental Biology of Tobacco Smoke, Nicotine, and Marijuana (THC) Exposures During Pregnancy. Clin Obstet Gynecol 2022; 65:347-359. [PMID: 35125390 PMCID: PMC9042338 DOI: 10.1097/grf.0000000000000691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Widespread public health campaigns have reduces the prevalence of tobacco and nicotine exposures during pregnancy in the United States. However, tobacco and nicotine exposures during pregnancy persist as a common modifiable perinatal risk exposure. Furthermore, declines in tobacco use have been accompanied by parallel rises in both the prevalence and incidence of marijuana use in pregnancy. This is worrisome, as the macromolecules which comprise tobacco and marijuana smoke affect placental function. In this chapter we summarize the decades of evidence contributing to our understanding of the placental molecular pathophysiology accompanying these chemical exposures, thereby rendering risk of adverse perinatal outcomes.
Collapse
Affiliation(s)
- SOHINI BANERJEE
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | | | - MELISSA A. SUTER
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - KJERSTI M. AAGAARD
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Maternal cannabis use is associated with suppression of immune gene networks in placenta and increased anxiety phenotypes in offspring. Proc Natl Acad Sci U S A 2021; 118:2106115118. [PMID: 34782458 DOI: 10.1073/pnas.2106115118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
While cannabis is among the most used recreational drugs during pregnancy, the impact of maternal cannabis use (mCB) on fetal and child development remains unclear. Here, we assessed the effects of mCB on psychosocial and physiological measures in young children along with the potential relevance of the in utero environment reflected in the placental transcriptome. Children (∼3 to 6 y) were assessed for hair hormone levels, neurobehavioral traits on the Behavioral Assessment System for Children (BASC-2) survey, and heart rate variability (HRV) at rest and during auditory startle. For a subset of children with behavioral assessments, placental specimens collected at birth were processed for RNA sequencing. Hair hormone analysis revealed increased cortisol levels in mCB children. In addition, mCB was associated with greater anxiety, aggression, and hyperactivity. Children with mCB also showed a reduction in the high-frequency component of HRV at baseline, reflecting reduced vagal tone. In the placenta, there was reduced expression of many genes involved in immune system function including type I interferon, neutrophil, and cytokine-signaling pathways. Finally, several of these mCB-linked immune genes organized into coexpression networks that correlated with child anxiety and hyperactivity. Overall, our findings reveal a relationship between mCB and immune response gene networks in the placenta as a potential mediator of risk for anxiety-related problems in early childhood.
Collapse
|
9
|
The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System. Int J Mol Sci 2021; 22:ijms22168576. [PMID: 34445282 PMCID: PMC8395329 DOI: 10.3390/ijms22168576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on the offspring. The effects of cannabis on other physiological aspects of the developing fetus have received less attention. Importantly, our knowledge about cannabinoid signaling in the placenta is also limited. The endocannabinoid system (ECS) is present at early stages of development and represents a potential target for exogenous cannabinoids in utero. The ECS is expressed in a broad range of tissues and influences a spectrum of cellular functions. The aim of this review is to explore the current evidence surrounding the effects of prenatal exposure to cannabinoids and the role of the ECS in the placenta and the developing fetus.
Collapse
|
10
|
Maia J, Almada M, Midão L, Fonseca BM, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. The Cannabinoid Delta-9-tetrahydrocannabinol Disrupts Estrogen Signaling in Human Placenta. Toxicol Sci 2021; 177:420-430. [PMID: 32647869 DOI: 10.1093/toxsci/kfaa110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cannabis consumption is increasing worldwide either for recreational or medical purposes. Its use during gestation is associated with negative pregnancy outcomes such as, intrauterine growth restriction, preterm birth, low birth weight, and increased risk of miscarriage, though the underlying molecular mechanisms are unknown. Cannabis sativa main psychoactive compound, Δ9-tetrahydrocannabinol (THC) is highly lipophilic, and as such, readily crosses the placenta. Consequently, THC may alter normal placental development and function. Here, we hypothesize alterations of placental steroidogenesis caused by THC exposure. The impact on placental estrogenic signaling was examined by studying THC effects upon the enzyme involved in estrogens production, aromatase and on estrogen receptor α (ERα), using placental explants, and the cytotrophoblast cell model BeWo. Aromatase expression was upregulated by THC, being this effect potentiated by estradiol. THC also increased ERα expression. Actions on aromatase were ERα-mediated, as were abolished by the selective ER downregulator ICI-182780 and dependent on the cannabinoid receptor CB1 activation. Furthermore, the presence of the aromatase inhibitor Exemestane did not affect THC-induced increase in ERα expression. However, THC effects on ERα levels were reversed by the antagonists of CB1 and CB2 receptors AM281 and AM630, respectively. Thus, we demonstrate major alterations in estrogen signaling caused by THC, providing new insight on how cannabis consumption leads to negative pregnancy outcomes, likely through placental endocrine alterations. Data presented in this study, together with our recently reported evidence on THC disruption of placental endocannabinoid homeostasis, represent a step forward into a deeper comprehension of the puzzling actions of THC.
Collapse
Affiliation(s)
- João Maia
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Almada
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Midão
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.,Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Gurm H, Hirota JA, Raha S. Cannabinoid Signalling in Immune-Reproductive Crosstalk during Human Pregnancy. Biomedicines 2021; 9:267. [PMID: 33800053 PMCID: PMC8000565 DOI: 10.3390/biomedicines9030267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the intricate involvement of the endocannabinoid system in various physiological processes, it remains one of the most under-studied biological systems of the human body. The scope of endocannabinoid signalling is widespread, ranging from modulation of immune responses in innate and adaptive immunity to gestational processes in female physiology. Cannabinoid receptors are ubiquitously distributed in reproductive tissues and are thought to play a role in regulating the immune-reproductive interactions required for successful pregnancy, specifically among uterine natural killer cells and placental extravillous trophoblasts. The use of cannabis during pregnancy, however, can perturb endocannabinoid homeostasis through effects mediated by its major constituents, Δ-9-tetrahydrocannabinol and cannabidiol. Decidualization of the endometrium, invasion, and angiogenesis may be impaired as a consequence, leading to clinical complications such as miscarriage and preeclampsia. In this review, the crosstalk between endocannabinoid signalling in uterine natural killer cells and placental extravillous trophoblasts will be examined in healthy and complicated pregnancies. This lays a foundation for discussing the potential of targeting the endocannabinoid system for therapeutic benefit, particularly with regard to the emerging field of synthetic cannabinoids.
Collapse
Affiliation(s)
- Harmeet Gurm
- Department of Pediatrics and the Graduate Program in Medical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Jeremy A. Hirota
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Sandeep Raha
- Department of Pediatrics and the Graduate Program in Medical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| |
Collapse
|
12
|
Michalski CA, Hung RJ, Seeto RA, Dennis CL, Brooks JD, Henderson J, Levitan R, Lye SJ, Matthews SG, Knight JA. Association between maternal cannabis use and birth outcomes: an observational study. BMC Pregnancy Childbirth 2020; 20:771. [PMID: 33308186 PMCID: PMC7731469 DOI: 10.1186/s12884-020-03371-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background As cannabis consumption is increasing globally, including among pregnant women, there is a critical need to understand the effects of cannabis on fetal development and birth outcomes. We had two objectives: to determine 1) the factors associated with self-reported cannabis use in the pre/early-pregnancy period, and 2) whether cannabis use is associated with low birth weight, preterm birth, or small size for gestational age (GA) infants. Methods Maternal questionnaire and birth outcome data was gathered from 2229 women and 1778 singleton infants in the Ontario Birth Study, a hospital-based prospective cohort study (2013–2019). Women self-reported cannabis use within 3 months of learning their pregnancy status. Multivariable linear and logistic regression was conducted to 1) identify factors associated with cannabis use, and 2) determine the associations between cannabis use with the selected birth outcomes. Results Cannabis use increased in the cohort over time. Women who reported cannabis use (N = 216) were more likely to be younger and more likely to use alcohol, tobacco, and prescription pain medication, although most did not. These women had infants born at lower average birth weights and had 2.0 times the odds of being small for GA (95% confidence interval: 1.3, 3.3) after multivariable adjustment for socioeconomic factors and other substance use. Conclusion Our results suggest that women who use cannabis around the time of conception have higher odds of having infants that are small for gestational age. Targeted clinical messaging may be most applicable to women actively trying to conceive. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12884-020-03371-3.
Collapse
Affiliation(s)
- Camilla A Michalski
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| | - Rayjean J Hung
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ryan A Seeto
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Cindy-Lee Dennis
- Lawrence S Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada.,St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jennifer D Brooks
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Henderson
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Robert Levitan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julia A Knight
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Shrestha N, Holland OJ, Kent NL, Perkins AV, McAinch AJ, Cuffe JSM, Hryciw DH. Maternal High Linoleic Acid Alters Placental Fatty Acid Composition. Nutrients 2020; 12:nu12082183. [PMID: 32717842 PMCID: PMC7468786 DOI: 10.3390/nu12082183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fetal development is modulated by maternal nutrition during pregnancy. The dietary intake of linoleic acid (LA), an essential dietary n-6 polyunsaturated fatty acid (PUFA), has increased. We previously published that increased LA consumption during pregnancy does not alter offspring or placental weight but fetal plasma fatty acid composition; the developing fetus obtains their required PUFA from the maternal circulation. However, it is unknown if increased maternal linoleic acid alters placental fatty acid storage, metabolism, transport, and general placental function. Female Wistar-Kyoto rats were fed either a low LA diet (LLA; 1.44% of energy from LA) or high LA diet (HLA; 6.21% of energy from LA) for 10 weeks before pregnancy and during gestation. Rats were sacrificed at embryonic day 20 (E20, term = 22 days) and placentae collected. The labyrinth of placentae from one male and one female fetus from each litter were analyzed. High maternal LA consumption increased placental total n-6 and LA concentrations, and decreased total n-3 PUFA, alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA). Fatty acid desaturase 1 (Fads1), angiopoietin-like 4 (Angptl4), and diacylglycerol lipase beta (Daglb) mRNA were downregulated in placentae from offspring from HLA dams. Maternal high LA downregulated the fatty acid transport protein 4 (Fatp4) and glucose transporter 1 (Slc2a1) mRNA in placentae. IL-7 and IL-10 protein were decreased in placentae from offspring from HLA dams. In conclusion, a high maternal LA diet alters the placental fatty acid composition, inflammatory proteins, and expressions of nutrient transporters, which may program deleterious outcomes in offspring.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Nykola L. Kent
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4067, Australia;
| | - Anthony V. Perkins
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4067, Australia;
- Correspondence: (J.S.M.C.); (D.H.H.); Tel.: +61-737-353-601 (D.H.H.)
| | - Deanne H. Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia;
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
- Correspondence: (J.S.M.C.); (D.H.H.); Tel.: +61-737-353-601 (D.H.H.)
| |
Collapse
|
14
|
Walker OS, Ragos R, Gurm H, Lapierre M, May LL, Raha S. Delta-9-tetrahydrocannabinol disrupts mitochondrial function and attenuates syncytialization in human placental BeWo cells. Physiol Rep 2020; 8:e14476. [PMID: 32628362 PMCID: PMC7336740 DOI: 10.14814/phy2.14476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
The psychoactive component in cannabis, delta-9-tetrahydrocannabinol, can restrict fetal growth and development. Delta-9-tetrahydrocannabinol has been shown to negatively impact cellular proliferation and target organelles like the mitochondria resulting in reduced cellular respiration. In the placenta, mitochondrial dysfunction leading to oxidative stress prevents proper placental development and function. A key element of placental development is the proliferation and fusion of cytotrophoblasts to form the syncytium that comprises the materno-fetal interface. The impact of delta-9-tetrahydrocannabinol on this process is not well understood. To elucidate the nature of the mitochondrial dysfunction and its consequences on trophoblast fusion, we treated undifferentiated and differentiated BeWo human trophoblast cells, with 20 µM delta-9-tetrahydrocannabinol for 48 hr. At this concentration, delta-9-tetrahydrocannabinol on BeWo cells reduced the expression of markers involved in syncytialization and mitochondrial dynamics, but had no effect on cell viability. Delta-9-tetrahydrocannabinol significantly attenuated the process of syncytialization and induced oxidative stress responses in BeWo cells. Importantly, delta-9-tetrahydrocannabinol also caused a reduction in the secretion of human chorionic gonadotropin and the production of human placental lactogen and insulin growth factor 2, three hormones known to be important in facilitating fetal growth. Furthermore, we also demonstrate that delta-9-tetrahydrocannabinol attenuated mitochondrial respiration, depleted adenosine triphosphate, and reduced mitochondrial membrane potential. These changes were also associated with an increase in cellular reactive oxygen species, and the expression of stress responsive chaperones, HSP60 and HSP70. These findings have important implications for understanding the role of delta-9-tetrahydrocannabinol-induced mitochondrial injury and the role this might play in compromising human pregnancies.
Collapse
Affiliation(s)
- O’Llenecia S. Walker
- Department of PediatricsMcMaster UniversityHamiltonONCanada
- The Graduate Program in Medical SciencesMcMaster UniversityHamiltonONCanada
| | | | - Harmeet Gurm
- Department of PediatricsMcMaster UniversityHamiltonONCanada
| | | | - Linda L. May
- Department of PediatricsMcMaster UniversityHamiltonONCanada
| | - Sandeep Raha
- Department of PediatricsMcMaster UniversityHamiltonONCanada
- The Graduate Program in Medical SciencesMcMaster UniversityHamiltonONCanada
| |
Collapse
|
15
|
Gestational exposure to the cannabinoid WIN 55,212-2 and its effect on the innate intestinal immune response. Sci Rep 2019; 9:20340. [PMID: 31889093 PMCID: PMC6937228 DOI: 10.1038/s41598-019-56653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022] Open
Abstract
The consequences of marijuana consumption during pregnancy and its effects on the function of the immune system have been little studied. Marijuana is one of the most consumed recreational drugs among pregnant women, and it is known that gestational exposure to marijuana can have serious effects on the offspring after birth. In this study, we challenged the immune system of Wistar rats by infecting them with the parasitic nematode Trichinella spiralis. A treatment group of these animals was prenatally exposed to the cannabinoid WIN 55,212-2; a control group was not exposed. At 5 days of infection, the treated animals were less effective in eliminating intestinal parasites; moreover, this effect was correlated with a deficiency in mucus production, lower recruitment of eosinophils in the duodenum, and a reduced percentage of Tγδ and NK cells. In conclusion, the gestational administration of the synthetic cannabinoid WIN 55,212-2 induces lasting changes to the function of the immune system against infection with T. spiralis in male Wistar rats, making them more susceptible to infection.
Collapse
|
16
|
Ruckle D, Keheila M, West B, Baron P, Villicana R, Mattison B, Thomas A, Thomas J, De Vera M, Kore A, Wai P, Baldwin DD. Should donors who have used marijuana be considered candidates for living kidney donation? Clin Kidney J 2019; 12:437-442. [PMID: 31198546 PMCID: PMC6543962 DOI: 10.1093/ckj/sfy107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The use of marijuana in the USA has been steadily increasing over the last 10 years. This study is the first to investigate the effect of marijuana use by live kidney donors upon outcomes in both donors and recipients. METHODS Living kidney donor transplants performed between January 2000 and May 2016 in a single academic institution were retrospectively reviewed. Donor and recipient groups were each divided into two groups by donor marijuana usage. Outcomes in donor and recipient groups were compared using t-test, Chi-square and mixed linear analysis (P < 0.05 considered significant). RESULTS This was 294 living renal donor medical records were reviewed including 31 marijuana-using donors (MUD) and 263 non-MUDs (NMUD). It was 230 living kidney recipient records were reviewed including 27 marijuana kidney recipients (MKRs) and 203 non-MKRs (NMKR). There was no difference in donor or recipient perioperative characteristics or postoperative outcomes based upon donor marijuana use (P > 0.05 for all comparisons). There was no difference in renal function between NMUD and MUD groups and no long-term difference in kidney allograft function between NMKR and MKR groups. CONCLUSIONS Considering individuals with a history of marijuana use for living kidney donation could increase the donor pool and yield acceptable outcomes.
Collapse
Affiliation(s)
- David Ruckle
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Mohamed Keheila
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Benjamin West
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Pedro Baron
- Department of Transplant and Transplant Nephrology, Loma Linda University Health, Loma Linda, CA, USA
| | - Rafael Villicana
- Department of Transplant and Transplant Nephrology, Loma Linda University Health, Loma Linda, CA, USA
| | - Braden Mattison
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Alex Thomas
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Jerry Thomas
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Michael De Vera
- Department of Transplant and Transplant Nephrology, Loma Linda University Health, Loma Linda, CA, USA
| | - Arputharaj Kore
- Department of Transplant and Transplant Nephrology, Loma Linda University Health, Loma Linda, CA, USA
| | - Philip Wai
- Department of Transplant and Transplant Nephrology, Loma Linda University Health, Loma Linda, CA, USA
| | - D Duane Baldwin
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| |
Collapse
|
17
|
Szilagyi JT, Composto-Wahler GM, Joseph LB, Wang B, Rosen T, Laskin JD, Aleksunes LM. Anandamide down-regulates placental transporter expression through CB2 receptor-mediated inhibition of cAMP synthesis. Pharmacol Res 2019; 141:331-342. [PMID: 30610963 DOI: 10.1016/j.phrs.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/13/2023]
Abstract
The BCRP/ABCG2 efflux transporter is expressed on the membrane of placental syncytiotrophoblasts and protects the fetus from toxicant exposure. Syncytiotrophoblasts arise from the fusion of cytotrophoblasts, a process negatively regulated by the endocannabinoid, anandamide (AEA). It is unknown whether AEA can influence fetal concentrations of xenobiotics by modulating the expression of transporters in syncytiotrophoblasts. Here, we sought to characterize and identify the mechanism(s) responsible for AEA-mediated down-regulation of the BCRP transporter in human placental explants and BeWo trophoblasts. Treatment of human placental explants with AEA (1 μM, 24 h) reduced hCGα, syncytin-1, and BCRP mRNAs by ˜30%. Similarly, treatment of BeWo trophoblasts with AEA (0-10 μM, 3-24 h) coordinately down-regulated mRNAs for hCGß, syncytin-2, and BCRP. In turn, AEA increased the sensitivity of trophoblasts to the cytotoxicity of mitoxantrone, a known BCRP substrate, and environmental and dietary contaminants including mycoestrogens and perfluorinated chemicals. AEA-treated trophoblasts also demonstrated reduced BCRP transport of the mycoestrogen zearalenone and the diabetes drug glyburide, labeled with BODIPY. The AEA-mediated reduction of BCRP mRNA was abrogated when placental cells were co-treated with AM630, a CB2 receptor inhibitor, or 8-Br-cAMP, a cAMP analog. AEA reduced intracellular cAMP levels in trophoblasts by 75% at 1 h, and completely inhibited forskolin-induced phosphorylation of the cAMP response element binding protein (CREB). AEA also decreased p-CREB binding to the BCRP promoter. Taken together, our data indicate that AEA down-regulates placental transporter expression and activity via CB2-cAMP signaling. This novel mechanism may explain the repression of placental BCRP expression observed during diseases of pregnancy.
Collapse
Affiliation(s)
- John T Szilagyi
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Gabriella M Composto-Wahler
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Bingbing Wang
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Todd Rosen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
18
|
Abán CE, Accialini PL, Etcheverry T, Leguizamón GF, Martinez NA, Farina MG. Crosstalk Between Nitric Oxide and Endocannabinoid Signaling Pathways in Normal and Pathological Placentation. Front Physiol 2018; 9:1699. [PMID: 30564135 PMCID: PMC6288445 DOI: 10.3389/fphys.2018.01699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Endocannabinoids are a group of endogenous lipid mediators that act as ligands of cannabinoid and vanilloid receptors, activating multiple signal transduction pathways. Together with enzymes responsible for their synthesis and degradation, these compounds constitute the endocannabinoid system (ECS), which is involved in different physiological processes in reproduction. The placenta, which is essential for the success of gestation and optimal fetal growth, undergoes constant tissue remodeling. ECS members are expressed in trophoblast cells, and current evidence suggests that this system is involved in placental development, apoptosis, and syncytialization. Impairment of endocannabinoid signaling has been associated with several pathological conditions such as intrauterine growth restriction and preeclampsia. Both clinical entities are characterized by dysregulation on vascular perfusion where nitrergic system performs a pivotal role. Nitric oxide (NO) is a potent local vasodepressor that exerts a critical role in the regulation of hemodynamic flow, contributing to the maintenance of low vascular resistance in the feto-placental circulation. NO production could be affected by different factors and growing evidence suggests that the endocannabinoid mediators may regulate nitrergic signaling. Herein, we review emerging knowledge supporting ECS-mediated regulation of NO production in normal placentation. Finally, we discuss how alterations in these systems could affect homoeostasis and contribute to the occurrence of placental-mediated pregnancy complications. Given the impact on women and perinatal heath, we will focus on current knowledge regarding the effects of ECS on nitrergic system in normal and pathological placentation.
Collapse
Affiliation(s)
- Cyntia E Abán
- Laboratorio de Investigación Aplicada a las Neurociencias (LIAN), FLENI - CONICET, Belén de Escobar, Argentina
| | - Paula L Accialini
- Laboratorio de Fisiopatología Placentaria, CEFyBO-UBA-CONICET, Buenos Aires, Argentina
| | - Tomás Etcheverry
- Laboratorio de Fisiopatología Placentaria, CEFyBO-UBA-CONICET, Buenos Aires, Argentina
| | | | - Nora A Martinez
- Laboratorio de Biología de la Reproducción, IFIBIO-UBA-CONICET, Buenos Aires, Argentina.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Buenos Aires, Argentina
| | - Mariana G Farina
- Laboratorio de Fisiopatología Placentaria, CEFyBO-UBA-CONICET, Buenos Aires, Argentina.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Buenos Aires, Argentina
| |
Collapse
|
19
|
Neradugomma NK, Drafton K, O'Day DR, Liao MZ, Han LW, Glass IA, Mao Q. Marijuana use differentially affects cannabinoid receptor expression in early gestational human endometrium and placenta. Placenta 2018; 66:36-39. [PMID: 29884300 PMCID: PMC5995327 DOI: 10.1016/j.placenta.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
Marijuana is one of the most abused drugs among pregnant women leading to maternal and fetal abnormalities. Cannabinoids are the active ingredients of marijuana, which interact with cannabinoid receptors such as CNR1 and CNR2 to activate cellular signaling pathways. Human endometrium and placenta are known to express CNR1 and CNR2 and can respond to cannabinoid signaling. In this study, we show that marijuana use significantly increases mRNA or protein expression of CNR1 and CNR2 in human endometrium from the first and early second trimester pregnancies, with minor effects on placental expression of CNRs.
Collapse
MESH Headings
- Adolescent
- Adult
- Alcohol Drinking/adverse effects
- Alcohol Drinking/genetics
- Alcohol Drinking/metabolism
- Case-Control Studies
- Endometrium/metabolism
- Female
- Humans
- Marijuana Use/adverse effects
- Marijuana Use/genetics
- Marijuana Use/metabolism
- Placenta/metabolism
- Pregnancy
- Pregnancy Trimester, First
- Pregnancy Trimester, Second
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction
- Smoking/adverse effects
- Smoking/genetics
- Smoking/metabolism
- Young Adult
Collapse
Affiliation(s)
- Naveen K Neradugomma
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| | - Kaitlyn Drafton
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Diana R O'Day
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Michael Z Liao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Lyrialle W Han
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Ian A Glass
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
20
|
Gandhi K, Li C, German N, Skobowiat C, Carrillo M, Kallem RR, Larumbe E, Martinez S, Chuecos M, Ventolini G, Nathanielsz P, Schlabritz-Loutsevitch N. Effect of maternal high-fat diet on key components of the placental and hepatic endocannabinoid system. Am J Physiol Endocrinol Metab 2018; 314:E322-E333. [PMID: 29138223 PMCID: PMC5966752 DOI: 10.1152/ajpendo.00119.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
Abstract
Maternal obesity in pregnancy has been linked to a spectrum of adverse developmental changes. Involvement of eCBs in obesity is well characterized. However, information regarding eCB physiology in obesity associated with pregnancy is sparse. This study evaluated fetomaternal hepatic, systemic, and placental eCB molecular changes in response to maternal consumption of a HFD. From ≥9 mo before conception, nonpregnant baboons ( Papio spp.) were fed a diet of either 45 (HFD; n = 11) or 12% fat or a control diet (CTR; n = 11), and dietary intervention continued through pregnancy. Maternal and fetal venous plasma samples were evaluated using liquid chromatography-mass spectrometry to quantify AEA and 2-AG. Placental, maternal and fetal hepatic tissues were analyzed using RT-PCR, Western blot, and immunohistochemistry. mRNA and protein expression of endocannabinoid receptors (CB1R and CB2R), FAAH, DAGL, MAGL, and COX-2 were determined. Statistical analyses were performed with the nonparametric Scheirer-Ray-Hare extension of the Kruskal-Wallis test to analyze the effects of diet (HFD vs. CTR), fetal sex (male vs. female), and the diet × sex interaction. Fetal weight was influenced by fetal sex but not by maternal diet. The increase in maternal weight in animals fed the HFD vs. the CTR diet approached significance ( P = 0.055). Maternal circulating 2-AG concentrations increased, and fetal circulating concentrations decreased in the HFD group, independently of fetal sex. CB1R receptor expression was detected in syncytiotrophoblasts (HFD) and the fetal endothelium (CTR and HFD). Placental CB2R protein expression was higher in males and lower in female fetuses in the HFD group. Fetal hepatic CB2R, FAAH, COX-2 (for both fetal sexes), and DAGLα (in male fetuses) protein expression decreased in the HFD group compared with the CTR group. We conclude that consumption of a HFD during pregnancy results in fetal systemic 2-AG and hepatic eCB deficiency.
Collapse
Affiliation(s)
- Kushal Gandhi
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Cun Li
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
- Texas Biomedical Research Institute and Southwest National Primate Research Center , San Antonio, Texas
| | - Nadezhda German
- School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | | | - Maira Carrillo
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Raja Reddy Kallem
- School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Eneko Larumbe
- Clinical Research Institute, Texas Tech University Health Sciences , Lubbock, Texas
| | - Stacy Martinez
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Marcel Chuecos
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Gary Ventolini
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Peter Nathanielsz
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
- Texas Biomedical Research Institute and Southwest National Primate Research Center , San Antonio, Texas
| | - Natalia Schlabritz-Loutsevitch
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| |
Collapse
|
21
|
Marchetti D, Di Masi G, Cittadini F, La Monaca G, De Giovanni N. Placenta as alternative specimen to detect in utero cannabis exposure: A systematic review of the literature. Reprod Toxicol 2017. [DOI: 10.1016/j.reprotox.2017.06.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Ding J, Luo XT, Yao YR, Xiao HM, Guo MQ. Investigation of changes in endocannabinoids and N-acylethanolamides in biofluids, and their correlations with female infertility. J Chromatogr A 2017. [PMID: 28634068 DOI: 10.1016/j.chroma.2017.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Female infertility is a worldwide medical problem, and the scarcity of infertility biomarkers has hindered the ability to launch preventive and therapeutic measures in a timely manner. Intriguingly, alterations in endocannabinoids (eCBs) and N-acylethanolamides (NAEs) have been observed in the biofluids of infertile females. Therefore, a hypothesis of using eCB and NAEs in biofluids as infertility biomarkers was proposed by several researchers; however, little evidence exists to verify the hypothesis. To investigate their correlations with female infertility, we developed a magnetic liquid microextraction-chemical derivatization (MLME-CD) method coupled with liquid chromatography-tandem mass spectrometry for the quantification of eCBs and NAEs in biofluids. The target compounds were first purified with magnetic toluene as sorbents, and then labeled with 4-(N,N-dimethyamino)benzoyl chloride (4-DMABC). The MLME-CD method offered several advantages, including reliable quantification results by preventing the isomerization of eCB, high throughput by requiring 20min for sample preparation, and good sensitivity with limits of detection at 3.0-54.3 fmol. The intra-day and inter-day relative standard deviations were below 14.5%, and the recoveries were 87.4%-117.9%. Concentrations of eCBs and NAEs in the serum of 49 infertile women and 53 fertile women (controls), and in the ovarian follicular fluid of 21 infertile women and 20 controls were then quantified. Using unpaired t test analysis indicated significant differences in AEA and PEA in serum, and OEA in follicular fluid between infertile women and healthy controls, and the areas under the curve were in the range of 0.605-0.707.
Collapse
Affiliation(s)
- Jun Ding
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Tong Luo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yan-Ru Yao
- Department of Obstetrics and Gynecology, Medicine Center for Human Reproduction, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, PR China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
23
|
Fransquet PD, Hutchinson D, Olsson CA, Allsop S, Elliott EJ, Burns L, Mattick R, Saffery R, Ryan J. Cannabis use by women during pregnancy does not influence infant DNA methylation of the dopamine receptor DRD4. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 43:671-677. [PMID: 28448718 PMCID: PMC5706968 DOI: 10.1080/00952990.2017.1314488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Maternal cannabis use in pregnancy is linked with long-term adverse behavioral outcomes in offspring. Epigenetic processes established in utero that affect dopaminergic (reward) signaling may mediate risks. Associations between cannabis use and offspring DNA methylation have not been investigated; however, maternal tobacco smoking in pregnancy is associated with distinct patterns of DNA methylation at birth and beyond. Objectives: To determine whether maternal cannabis use is associated with methylation of the dopamine receptor gene DRD4 promoter in infants. Methods: Mothers in the Triple B study provided detailed information on drug use in each trimester of pregnancy. Buccal swabs were collected from neonates at 8 weeks (n = 804, 51.7% male, and 48.3% female). DRD4 promoter DNA methylation was measured using SEQUENOM MassARRAY. Results: Fifty-seven of the women in the study reported drug use during pregnancy, of whom 44 used cannabis. Of 19 cytosine-phosphate-guanine dinucleotides (CpG) units tested in DRD4, gestational cannabis use was associated with offspring methylation at 1 CpG unit in multivariate models (β + 1.48, CI: 0.02 to 2.93, and p = 0.047). At another site there was weak evidence that both cannabis and other drug use were independently associated with increased methylation, while the association with tobacco was in the reverse direction (cannabis use β + 0.67, CI: −0.12 to 1.46, and p = 0.09; other drug use β + 1.11, CI: 0.17 to 2.05, and p = 0.02; tobacco use β −0.41, CI: −0.85 to 0.03, and p = 0.07). None of the associations would remain significant after correction for multiple testing. Conclusion: There is no strong evidence that maternal cannabis use in pregnancy is associated with offspring DRD4 methylation.
Collapse
Affiliation(s)
- Peter D Fransquet
- a Murdoch Childrens Research Institute, The University of Melbourne , Parkville , Victoria , Australia.,b Department of Paediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia.,h School of Public Health and Preventive Medicine, Monash University , Melbourne , Australia
| | - Delyse Hutchinson
- a Murdoch Childrens Research Institute, The University of Melbourne , Parkville , Victoria , Australia.,b Department of Paediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia.,c Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health , Deakin University , Melbourne , Australia.,d National Drug and Alcohol Research Centre, University of New South Wales , Sydney , Australia
| | - Craig A Olsson
- a Murdoch Childrens Research Institute, The University of Melbourne , Parkville , Victoria , Australia.,b Department of Paediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia.,c Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health , Deakin University , Melbourne , Australia
| | - Steve Allsop
- e National Drug Research Institute , Curtin University , Perth , Australia
| | - Elizabeth J Elliott
- f Discipline of Paediatrics and Child Health , The University of Sydney, The Sydney Children's Hospital's Network (Westmead) , Sydney , Australia
| | - Lucinda Burns
- b Department of Paediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia
| | - Richard Mattick
- d National Drug and Alcohol Research Centre, University of New South Wales , Sydney , Australia
| | - Richard Saffery
- a Murdoch Childrens Research Institute, The University of Melbourne , Parkville , Victoria , Australia.,b Department of Paediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia
| | - Joanne Ryan
- a Murdoch Childrens Research Institute, The University of Melbourne , Parkville , Victoria , Australia.,b Department of Paediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia.,g Inserm U1061 , Montpellier , France.,h School of Public Health and Preventive Medicine, Monash University , Melbourne , Australia
| |
Collapse
|
24
|
Cannabinoids: Possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation. Med Hypotheses 2016; 99:15-18. [PMID: 28110689 DOI: 10.1016/j.mehy.2016.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/13/2016] [Accepted: 12/08/2016] [Indexed: 01/21/2023]
Abstract
Psoriasis is a chronic skin disease also affecting other sites such as joints. This disease highly depends on inflammation and angiogenesis as well as other pathways. At each step of the psoriasis molecular pathway, different inflammatory cytokines and angiogenic growth factors are involved such as hypoxia inducible factor-1 α (HIF-1 α), vascular endothelial growth factor (VEGF), matrix metalo proteinases (MMPs), basic fibroblast growth factor (bFGF), Angiopoitin-2, interleukin-8 (IL-8), IL-17, and IL-2. Beside the mentioned growth factors and cytokines, cellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which play roles in both angiogenesis and inflammation are also involved in the pathogenesis. Cannabinoids are active compounds of Cannabina Sativa inducing their effects through cannabinoid receptors (CBs). JWH-133 is a synthetic cannabinoid with strong anti-angiogenic and anti-inflammatory activities. This agent is able to inhibit HIF-1 α, VEGF, MMPs, bFGF, IL-8, IL-17, and other mentioned cytokines and adhesion molecules both in vivo and in vitro. Altogether, authors suggest using this cannabinoid for treatment of psoriasis due to its potential in suppressing the two main steps of psoriatic pathogenesis. Of course complementary animal studies and human trials are still required.
Collapse
|
25
|
Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1. Apoptosis 2016; 21:1094-105. [DOI: 10.1007/s10495-016-1274-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|