1
|
Murphy MS, Abdulaziz KE, Lavigne É, Erwin E, Guo Y, Dingwall-Harvey AL, Stieb D, Walker MC, Wen SW, Shin HH. Association between prenatal air pollutant exposure and autism spectrum disorders in young children: A matched case-control study in Canada. ENVIRONMENTAL RESEARCH 2024; 261:119706. [PMID: 39084506 DOI: 10.1016/j.envres.2024.119706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The direction and magnitude of association between maternal exposure to ambient air pollutants across gestational windows and offspring risk of autism spectrum disorders (ASD) remains unclear. We sought to evaluate the time-varying effects of prenatal air pollutant exposure on ASD. We conducted a matched case-control study of singleton term children born in Ontario, Canada from 1-Apr-2012 to 31-Dec-2016. Provincial birth registry data were linked with applied behavioural analysis services and ambient air pollutant datasets to ascertain prenatal exposure to nitrogen dioxide (NO2), ground-level ozone (O3), fine particulate matter (PM2.5), and ASD diagnoses. Covariate balance between cases and controls was established using coarsened exact matching. Conditional logistic regression was used to assess the association between prenatal air pollutant exposure and ASD. Distributed lag non-linear models (DLNM) were used to examine the effects of single-pollutant exposure by prenatal week. Sensitivity analyses were conducted to assess the impact of exposure period on the observed findings. The final sample included 1589 ASD cases and 7563 controls. Compared to controls, cases were more likely to be born to mothers living in urban areas, delivered by Caesarean section, and assigned male sex at birth. NO2 was a consistent and significant contributor to ASD risk after accounting for co-exposure to O3, PM2.5 and covariates. The odds ratio per interquartile range increase was 2.1 (95%CI 1.8-2.3) pre-conception, 2.2 (2.0-2.5) for the 1st trimester, 2.2 (1.9-2.5) for the 2nd trimester, and 2.1 (1.9-2.4) for the 3rd trimester. In contrast, findings for O3 and PM2.5 with ASD were inconsistent. Findings from DLNM and sensitivity analyses were similar. Exposure to NO2 before and during pregnancy was significantly associated with ASD in offspring. The relationship between prenatal O3 and PM2.5 exposure and ASD remains unclear. Further investigation into the combined effects of multi-pollutant exposure on child neurodevelopment is warranted.
Collapse
Affiliation(s)
- Malia Sq Murphy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kasim E Abdulaziz
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erica Erwin
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Yanfang Guo
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Alysha Lj Dingwall-Harvey
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Stieb
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mark C Walker
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, Ottawa, Canada; International and Global Health Office, University of Ottawa, Ottawa, Canada
| | - Shi Wu Wen
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, Ottawa, Canada
| | - Hwashin Hyun Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Knox B, Güil-Oumrait N, Basagaña X, Cserbik D, Dadvand P, Foraster M, Galmes T, Gascon M, Dolores Gómez-Roig M, Gómez-Herrera L, Småstuen Haug L, Llurba E, Márquez S, Rivas I, Sunyer J, Thomsen C, Julia Zanini M, Bustamante M, Vrijheid M. Prenatal exposure to per- and polyfluoroalkyl substances, fetoplacental hemodynamics, and fetal growth. ENVIRONMENT INTERNATIONAL 2024; 193:109090. [PMID: 39454342 DOI: 10.1016/j.envint.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The impact of legacy per- and polyfluoroalkyl substances (PFAS) on fetal growth has been well studied, but assessments of next-generation PFAS and PFAS mixtures are sparse and the potential role of fetoplacental hemodynamics has not been studied. We aimed to evaluate associations between prenatal PFAS exposure and fetal growth and fetoplacental hemodynamics. METHODS We included 747 pregnant women from the BiSC birth cohort (Barcelona, Spain (2018-2021)). Twenty-three PFAS were measured at 32 weeks of pregnancy in maternal plasma, of which 13 were present above detectable levels. Fetal growth was measured by ultrasound, as estimated fetal weight at 32 and 37 weeks of gestation, and weight at birth. Doppler ultrasound measurements for uterine (UtA), umbilical (UmA), and middle cerebral artery (MCA) pulsatility indices (PI), as well as the cerebroplacental ratio (CPR - ratio MCA to UmA), were obtained at 32 weeks to assess fetoplacental hemodynamics. We applied linear mixed effects models to assess the association between singular PFAS and longitudinal fetal growth and PI, and Bayesian Weighted Quantile Sum models to evaluate associations between the PFAS mixture and the aforementioned outcomes, controlled for the relevant covariates. RESULTS Single PFAS and the mixture tended to be associated with reduced fetal growth and CPR PI, but few associations reached statistical significance. Legacy PFAS PFOS, PFHpA, and PFDoDa were associated with statistically significant decreases in fetal weight z-score of 0.13 (95%CI (-0.22, -0.04), 0.06 (-0.10, 0.01), and 0.05 (-0.10, 0.00), respectively, per doubling of concentration. The PFAS mixture was associated with a non-statistically significant 0.09 decrease in birth weight z-score (95%CI -0.22, 0.04) per quartile increase. CONCLUSION This study suggests that legacy PFAS may be associated with reduced fetal growth, but associations for next generation PFAS and for the PFAS mixture were less conclusive. Associations between PFAS and fetoplacental hemodynamics warrant further investigation.
Collapse
Affiliation(s)
- Bethany Knox
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Toni Galmes
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mireia Gascon
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain.
| | - Maria Dolores Gómez-Roig
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| | - Laura Gómez-Herrera
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Line Småstuen Haug
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Elisa Llurba
- Department of Obstetrics and Gynaecology. Institut d'Investigació Biomèdica Sant Pau - IIB Sant Pau. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases d Developof Perinatal anmental Origin Network (RICORS), RD21/0012/0001, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Cathrine Thomsen
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Maria Julia Zanini
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Kumar SH, Acharyya S, Chouksey A, Soni N, Nazeer N, Mishra PK. Air pollution-linked epigenetic modifications in placental DNA: Prognostic potential for identifying future foetal anomalies. Reprod Toxicol 2024; 129:108675. [PMID: 39074641 DOI: 10.1016/j.reprotox.2024.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Prenatal exposure to air pollution is a significant risk factor for the mother and the developing foetus. The accumulation of pollutants in the placenta can cause a self-cascade loop of pro-inflammatory cytokine responses and DNA double-strand breaks. Previous research has shown that airborne particulate matter can damage the epigenome and disturb mitochondrial machinery, ultimately impairing placental function. Mitochondria are essential for preserving cellular homeostasis, energy metabolism, redox equilibrium, and epigenetic reprogramming. As these organelles are subtle targets of environmental exposures, any disruption in the signaling pathways can result in epigenomic instability, which can impact gene expression and mitochondrial function. This, in turn, can lead to changes in DNA methylation, post-translational histone modifications, and aberrant expression of microRNAs in proliferating trophoblast cells. The placenta has two distinct layers, cytotrophoblasts, and syncytiotrophoblasts, each with its mitochondria, which play important roles in preeclampsia, gestational diabetes, and overall health. Foetal nucleic acids enter maternal circulation during placental development because of necrotic, apoptotic, and inflammatory mechanisms. These nucleic acids reflect normal or abnormal ongoing cellular changes during prenatal foetal development. Detecting cell-free DNA in the bloodstream can be a biomarker for predicting negative pregnancy-related outcomes and recognizing abnormalities in foetal growth. Hence, a thorough understanding of how air pollution induces epigenetic variations within the placenta could offer crucial insights into underlying mechanisms and prolonged repercussions on foetal development and susceptibility in later stages of life.
Collapse
Affiliation(s)
- Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India.
| |
Collapse
|
4
|
Zhang WX, Strodl E, Yang WK, Yin XN, Wen GM, Sun DL, Xian DX, Zhao YF, Chen WQ. Combination effects of environmental tobacco smoke exposure and nutrients supplement during pregnancy on obesity in Chinese preschool children. Front Pediatr 2024; 12:1423556. [PMID: 39346637 PMCID: PMC11427257 DOI: 10.3389/fped.2024.1423556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objective This study aimed to explore the combination effects of prenatal exposure to environment tobacco smoke (ETS) and nutrients supplement during pregnancy on childhood obesity in preschoolers. Methods A cross-sectional study was conducted with 58,814 child-mother dyads from 235 kindergartens in Longhua District of Shenzhen, China in 2021. A self-administered structured questionnaire was completed by mothers to collect socio-demographic characteristics, prenatal ETS exposure, and nutrients supplement in pregnancy, and preschoolers' heights and weights were measured at the same time. After controlling for potential confounding variables, logistic regression models and cross-analyses were used to examine the independent and combination effects of maternal prenatal ETS exposure and nutrients supplementation during pregnancy on obesity in preschool children. Results The results of our study showed that prenatal ETS exposure increased the risk of childhood obesity (AOR = 1.22, 95% CI = 1.11-1.34) in preschoolers. In addition, risk of childhood obesity was significantly higher when mothers didn't take supplements of multivitamins (AOR = 1.12, 95% CI = 1.05-1.20), folic acid (AOR = 1.23, 95% CI = 1.10-1.37) and iron (AOR = 1.11, 95% CI = 1.04-1.19) during pregnancy. The cross-over analysis showed that the combination of prenatal ETS exposure with mothers taking no multivitamins (AOR = 1.40, 95% CI = 1.21-1.62), no folic acid (AOR = 1.55, 95% CI = 1.12-2.14) and no iron (AOR = 1.38, 95% CI = 1.19-1.59) during pregnancy also increased the risk of obesity among Chinese preschoolers. We also discovered additive interactive effects between prenatal ETS exposure and no maternal multivitamin, folic acid and iron supplementation in pregnancy on the risk of obesity in preschoolers. Conclusion The combination of prenatal exposure to ETS with no supplementation of these nutrients might jointly increase the risk of childhood obesity. Public health interventions are needed to reduce prenatal exposure to ETS and to encourage mothers to take appropriate multivitamin, folic acid and iron supplements during pregnancy.
Collapse
Affiliation(s)
- Wen-Xuan Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wei-Kang Yang
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Xiao-Na Yin
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Guo-Min Wen
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Deng-Li Sun
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Dan-Xia Xian
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Ya-Fen Zhao
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Wei-Qing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Rahnemaei FA, Aghapour E, Asgharpoor H, Ardabili NS, Kashani ZA, Abdi F. Prenatal exposure to ambient air pollution and risk of fetal overgrowth: Systematic review of cohort studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116526. [PMID: 38823346 DOI: 10.1016/j.ecoenv.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES Fetal overgrowth has detrimental effects on both the mother and the fetus. The global issue of ambient air pollution has been found to contribute to fetal overgrowth through various pathways. This study aimed to identify the association between prenatal exposure to ambient air pollution and the risk of fetal overgrowth. METHODS We identified articles between January 2013 and February 2024 by searching the Web of Sciences(WoS), PubMed, Proquest, Scopus, and Google Scholar databases. Quality assessment was performed using the Newcastle Ottawa scale. This review was provided based on the PRISMA guideline and registered with PROSPERO, "CRD42023488936". RESULTS The search generated 1719 studies, of which 22 cohort studies were included involving 3,480,041 participants. Results on the effects of air pollutants on fetal overgrowth are inconsistent because they vary in population and geographic region. But in general, the results indicate that prenatal exposure to air pollutants, specifically PM2.5, NO2, and SO2, is linked to a higher likelihood of fetal overgrowth(macrosomia and large for gestational age). Nevertheless, the relationship between CO and O3 pollution and fetal overgrowth remains uncertain. Furthermore, PM10 has a limited effect on fetal overgrowth. It is essential to consider the time that reproductive-age women are exposed to air pollution. Exposure to air pollutants before conception and throughout pregnancy has a substantial impact on the fetus's vulnerability to overgrowth. CONCLUSIONS Fetal overgrowth has implications for the health of both mother and fetus. fetal overgrowth can cause cardiovascular diseases, obesity, type 2 diabetes, and other diseases in adulthood, so it is considered an important issue for the health of the future generation. Contrary to popular belief that air pollution leads to intrauterine growth restriction and low birth weight, this study highlights that one of the adverse consequences of air pollution is macrosomia or LGA during pregnancy. Therefore governments must focus on implementing initiatives that aim to reduce pregnant women's exposure to ambient air pollution to ensure the health of future generations.
Collapse
Affiliation(s)
- Fatemeh Alsadat Rahnemaei
- Mother and Child Welfare Research Center,Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ehsan Aghapour
- Department of Social Welfare Management, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Homeira Asgharpoor
- Reproductive Health Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | | | | - Fatemeh Abdi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Liang Y, Li M, Lyu Q, Li P, Lyu Y, Yu Y, Peng W. The relationship between maternal exposure to ambient air pollutants and premature rupture of membranes: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123611. [PMID: 38417606 DOI: 10.1016/j.envpol.2024.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Air pollution is an environmental stimulus that may predispose pregnant women to preterm rapture of membrane (PROM). However, the relationship of maternal exposure to air pollutants and PROM is still unclear. To investigate the relationship between the long-term and short-term maternal exposure to air pollution and PROM. We searched all studies published in PubMed, Embase and Web of Science up to February 2024. The studies provided quantitative effect estimates with 95% confidence intervals, for the impact of short-term (<30 days) or long-term (≥30 days) maternal exposure to air pollutants on PROM, preterm PROM (PPROM) or term PROM (TPROM). The odds ratio (OR), risk ratio (RR), or hazard ratio (HR), with 95% confidence intervals was extracted, and RR or HR were deemed as OR because of the low prevalence of PROM. Fixed- or random-effects meta-analyses performed. In total, 17 relevant studies were included. Maternal exposure to PM2.5 in the second trimester increases the risk of PROM (pooled OR = 1.15, 95%CI: 1.05-1.26). Maternal exposure to PM10, NO2, NO, CO and SO2 during pregnancy and short-term maternal exposure to PM2.5, NO2, SO2 and O3 also associate with PROM occurrence. The results of the study show that both long-term maternal exposure in the second or third trimester and short-term maternal exposure to ambient air pollution can increase the risk of PROM.
Collapse
Affiliation(s)
- Yaxin Liang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Obstetrics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China.
| | - Qiubo Lyu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Pingping Li
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Hospital, Beijing 100730, China
| | - Yuhan Lyu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Hospital, Beijing 100730, China
| | - Yue Yu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Hospital, Beijing 100730, China
| | - Wuqiang Peng
- Maternal and Child Health Care Hospital of Mentougou District, Beijing, China
| |
Collapse
|
7
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
8
|
Cui F, Liu H, Li Y, Zheng TZ, Xu S, Xia W, Sheng X. Association of exposure to per- and polyfluoroalkyl substances with hemoglobin and hematocrit during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114319. [PMID: 36423372 DOI: 10.1016/j.ecoenv.2022.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) are common environmental contaminants and are widely detected in humans. Previous studies have linked PFASs exposure to adverse birth outcomes. However, the association between maternal exposure to PFASs and hemoglobin (Hb) and hematocrit (HCT) remains unclear. OBJECTIVES We aimed to explore the relationship between PFASs exposure with Hb and HCT during pregnancy. METHODS The present birth cohort study included 1044 pregnant women from Wuhan, China. Maternal HCT and Hb were measured in the first, second and third trimesters, and 13 PFASs were detected in the cord sera. Mixed linear models and general linear regression were applied to analyze the association between each single PFASs and Hb and HCT. Weighted quantile sum (WQS) regressions were used to investigate the association between PFASs mixture and Hb and HCT during pregnancy. RESULTS In single-PFAS models, 10 PFASs were positively associated with HCT and Hb across pregnancy (a 10-fold increase in PFASs was associated with 1.47-3.54 % change in HCT and 1.46-3.20 % change in Hb (All P-FDR < 0.05). In addition, Hb and HCT were more positively related to PFASs in the second and third trimesters rather than the first trimester. The association between PFASs exposure and maternal HCT and Hb was not significant in the iron supplementation group, whereas significant in the non-iron supplementation group. A significant interaction between iron supplementation and non-iron supplementation was also detected. WQS regressions showed that perfluorononanoic acid (PFNA) and perfluorohexane sulfonate (PFHxS) contributed most to the association between PFASs and HCT and Hb in the second and third trimesters, respectively. CONCLUSION Maternal PFASs exposure was positive with serum Hb and HCT. Moreover, maternal iron supplementation may play a modifying effect in influencing the relationship between PFASs and HCT and Hb.
Collapse
Affiliation(s)
- Fengzhen Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tong-Zhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Cahuana-Bartra MJ, Mazarico-Gallego E, Cahuana-Bartra AJ, Pascal R, Alonso-Garcia L, Targa J, Muñoz-Lozano C, Dadvand P, Gómez-Roig MD. Maternal short-term exposure to NO 2 during pregnancy and its relationship with Doppler markers of placental function. ENVIRONMENTAL RESEARCH 2022; 214:113813. [PMID: 35810817 DOI: 10.1016/j.envres.2022.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Maternal exposure to air pollution has been associated with poor obstetric outcomes. However, the available evidence on the impact of maternal exposure to air pollution on placental function is still scarce and is based on estimated ambient levels of air pollutants. OBJECTIVE To evaluate the association between short-term maternal exposure to NO2 based on the objective personal measure of NO2 exposure and Doppler markers of placental function. METHODS This study was based on a prospective cohort of 101 pregnant women, recruited at Hospital Sant Joan de Déu, Barcelona (Spain), between January 2017 and April 2018. NO2 diffusion tubes were worn by pregnant women to measure personal exposure to NO2 between weeks 28 and 32 of their pregnancy. Placental function was evaluated at the 32nd week of gestation by Doppler evaluation of mean uterine arteries pulsatility index (PI), umbilical artery PI, middle cerebral artery PI, cerebroplacental ratio (CPR) and ductus venosus PI. Linear regression models were applied to estimate the association of personal NO2 exposure and Doppler markers of placental function (one at a time), controlled for relevant covariates. RESULTS Higher personal exposure to NO2 was significantly associated with lower mean uterine artery PI. Each one-interquartile range (IQR) increase in the exposure to NO 2 was associated with -0.07 (95% confidence intervals (CIs): -0.12, -0.02) decrease in uterine arteries PI. We also observed some suggestions for an inverse association between this exposure and CPR. A one-IQR increase in NO2 was associated with -0.18 (95% CIs: -0.37, 0.01) decrease in CPR. The findings for the rest of Doppler markers were not conclusive. CONCLUSIONS Maternal exposure to NO2 could interfere with Doppler markers of placental function, potentially indicating a certain degree of cerebral vasodilatation with a decrease of mean uterine arteries PI.
Collapse
Affiliation(s)
- Marc Josep Cahuana-Bartra
- BCNatal, Barcelona Centre for Maternal Foetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic. Universitat de Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), 08028, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin, RD21/0012/0001, Instituto de Salud Carlos III, Spain.
| | - Edurne Mazarico-Gallego
- BCNatal, Barcelona Centre for Maternal Foetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic. Universitat de Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), 08028, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin, RD21/0012/0001, Instituto de Salud Carlos III, Spain
| | - Alex Joan Cahuana-Bartra
- BCNatal, Barcelona Centre for Maternal Foetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic. Universitat de Barcelona, Spain
| | - Rosalia Pascal
- BCNatal, Barcelona Centre for Maternal Foetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic. Universitat de Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), 08028, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin, RD21/0012/0001, Instituto de Salud Carlos III, Spain
| | | | | | - Concha Muñoz-Lozano
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08028, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin, RD21/0012/0001, Instituto de Salud Carlos III, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María Dolores Gómez-Roig
- BCNatal, Barcelona Centre for Maternal Foetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic. Universitat de Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), 08028, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin, RD21/0012/0001, Instituto de Salud Carlos III, Spain
| |
Collapse
|
10
|
Gehring U, Gascon M. Invited Perspective: HEPA Filters-An Effective Way to Prevent Adverse Air Pollution Effects on Neurodevelopment? ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:61302. [PMID: 35748571 PMCID: PMC9229416 DOI: 10.1289/ehp11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Mireia Gascon
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
11
|
Ambient Air Pollution Exposure Assessments in Fertility Studies: a Systematic Review and Guide for Reproductive Epidemiologists. CURR EPIDEMIOL REP 2022; 9:87-107. [DOI: 10.1007/s40471-022-00290-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Purpose of Review
We reviewed the exposure assessments of ambient air pollution used in studies of fertility, fecundability, and pregnancy loss.
Recent Findings
Comprehensive literature searches were performed in the PUBMED, Web of Science, and Scopus databases. Of 168 total studies, 45 met the eligibility criteria and were included in the review. We find that 69% of fertility and pregnancy loss studies have used one-dimensional proximity models or surface monitor data, while only 35% have used the improved models, such as land-use regression models (4%), dispersion/chemical transport models (11%), or fusion models (20%). No published studies have used personal air monitors.
Summary
While air pollution exposure models have vastly improved over the past decade from a simple, one-dimensional distance or air monitor data to models that incorporate physiochemical properties leading to better predictive accuracy, precision, and increased spatiotemporal variability and resolution, the fertility literature has yet to fully incorporate these new methods. We provide descriptions of each of these air pollution exposure models and assess the strengths and limitations of each model, while summarizing the findings of the literature on ambient air pollution and fertility that apply each method.
Collapse
|
12
|
Ouidir M, Tekola-Ayele F, Canty T, Grantz KL, Sciscione A, Tong D, Jones RR, Sundaram R, Williams A, Stevens D, Mendola P. Acute ambient air pollution exposure and placental Doppler results in the NICHD fetal growth studies - Singleton cohort. ENVIRONMENTAL RESEARCH 2021; 202:111728. [PMID: 34297937 PMCID: PMC8578287 DOI: 10.1016/j.envres.2021.111728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Increased placental vascular resistance is a proposed mechanism by which air pollution exposure during pregnancy lowers birth weight and increases pregnancy-induced hypertensive disorders. OBJECTIVE To examine the impact of acute air pollution exposure during pregnancy on uterine and umbilical artery Doppler indicators of placental vascular resistance. METHODS After a first ultrasound to confirm gestational age, 2562 pregnant women recruited in 12 clinics throughout the United States underwent up to five standardized ultrasounds with Doppler measurements. Exposures to 11 air pollutants were estimated for the hour of ultrasound and each of the 2 h prior to ultrasound at the clinics using the National Air Quality Forecast Capability reanalysis products. We used mixed logistic regression to study the longitudinal odds ratio (OR) of any, uni- or bi-lateral systolic and diastolic uterine artery notching compared to no notching and the longitudinal OR of abnormal end diastolic flow of the umbilical artery compared to forward flow. Uterine and umbilical artery resistance indexes were studied using linear mixed models. RESULTS Each inter-quartile range (IQR) increase of particulate matter < 2.5 μm, nitrate, ammonium, primary organic matter (POM) and nitrogen dioxide during the hour of ultrasound was associated with a decreased risk of unilateral systolic notch and with increased resistance index of the left uterine artery. For the umbilical artery, each IQR increase in ozone was associated with decreased resistance index (b: -0.26, 95 % CI: -0.52, -0.01) and with a decreased risk of abnormal end diastolic flow (OR: 0.36, 95 % CI: 0.14, 0.94); while each IQR increase of elemental carbon and POM was associated with increased risk of abnormal end diastolic flow (OR: 1.47, 95 % CI: 1.02, 2.13 and OR: 1.67, 95 % CI: 1.17, 2.39, respectively). DISCUSSION Our results suggest acute air pollution exposure may influence placental vascular resistance.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Timothy Canty
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Anthony Sciscione
- Department of Obstetrics and Gynecology, Christiana Care Health System, Newark, DE, USA
| | - Daniel Tong
- Center for Spatial Science and Systems, George Mason University, Fairfax, VA, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rajeshwari Sundaram
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Andrew Williams
- University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Danielle Stevens
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
13
|
Yu G, Chen Y, Tang J, Lin Z, Zheng F, Zheng C, Zhou J, Su Q, Wu S, Li H. Meta-analyses of maternal exposure to atmospheric particulate matter and risk of congenital anomalies in offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55869-55887. [PMID: 34491504 DOI: 10.1007/s11356-021-16200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Congenital anomalies are the main causes of infant death and disability. Previous studies have suggested that maternal exposure to particulate matter is related to congenital malformation. However, the conclusions of this study remain controversial. Hence, meta-analyses were performed to assess the relationship between maternal exposure to particulate matter and the risk of congenital anomalies. The Medline, Embase, and Web of Science databases were systemically searched from inception until August 2020 to find articles related to birth defects and particulate matter. The pooled risk estimated for the combination of pollution outcomes was calculated for each study by performing fixed effects or random effects models. The existence of heterogeneity and publication bias in relevant studies was also examined. Thirty studies were included in the analysis. A statistically increased summary risk valuation was found. PM10 exposure was associated with an increased risk of congenital heart disease, neural tube defects, and cleft lip with or without cleft palate (OR per 10 μg/m3 = 1.05, 95% CI, 1.03-1.07; OR per 10 μg/m3 = 1.04, 95% CI, 1.01-1.06; OR per 10 μg/m3 = 1.03, 95% CI, 1.01-1.06). Maternal exposure to particulate matter might be associated with an increased risk of congenital anomalies. Our results indicate the dangers of particulate matter exposure on fetal development and the importance of protection against exposure to such particles during pregnancy. The schematic representation of the association between maternal exposure to PM2.5/PM10 and congenital anomalies in offspring, and geographic distribution of the included reports in the meta-analyses.
Collapse
Affiliation(s)
- Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yao Chen
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianping Tang
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhifeng Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chunyan Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jinfu Zhou
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qianqian Su
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
14
|
Zhang C, Li S, Guo GL, Hao JW, Cheng P, Xiong LL, Chen ST, Cao JY, Guo YW, Hao JH. Acute associations between air pollution on premature rupture of membranes in Hefei, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3393-3406. [PMID: 33555491 DOI: 10.1007/s10653-021-00833-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12-15.79%), 3.09% (95% CI 0.64-5.59%) and 1.68% (95% CI 0.28-3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (< 35 years) than advanced age mothers (≥ 35 years); however, ≥ 35 years group were more vulnerable to O3 than < 35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sha Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Gan-Lan Guo
- Department of Obstetrics and Gynecology, Anhui Women and Child Health Care Hospital, Anhui Medical University, Hefei, China
| | - Jing-Wen Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Cheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Lin Xiong
- Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Shu-Ting Chen
- Yunlong District Maternal and Child Health Family Planning Service Center, Xuzhou, China
| | - Ji-Yu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Wen Guo
- Department of Obstetrics and Gynecology, Anhui Women and Child Health Care Hospital, Anhui Medical University, Hefei, China.
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
15
|
Park YM, Sousan S, Streuber D, Zhao K. GeoAir-A Novel Portable, GPS-Enabled, Low-Cost Air-Pollution Sensor: Design Strategies to Facilitate Citizen Science Research and Geospatial Assessments of Personal Exposure. SENSORS (BASEL, SWITZERLAND) 2021; 21:3761. [PMID: 34071590 PMCID: PMC8198491 DOI: 10.3390/s21113761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022]
Abstract
The rapid evolution of air sensor technologies has offered enormous opportunities for community-engaged research by enabling citizens to monitor the air quality at any time and location. However, many low-cost portable sensors do not provide sufficient accuracy or are designed only for technically capable individuals by requiring pairing with smartphone applications or other devices to view/store air quality data and collect location data. This paper describes important design considerations for portable devices to ensure effective citizen engagement and reliable data collection for the geospatial analysis of personal exposure. It proposes a new, standalone, portable air monitor, GeoAir, which integrates a particulate matter (PM) sensor, volatile organic compound (VOC) sensor, humidity and temperature sensor, LTE-M and GPS module, Wi-Fi, long-lasting battery, and display screen. The preliminary laboratory test results demonstrate that the PM sensor shows strong performance when compared to a reference instrument. The VOC sensor presents reasonable accuracy, while further assessments with other types of VOC are needed. The field deployment and geo-visualization of the field data illustrate that GeoAir collects fine-grained, georeferenced air pollution data. GeoAir can be used by all citizens regardless of their technical proficiency and is widely applicable in many fields, including environmental justice and health disparity research.
Collapse
Affiliation(s)
- Yoo Min Park
- Department of Geography, Planning, and Environment, East Carolina University, Greenville, NC 27858, USA
| | - Sinan Sousan
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
- North Carolina Agromedicine Institute, Greenville, NC 27834, USA
| | - Dillon Streuber
- Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC 27858, USA;
| | - Kai Zhao
- Independent Researcher, Winterville, NC 28590, USA;
| |
Collapse
|
16
|
Macchi C, Iodice S, Persico N, Ferrari L, Cantone L, Greco MF, Ischia B, Dozio E, Corsini A, Sirtori CR, Ruscica M, Bollati V. Maternal exposure to air pollutants, PCSK9 levels, fetal growth and gestational age - An Italian cohort. ENVIRONMENT INTERNATIONAL 2021; 149:106163. [PMID: 33556817 DOI: 10.1016/j.envint.2020.106163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Exposure to airborne pollutants during pregnancy appears to be associated with uterine growth restriction and adverse neonatal outcome. Proprotein convertase subtilisin/kexin type (PCSK9), the key modulator of low-density lipoprotein (LDL) metabolism, increases following particulate matter (PM10) exposure. Because maternal cholesterol is required for fetal growth, PCSK9 levels could be used to evaluate the potential impact of airborne pollutants on fetal growth. DESIGN A cohort of 134 healthy women during early pregnancy (11-12 weeks of gestational age) was studied. RESULTS A significant association between circulating PCSK9 levels and three tested air pollutants (PM10, PM2.5, nitric oxide (NO2)) was found. Of importance, gestational age at birth was reduced by approximately 1 week for each 100 ng/mL rise in circulating PCSK9 levels, an effect that became more significant at the highest quartile of PM2.5 (with a 1.8 week advance in delivery date for every 100 ng/mL rise in circulating PCSK9; p for interaction = 0.026). This finding was supported by an elevation of the odds ratio for urgent cesarean delivery for each 100 ng/mL rise in PCSK9 (2.99, 95% CI, 1.22-6.57), similar trends being obtained for PM10 and NO2. CONCLUSIONS The association between exposure to air pollutants during pregnancy and elevation in PCSK9 advances our understanding of the unforeseen influences of environmental exposure in terms of pregnancy associated disorders.
Collapse
Affiliation(s)
- C Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - S Iodice
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - N Persico
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Obstetrics and Gynecology 'L. Mangiagalli', Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - L Ferrari
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - L Cantone
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - M F Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - B Ischia
- Department of Obstetrics and Gynecology 'L. Mangiagalli', Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - A Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - C R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - V Bollati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
17
|
Carvalho MA, Hettfleisch K, Rodrigues AS, Benachi A, Vieira SE, Saldiva SRDM, Saldiva PHN, Francisco RPV, Bernardes LS. Association between exposure to air pollution during intrauterine life and cephalic circumference of the newborn. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9701-9711. [PMID: 33151495 DOI: 10.1007/s11356-020-11274-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
It has been observed that air pollution can affect newborn health due to the negative effects of pollutants on pregnancy development. However, few studies have evaluated the impact of maternal exposure to urban air pollution on head circumference (HC) at birth. Reduced head growth during pregnancy may be associated with neurocognitive deficits in childhood. The objectives of this study were to evaluate the association between maternal exposure to air pollution and HC at birth and to provide context with a systematic review to investigate this association. This was a prospective study of low-risk pregnant women living in São Paulo, Brazil. Exposure to pollutants, namely, nitrogen dioxide (NO2) and ozone (O3), was measured during each trimester using passive personal samplers. We measured newborn HC until 24 h after birth. We used multiple linear regression models to evaluate the association between pollutants and HC while controlling for known determinants of pregnancy. To perform the systematic review, four different electronic databases were searched through November 2018: CENTRAL, EMBASE, LILACS, and MEDLINE. We selected longitudinal or transversal designs associating air pollution and HC at birth. Two reviewers evaluated the inclusion criteria and risk of bias and extracted data from the included papers. Thirteen studies were selected for the systematic review. We evaluated 391 patients, and we did not observe a significant association between air pollution and HC. Regarding the systematic review, 13 studies were selected for the systematic review, 8 studies showed an inverse association between maternal exposure to pollutants and HC, 4 showed no association, and one observed a direct association. In the city of São Paulo, maternal exposure to pollutants was not significantly associated with HC at birth. The systematic review suggested an inverse association between air pollution and HC at birth.
Collapse
Affiliation(s)
- Mariana Azevedo Carvalho
- Department of Obstetrics and Gynecology, São Paulo University Medical School, 255, Av. Dr. Enéas de Carvalho Aguiar, São Paulo, 05403-900, Brazil
| | - Karen Hettfleisch
- Department of Obstetrics and Gynecology, São Paulo University Medical School, 255, Av. Dr. Enéas de Carvalho Aguiar, São Paulo, 05403-900, Brazil
| | - Agatha S Rodrigues
- Department of Obstetrics and Gynecology, São Paulo University Medical School, 255, Av. Dr. Enéas de Carvalho Aguiar, São Paulo, 05403-900, Brazil
- Department of Statistics, Federal University of Espírito Santo, Vitória, Brazil
| | - Alexandra Benachi
- Department of Ob-GYN and Reproductive Medecine, Antoine Beclere Hospital, Assistance Publique-Hopitaux de Paris, 92141, Clamart, France
| | - Sandra Elisabete Vieira
- Department of Pediatrics, São Paulo University Medical School, 255, Av. Dr. Enéas de Carvalho Aguiar, São Paulo, 05403-900, Brazil
| | - Silvia R D M Saldiva
- Health Institute, State Health Secretariat, 590, Rua Santo Antônio, São Paulo, 01314-000, Brazil
| | - Paulo Hilário N Saldiva
- Institute of Advanced Studies of the University of São Paulo, 455, Av. Dr Arnaldo, São Paulo, 01246-903, Brazil
| | - Rossana Pulcineli Vieira Francisco
- Department of Obstetrics and Gynecology, São Paulo University Medical School, 255, Av. Dr. Enéas de Carvalho Aguiar, São Paulo, 05403-900, Brazil
| | - Lisandra Stein Bernardes
- Department of Obstetrics and Gynecology, São Paulo University Medical School, 255, Av. Dr. Enéas de Carvalho Aguiar, São Paulo, 05403-900, Brazil.
| |
Collapse
|
18
|
Santri IN, Jiang CB, Chen YH, Wu CD, Zou ML, Chien LC, Lo YC, Chao HJ. Associations of birth outcomes with air pollution and land use characteristics in the Greater Taipei Area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141579. [PMID: 32853937 DOI: 10.1016/j.scitotenv.2020.141579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Understanding the effects of environmental factors on birth outcomes is crucial for public health because newborns' birth size affects their likelihood of childhood survival, risk of perinatal morbidity, and subsequent health and growth. Therefore, we investigated the associations of birth outcomes with prenatal air pollutant exposure and residential land use characteristics in the Greater Taipei Area. METHODS Participants were selected from the Longitudinal Examination across Prenatal and Postpartum Health in Taiwan study, which is an ongoing prospective study launched in July 2011. Parental sociodemographic data and medical histories were collected using standardized questionnaires. Mean air pollutant levels during each trimester were estimated using the spatial interpolation technique (Ordinary Kriging). Land use types surrounding participants' homes were evaluated within a designated radius of their residential addresses. We used multiple regressions to examine relationships between birth outcomes (i.e., birth weight, height, and head circumference) and environmental factors after adjustment for parental characteristics. RESULTS A total of 436 pregnant women-infant pairs were included. Birth weight was negatively associated with commercial land and greenhouse areas near the residence. Living near greenhouse areas negatively affected birth height, but higher greenness level within 100 m of the residence had a positive effect. Birth head circumference was only associated with sociodemographic factors in the multivariate model. CONCLUSION Land use types near the homes of pregnant women, but not exposure to air pollutants, were significantly associated with birth weight and height in the Greater Taipei Area. Increased greenness level was positively associated with birth height, and living near commercial or greenhouse areas had adverse effects on birth outcomes. Living in a healthy neighborhood is critical for the birth outcomes of infants and presumably their health in early childhood.
Collapse
Affiliation(s)
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Lun Zou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Haghani A, Johnson RG, Woodward NC, Feinberg JI, Lewis K, Ladd-Acosta C, Safi N, Jaffe AE, Sioutas C, Allayee H, Campbell DB, Volk HE, Finch CE, Morgan TE. Adult mouse hippocampal transcriptome changes associated with long-term behavioral and metabolic effects of gestational air pollution toxicity. Transl Psychiatry 2020; 10:218. [PMID: 32636363 PMCID: PMC7341755 DOI: 10.1038/s41398-020-00907-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Gestational exposure to air pollution increases the risk of autism spectrum disorder and cognitive impairments with unresolved molecular mechanisms. This study exposed C57BL/6J mice throughout gestation to urban-derived nanosized particulate matter (nPM). Young adult male and female offspring were studied for behavioral and metabolic changes using forced swim test, fat gain, glucose tolerance, and hippocampal transcriptome. Gestational nPM exposure caused increased depressive behaviors, decreased neurogenesis in the dentate gyrus, and increased glucose tolerance in adult male offspring. Both sexes gained fat and body weight. Gestational nPM exposure induced 29 differentially expressed genes (DEGs) in adult hippocampus related to cytokine production, IL17a signaling, and dopamine degradation in both sexes. Stratification by sex showed twofold more DEGs in males than females (69 vs 37), as well as male-specific enrichment of DEGs mediating serotonin signaling, endocytosis, Gαi, and cAMP signaling. Gene co-expression analysis (WCGNA) identified a module of 43 genes with divergent responses to nPM between the sexes. Chronic changes in 14 DEGs (e.g., microRNA9-1) were associated with depressive behaviors, adiposity and glucose intolerance. These genes enriched neuroimmune pathways such as HMGB1 and TLR4. Based on cerebral cortex transcriptome data of neonates, we traced the initial nPM responses of HMGB1 pathway. In vitro, mixed glia responded to 24 h nPM with lower HMGB1 protein and increased proinflammatory cytokines. This response was ameliorated by TLR4 knockdown. In sum, we identified transcriptional changes that could be associated with air pollution-mediated behavioral and phenotypic changes. These identified genes merit further mechanistic studies for therapeutic intervention development.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Richard G Johnson
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jason I Feinberg
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristy Lewis
- Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nikoo Safi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Andrew E Jaffe
- Lieber Institute of Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hooman Allayee
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel B Campbell
- Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Zhu Q, Xia B, Zhao Y, Dai H, Zhou Y, Wang Y, Yang Q, Zhao Y, Wang P, La X, Shi H, Liu Y, Zhang Y. Predicting gestational personal exposure to PM 2.5 from satellite-driven ambient concentrations in Shanghai. CHEMOSPHERE 2019; 233:452-461. [PMID: 31176908 DOI: 10.1016/j.chemosphere.2019.05.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND It has been widely reported that gestational exposure to fine particulate matters (PM2.5) is associated with a series of adverse birth outcomes. However, the discrepancy between ambient PM2.5 concentrations and personal PM2.5 exposure would significantly affect the estimation of exposure-response relationship. OBJECTIVE Our study aimed to predict gestational personal exposure to PM2.5 from the satellite-driven ambient concentrations and analyze the influence of other potential determinants. METHOD We collected 762 72-h personal exposure samples from a panel of 329 pregnant women in Shanghai, China as well as their time-activity patterns from Feb 2017 to Jun 2018. We established an ambient PM2.5 model based on MAIAC AOD at 1 km resolution, then used its output as a major predictor to develop a personal exposure model. RESULTS Our ambient PM2.5 model yielded a cross-validation R2 of 0.96. Personal PM2.5 exposure levels were almost identical to the corresponding ambient concentrations. After adjusting for time-activity patterns and meteorological factors, our personal exposure has a CV R2 of 0.76. CONCLUSION We established a prediction model for gestational personal exposure to PM2.5 from satellite-based ambient concentrations and provided a methodological reference for further epidemiological studies.
Collapse
Affiliation(s)
- Qingyang Zhu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bin Xia
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Haixia Dai
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Songjiang Maternity & Child Health Hospital, Shanghai, 201600, China
| | - Qing Yang
- Songjiang Maternity & Child Health Institute, Shanghai, 201600, China
| | - Yan Zhao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200126, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xuena La
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, Roels HA, Plusquin M, Vrijens K, Nawrot TS. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics 2019; 11:124. [PMID: 31530287 PMCID: PMC6749657 DOI: 10.1186/s13148-019-0688-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/27/2019] [Indexed: 01/04/2023] Open
Abstract
According to the "Developmental Origins of Health and Disease" (DOHaD) concept, the early-life environment is a critical period for fetal programming. Given the epidemiological evidence that air pollution exposure during pregnancy adversely affects newborn outcomes such as birth weight and preterm birth, there is a need to pay attention to underlying modes of action to better understand not only these air pollution-induced early health effects but also its later-life consequences. In this review, we give an overview of air pollution-induced placental molecular alterations observed in the ENVIRONAGE birth cohort and evaluate the existing evidence. In general, we showed that prenatal exposure to air pollution is associated with nitrosative stress and epigenetic alterations in the placenta. Adversely affected CpG targets were involved in cellular processes including DNA repair, circadian rhythm, and energy metabolism. For miRNA expression, specific air pollution exposure windows were associated with altered miR-20a, miR-21, miR-146a, and miR-222 expression. Early-life aging markers including telomere length and mitochondrial DNA content are associated with air pollution exposure during pregnancy. Previously, we proposed the air pollution-induced telomere-mitochondrial aging hypothesis with a direct link between telomeres and mitochondria. Here, we extend this view with a potential co-interaction of different biological mechanisms on the level of placental oxidative stress, epigenetics, aging, and energy metabolism. Investigating the placenta is an opportunity for future research as it may help to understand the fundamental biology underpinning the DOHaD concept through the interactions between the underlying modes of action, prenatal environment, and disease risk in later life. To prevent lasting consequences from early-life exposures of air pollution, policy makers should get a basic understanding of biomolecular consequences and transgenerational risks.
Collapse
Affiliation(s)
- N. D. Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - D. S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Y. Neven
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - R. Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. Bové
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - B. G. Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. A. Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - M. Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - T. S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
22
|
Huang I, Mak D, Cheung P, Abraham M, Clemens T, Turner S. A systematic review of associations between maternal exposures during pregnancy other than smoking and antenatal fetal measurements. ENVIRONMENTAL RESEARCH 2019; 173:528-538. [PMID: 30991176 DOI: 10.1016/j.envres.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Reduced birth weight is associated with many maternal environmental exposures during pregnancy, but the gestational age at onset of this association is unknown. We have previously reported associations between maternal smoking and fetal size. OBJECTIVE To report on our systematic review of the literature describing associations between antenatal size and growth and maternal exposures during pregnancy. DATA SOURCES Electronic databases (OVID and EMBASE) and web sites for cohort studies were searched. Studies were eligible if they examined associations between maternal environmental exposures (including ambient air exposure, diet and alcohol) and antenatal fetal ultrasound measurements. The Navigation Guide was used to assess the strength of evidence. RESULTS There were 451 abstracts identified and 36 papers were included of which maternal diet was the exposure of interest in 15, maternal ambient air exposure in 10, maternal alcohol in 3 and other exposures in 8. The first paper was published in 2006. Associations were present between exposures and fetal measurements in 18% of comparisons with second trimester measurements and in 46% of comparisons with third trimester measurements. In the third trimester, when an association was present, reduced head size was most commonly (58%) associated with current or previous maternal exposure, with reduced length being least commonly (32%) associated and reduced weight being intermediate (52%). In the third trimester, increased maternal nitrogen dioxide exposure was associated with reduced head size was associated with in all seven studies identified and reduced fetal weight in five out of six studies. CONCLUSION There is sufficient evidence of toxicity in the context of maternal exposure to nitrogen dioxide and reduced third trimester fetal head size. There is currently insufficient evidence of toxicity with regard to maternal exposures to dietary factors, alcohol and environmental chemicals and reduced fetal size.
Collapse
Affiliation(s)
- Ivory Huang
- Child Health, University of Aberdeen, Aberdeen, UK
| | - Diane Mak
- Child Health, University of Aberdeen, Aberdeen, UK
| | | | | | - Tom Clemens
- School of Geosciences, University of Edinburgh, UK
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
23
|
Arroyo V, Linares C, Díaz J. Premature births in Spain: Measuring the impact of air pollution using time series analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:105-114. [PMID: 30639707 DOI: 10.1016/j.scitotenv.2018.12.470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Premature birth (<37 weeks of gestation) is the principal indicator of neonatal death during the first month of life and the second cause of death of children under age five. There are 15 million premature births (PTB) worldwide. Air pollution in cities, primarily the result of urban traffic, greatly impacts PTBs, though there are few studies carried out on this topic at the country level. The objective of this study is to quantify the relative risks (RR) and the population attributable risk (PAR) of concentrations of contaminants on PTBs in Spain, and to analyze the most susceptible trimesters. METHODS For each province average weekly PTBs were calculated (ICD-10: P07.2-P07.3) during the period 2001-2009 as well as weekly average concentrations of PM10, NO2 and O3. Estimations were made of RR and PAR using generalized linear models with link Poisson, controlling for the trend, seasonality, the autoregressive nature of the series and the influence of temperature in periods of heat and/or cold waves. A meta-analysis was carried out to estimate RR and PAR at the global level based on the RR obtained for each of the provinces. RESULTS For all of Spain, the global RR of PTB due to the impact of PM10 was 1.071 (1.049, 1.093) and 1.150 (1.084, 1.220) for NO2, with no detected association for O3. Therefore, with decreases of 10 μg/m3 in the concentrations of PM10 and NO2, around 12.5% and 4.5% of PTBs could have been avoided respectively. CONCLUSIONS Around 1.35% of PTBs that occurred in Spain during the study period can be attributed to air pollution. The adoption of structural measures to reduce these air pollutants should result in a decrease in the number of PTBs in Spain.
Collapse
Affiliation(s)
- Virginia Arroyo
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain; Autonomous University of Madrid, Spain
| | - Cristina Linares
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - Julio Díaz
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
24
|
Sunyer J, Dadvand P. Pre-natal brain development as a target for urban air pollution. Basic Clin Pharmacol Toxicol 2019; 125 Suppl 3:81-88. [PMID: 30884144 DOI: 10.1111/bcpt.13226] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022]
Abstract
Air pollution is the main urban-related environmental hazard and one of the major contributors to the global burden of disease based on its cardiovascular-respiratory impacts. In children, exposure to urban air pollution is associated, among others, with decelerated neurodevelopment early in life and increased risk of neurodevelopmental problems such as attention-deficit hyperactivity disorder, autism spectrum disorders, academic failure and the start of Alzheimer's pathogenesis. However, the evidence of the effects of air pollution on brain development is still inadequate, mainly due to the limitations in (a) characterizing brain development (most studies were based on subjective tools such as questionnaires or neuropsychological tests) and (b) air pollution exposure (most studies only used residential levels based on geographical modelling and also overlooking the variation in the mixture of air pollutants as well as the composition and hence toxicity of particulate pollutants in different settings), (c) the lack of studies during the most vulnerable stages of brain development (foetal and early life (first two years post-natally)) and (d) the lack of structural and functional imaging data underlying these effects. In mice, in utero exposure to fine particles was linked to structural brain changes and there is a need to establish the generalizability of these findings in human beings. Though scarce, current evidence in children supports the importance of the pre-natal period as a susceptible window of exposure. Two studies in schoolchildren found that pre-natal air pollution exposure might damage brain structure while exposure during childhood was not linked to any structural alteration. Another study showed that children with higher traffic-related air pollution at school had lower functional integration in key brain networks, but no changes in brain structure, possibly partly because of the time window of air pollution exposure (in utero versus childhood exposure). A key development is to discover the windows of greatest sensitivity of structural brain changes to air pollution exposure by incorporating the recent advances in non-invasive imaging to characterize natal and post-natal brain development and exploring whether and to what extend placental dysfunction could mediate such an association. Studying pre-natal life is important because effects at this time are of a potentially irreversible nature and because the largest preventive opportunities occur during these periods.
Collapse
Affiliation(s)
- Jordi Sunyer
- ISGlobal, Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| |
Collapse
|
25
|
Arroyo V, Díaz J, Salvador P, Linares C. Impact of air pollution on low birth weight in Spain: An approach to a National Level Study. ENVIRONMENTAL RESEARCH 2019; 171:69-79. [PMID: 30660920 DOI: 10.1016/j.envres.2019.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND According to the WHO, low birth weight (<2500 gr) is a primary maternal health indicator as the cause of multiple morbi-mortality in the short and long-term. It is known that air pollution from road traffic (PM10, NO2) and O3 have an important impact on low birth weight (LBW), but there are few studies of this topic in Spain. The objective of this study is to determine the possible exposure windows in the gestational period in which there is greater susceptibility to urban air pollution and to quantify the relative risks (RR) and population attributable risks (PAR) of low birth weight associated with pollutant concentrations in Spain. METHODS We calculated the weekly average births with low birth weight (ICD-10: P07.0-P07.1) for each Spanish province for the period 2001-2009, using the average weekly concentrations of PM10, NO2 and O3, measured in the capital cities of the provinces. The estimation of RR and PAR were carried out using generalized linear models with link Poisson, controlling for the trend, seasonality and auto-regressive character of the series and for the influence of temperature during periods of heat waves and/or cold. Finally, a meta-analysis was used to estimate the global RR and PAR based on the RR obtained for each of the provinces. RESULTS The RR for the whole of Spain is 1.104 (CI95%: 1.072, 1.138) for the association between LBW and PM10, and 1.091 (CI95%: 1.059, 1.124) for the association between NO2 and LBW. Our results suggest that 5% of low birth weight births in the case of PM10 and 8% in the case of NO2 could have been avoided with a reduction of 10 μg/m3 in the concentrations of these pollutants. CONCLUSIONS The impact of the results obtained- with 6105 cases attributable to PM10 and up to 9385 cases attributable to NO2 in a period of 9 study years- suggest the need to design structural and awareness public health measures to reduce air pollution in Spain.
Collapse
Affiliation(s)
- Virginia Arroyo
- National School of Public Health, Carlos III Institute of Health. Madrid, Spain; Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio Díaz
- National School of Public Health, Carlos III Institute of Health. Madrid, Spain.
| | - P Salvador
- Environmental Department of research, Centre for energy, Environment and Technology (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas/CIEMAT), Madrid, Spain
| | - Cristina Linares
- National School of Public Health, Carlos III Institute of Health. Madrid, Spain
| |
Collapse
|
26
|
Saldiva SRDM, Barrozo LV, Leone CR, Failla MA, Bonilha EDA, Bernal RTI, Oliveira RCD, Saldiva PHN. Small-Scale Variations in Urban Air Pollution Levels Are Significantly Associated with Premature Births: A Case Study in São Paulo, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102236. [PMID: 30322031 PMCID: PMC6209908 DOI: 10.3390/ijerph15102236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Premature birth is the result of a complex interaction among genetic, epigenetic, behavioral, socioeconomic, and environmental factors. We evaluated the possible associations between air pollution and the incidence of prematurity in spatial clusters of high and low prevalence in the municipality of São Paulo. It is a spatial case-control study. The residential addresses of mothers with live births that occurred in 2012 and 2013 were geo-coded. A spatial scan statistical test performed to identify possible low-prevalence and high-prevalence clusters of premature births. After identifying, the spatial clusters were drawn samples of cases and controls in each cluster. Mothers were interviewed face-to-face using questionnaires. Air pollution exposure was assessed by passive tubes (NO₂ and O₃) as well as by the determination of trace elements' concentration in tree bark. Binary logistic regression models were applied to determine the significance of the risk of premature birth. Later prenatal care, urinary infection, and hypertension were individual risk factors for prematurity. Particles produced by traffic emissions (estimated by tree bark accumulation) and photochemical pollutants involved in the photochemical cycle (estimated by O₃ and NO₂ passive tubes) also exhibited significant and robust risks for premature births. The results indicate that air pollution is an independent risk factor for prematurity.
Collapse
Affiliation(s)
- Silvia Regina Dias Medici Saldiva
- Centro de Pesquisa e Desenvolvimento para o SUS, Instituto de Saúde, Secretaria do Estado da Saúde de São Paulo, Rua Santo Antônio, 590-Bela Vista, São Paulo 01314-000, Brazil.
| | - Ligia Vizeu Barrozo
- Departamento de Geografia da Faculdade de Ciências, Letras e Filosofia da Universidade de São Paulo, Cidade Universitária, Av. Prof. Luciano Gualberto-Butantã, São Paulo 05344-020, Brazil.
- Instituto de Estudos Avançados da Universidade de São Paulo, Rua da Praça do Relógio, 109 andar Térreo. Cidade Universitária, São Paulo 05508-050, Brazil.
| | - Clea Rodrigues Leone
- Departamento de Pediatria da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 647-Cerqueira César, São Paulo 05403-000, Brazil.
| | - Marcelo Antunes Failla
- Coordenação de Epidemiologia e Informação (CEInfo)-Secretaria Municipal da Saúde de São Paulo, R. General Jardim, 36-5º andar-Vila Buarque, São Paulo 01223-010, Brazil.
| | - Eliana de Aquino Bonilha
- Coordenação de Epidemiologia e Informação (CEInfo)-Secretaria Municipal da Saúde de São Paulo, R. General Jardim, 36-5º andar-Vila Buarque, São Paulo 01223-010, Brazil.
| | - Regina Tomie Ivata Bernal
- Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde da Faculdade de Saúde Pública da Universidade de São Paulo, Av. Dr. Arnaldo, 715-Cerqueira César, São Paulo 01246-000, Brazil.
| | - Regiani Carvalho de Oliveira
- Laboratório de Poluição Ambiental do Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455-Cerqueira César, São Paulo 01246-903, Brazil.
| | - Paulo Hilário Nascimento Saldiva
- Instituto de Estudos Avançados da Universidade de São Paulo, Rua da Praça do Relógio, 109 andar Térreo. Cidade Universitária, São Paulo 05508-050, Brazil.
- Laboratório de Poluição Ambiental do Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455-Cerqueira César, São Paulo 01246-903, Brazil.
| |
Collapse
|
27
|
Contreras ZA, Heck JE, Lee PC, Cui X, Hobel CJ, Janzen C, Lurmann F, Ritz B. Prenatal air pollution exposure, smoking, and uterine vascular resistance. Environ Epidemiol 2018; 2:e017. [PMID: 30627692 PMCID: PMC6322670 DOI: 10.1097/ee9.0000000000000017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/03/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Prenatal exposure to air pollution and smoking increases the risk of pregnancy complications and adverse birth outcomes, but pathophysiologic mechanisms are still debated. Few studies to date have examined the influence of air pollution on uterine vascular resistance and no studies have examined the independent impact of these exposures. We aimed to assess the impact of prenatal exposure to traffic-related air pollution and smoking on uterine vascular resistance. METHODS Our study included 566 pregnant women recruited between 1993 and 1996 in Los Angeles who completed visits at three gestational ages. Information on smoking was collected and uterine vascular resistance was measured at each visit by Doppler ultrasound. We calculated three resistance indices: the resistance index (RI), the pulsatility index (PI), and the systolic/diastolic (S/D) ratio. We estimated exposure to NO2 at the home address of the mother using a land use regression (LUR) model and to NOx using CALINE4 air dispersion modeling. We used generalized linear mixed models to estimate the effects of air pollution and smoking on uterine vascular resistance indices. RESULTS LUR-derived NO2 and CALINE4-derived NOx exposure increased the risk of high uterine artery resistance in late pregnancy. Smoking during pregnancy also increased the risk of higher uterine resistance and contributed to bilateral notching in mid-pregnancy. CONCLUSION Our results suggest that uterine vascular resistance is a mechanism underlying the association between smoking and air pollution, and adverse birth outcomes.
Collapse
Affiliation(s)
- Zuelma A. Contreras
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Julia E. Heck
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pei-Chen Lee
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Xin Cui
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Calvin J. Hobel
- Department of Obstetrics, Gynecology and Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, California, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Lamichhane DK, Ryu J, Leem JH, Ha M, Hong YC, Park H, Kim Y, Jung DY, Lee JY, Kim HC, Ha EH. Air pollution exposure during pregnancy and ultrasound and birth measures of fetal growth: A prospective cohort study in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:834-841. [PMID: 29734629 DOI: 10.1016/j.scitotenv.2017.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 05/04/2023]
Abstract
Few studies have examined the effects of air pollution on fetal growth based on ultrasound measures during pregnancy. More data is needed to evaluate the windows of special vulnerability. Our aim was to investigate the association of ambient air pollution during pregnancy with fetal and neonatal characteristics in a cohort of Korean women. Maternal exposure to particulate matter with an aerodynamic diameter<10μm (PM10) and nitrogen dioxide (NO2) was estimated using land-use regression models based on residential address. The biparietal diameter (BPD), abdominal circumference (AC), femur length (FL), and estimated fetal weight (EFW) were evaluated via ultrasonography, and birth weight (BW), birth length (BL), and head circumference at birth (BHC) were obtained from medical records. The multiple linear regression model was used to adjust for confounders, and the mixed-effect model was used to evaluate longitudinal effect. The negative effects for NO2 and PM10 were estimated; in the adjusted analyses the decreases of BPD were -0.26mm (95% confidence interval [CI]=-0.41 to -0.11, with a 10μg/m3 increase) in the second trimester for NO2, and -0.30mm (95% CI=-0.59 to -0.03, with a 10μg/m3 increase) in the third trimester for PM10. Both NO2 and PM10 levels (10μg/m3) during third trimester were inversely associated with BHC, and NO2 level was inversely associated with BL in all exposure windows. No significant associations for AC, FL, and EFW were observed. The longitudinal analyses showed inverse association of NO2 exposure with head and length growth (P<0.001). Our findings suggest that ambient air pollution is associated with impaired fetal head size from mid-gestation onwards.
Collapse
Affiliation(s)
- Dirga Kumar Lamichhane
- Department of Social and Preventive Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jia Ryu
- Department of Occupational and Environmental Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Han Leem
- Department of Social and Preventive Medicine, Inha University College of Medicine, Incheon, Republic of Korea; Department of Environmental and Occupational Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine and Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Dal-Young Jung
- Department of Social and Preventive Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Ji-Young Lee
- Department of Occupational and Environmental Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Social and Preventive Medicine, Inha University College of Medicine, Incheon, Republic of Korea; Department of Environmental and Occupational Medicine, Inha University Hospital, Incheon, Republic of Korea.
| | - Eun-Hee Ha
- Department of Occupational and Environmental Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Institute of Convergence Medicine, Ewha Womans University, Seoul, Republic of Korea; Research Institute for Human Health Information, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Teixeira JA, Castro TG, Grant CC, Wall CR, Castro ALDS, Francisco RPV, Vieira SE, Saldiva SRDM, Marchioni DM. Dietary patterns are influenced by socio-demographic conditions of women in childbearing age: a cohort study of pregnant women. BMC Public Health 2018; 18:301. [PMID: 29490638 PMCID: PMC5831579 DOI: 10.1186/s12889-018-5184-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 02/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Women's health during their reproductive years and whilst pregnant has implications for their children's health, both in utero and during childhood. Associations of women's pre-pregnancy dietary patterns (DP) with maternal socio-demographic characteristics and nutrient intake were investigated in ProcriAr cohort study in São Paulo/Brazil, 2012. METHODS The DPs of 454 women were investigated by principal component factor analysis, using dietary information from a validated 110-item food frequency questionnaire. Multiple linear regression models identified independent associations between DPs and maternal socio-demographic characteristics and Spearman's correlation determined associations between DPs and nutrients intake. RESULTS Participants' mean age was 26.1 years (standard deviation = 6.3), 10.3% had more than 8 years of formal education, 30% were migrants from outside of the Southeast of Brazil, 48% were employed, 13% were smokers, and 51% were overweight/obese. Four DPs were derived: 'Lentils, whole grains and soups,' 'Snacks, sandwiches, sweets and soft drinks,' 'Seasoned vegetables and lean meats,' and 'Sweetened juices, bread and butter, rice and beans'. The 'Lentils, whole grains and soups' score was positively related to maternal age, being non-smoker and born in the South, North or Midwest of Brazil. The 'Snacks, sandwiches, sweets and soft drinks' score was positively related to higher maternal education, and negatively related to age, lack of formal work and being born in the Northeast region. The 'Seasoned vegetables and lean meats' score was positively related to higher maternal education. The 'Sweetened juices, bread and butter, rice and beans' score was positively related to unemployment and to no family history of hypertension, and negatively related to maternal overweight and obesity. Dietary intake of fruits and vegetables, foods that require preparation, nutrients from one-carbon metabolism, protein, iron, calcium and vitamin D were correlated with the 'Seasoned vegetables and lean meats'. Dietary intake of sugar-sweetened and alcoholic beverages, industrialized and takeaway foods, and foods rich in sugar, energy, fat, and synthetic folate were correlated with the 'Snacks, sandwiches, sweets and soft drinks'. CONCLUSIONS Findings from this study add perspectives to be considered in the implementation of health interventions, which could improve women's nutritional status and provide an adequate environment for the developing fetus.
Collapse
Affiliation(s)
- Juliana Araujo Teixeira
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, 01246-904 Brazil
| | - Teresa Gontijo Castro
- The Centre for Longitudinal Research – He Ara ki Mua, University of Auckland, Auckland, 1072 New Zealand
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, 1142 New Zealand
| | - Cameron C. Grant
- The Centre for Longitudinal Research – He Ara ki Mua, University of Auckland, Auckland, 1072 New Zealand
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, 1142 New Zealand
- Starship Children’s Hospital, Auckland District Health Board, Auckland, 1023 New Zealand
| | - Clare R. Wall
- The Centre for Longitudinal Research – He Ara ki Mua, University of Auckland, Auckland, 1072 New Zealand
- Discipline of Nutrition and Dietetics, School of Medical Sciences, University of Auckland, Auckland, 1023 New Zealand
| | - Ana Lúcia da Silva Castro
- Department of Obstetrics and Gynecology, School of Medicine, University of Sao Paulo, Sao Paulo, 05403-000 Brazil
| | | | - Sandra Elisabete Vieira
- Department of Pediatrics, School of Medicine, University of Sao Paulo, Sao Paulo, 05403-000 Brazil
| | | | - Dirce Maria Marchioni
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, 01246-904 Brazil
| |
Collapse
|
30
|
Miller CN, Dye JA, Ledbetter AD, Schladweiler MC, Richards JH, Snow SJ, Wood CE, Henriquez AR, Thompson LC, Farraj AK, Hazari MS, Kodavanti UP. Uterine Artery Flow and Offspring Growth in Long-Evans Rats following Maternal Exposure to Ozone during Implantation. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:127005. [PMID: 29269335 PMCID: PMC5963593 DOI: 10.1289/ehp2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Epidemiological studies suggest that increased ozone exposure during gestation may compromise fetal growth. In particular, the implantation stage of pregnancy is considered a key window of susceptibility for this outcome. OBJECTIVES The main goals of this study were to investigate the effects of short-term ozone inhalation during implantation on fetal growth outcomes and to explore the potential for alterations in uterine arterial flow as a contributing mechanism. METHODS Pregnant Long-Evans rats were exposed to filtered air, 0.4 ppm ozone, or 0.8 ppm ozone for 4 h/d during implantation, on gestation days (GD) 5 and 6. Tail cuff blood pressure and uterine artery Doppler ultrasound were measured on GD 15, 19, and 21. To assess whether peri-implantation ozone exposure resulted in sustained pulmonary or systemic health effects, bronchoalveolar lavage fluid, serum metabolic and inflammatory end points, and kidney histopathology were evaluated in dams at GD 21. Growth parameters assessed in GD 21 offspring included fetal weight, length, and body composition. RESULTS Measures of maternal uterine arterial flow, including resistance index and mean velocity, indicated that resistance increased between GD 15 and GD 21 in 0.8 ppm dams but decreased in controls, although absolute values were similar in both groups on GD 21. Ozone-exposed dams also had lower serum glucose and higher free fatty acid concentrations than controls on GD 21. On GD 21, both male and female offspring had lower body weight than controls, and pooled subsets of 3 male and 3 female fetuses from litters exposed to 0.8 ppm ozone had lower lean mass and fat mass than pooled control offspring. CONCLUSIONS Findings from our experimental model suggest that the offspring of dams exposed to ozone during implantation had reduced growth compared with controls, possibly as a consequence of ozone-induced vascular dysfunction. https://doi.org/10.1289/EHP2019.
Collapse
Affiliation(s)
- Colette N Miller
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Janice A Dye
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Judy H Richards
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Samantha J Snow
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Charles E Wood
- Integrated Systems Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Andres R Henriquez
- Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leslie C Thompson
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Aimen K Farraj
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| |
Collapse
|
31
|
Larkin A, Hystad P. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research. Curr Environ Health Rep 2017; 4:463-471. [PMID: 28983874 PMCID: PMC5677549 DOI: 10.1007/s40572-017-0163-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW We present a review of emerging technologies and how these can transform personal air pollution exposure assessment and subsequent health research. RECENT FINDINGS Estimating personal air pollution exposures is currently split broadly into methods for modeling exposures for large populations versus measuring exposures for small populations. Air pollution sensors, smartphones, and air pollution models capitalizing on big/new data sources offer tremendous opportunity for unifying these approaches and improving long-term personal exposure prediction at scales needed for population-based research. A multi-disciplinary approach is needed to combine these technologies to not only estimate personal exposures for epidemiological research but also determine drivers of these exposures and new prevention opportunities. While available technologies can revolutionize air pollution exposure research, ethical, privacy, logistical, and data science challenges must be met before widespread implementations occur. Available technologies and related advances in data science can improve long-term personal air pollution exposure estimates at scales needed for population-based research. This will advance our ability to evaluate the impacts of air pollution on human health and develop effective prevention strategies.
Collapse
Affiliation(s)
- A Larkin
- College of Public Health and Human Sciences, Oregon State University, Milam 20A, Corvallis, OR, 97331, USA
| | - P Hystad
- College of Public Health and Human Sciences, Oregon State University, Milam 20C, Corvallis, OR, 97331, USA.
| |
Collapse
|
32
|
Clemens T, Turner S, Dibben C. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans. ENVIRONMENT INTERNATIONAL 2017; 107:216-226. [PMID: 28753483 PMCID: PMC5571229 DOI: 10.1016/j.envint.2017.07.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Maternal ambient air pollution exposure is associated with reduced birthweight. Few studies have examined the effect on growth in utero and none have examined the effect of exposure to particulates less than 2.5µm (PM2.5) and possible effect modification by smoking status. OBJECTIVES Examine the effect of maternal exposure to ambient concentrations of PM10, PM2.5 and nitrogen dioxide (NO2) for in utero fetal growth, size at birth and effect modification by smoking status. METHODS Administratively acquired second and third trimester fetal measurements (bi-parietal diameter, femur length and abdominal circumference), birth outcomes (weight, crown heel length and occipito-frontal circumference) and maternal details were obtained from routine fetal ultrasound scans and maternity records (period 1994-2009). These were modelled against residential annual pollution concentrations (calendar year mean) adjusting for covariates and stratifying by smoking status. RESULTS In the whole sample (n=13,775 pregnancies), exposure to PM10, PM2.5 and NO2 was associated with reductions in measurements at birth and biparietal diameter from late second trimester onwards. Among mothers who did not smoke at all during pregnancy (n=11,075), associations between biparietal diameter and pollution exposure remained significant but were insignificant among those who did smoke (n=2700). Femur length and abdominal circumference were not significantly associated with pollution exposure. CONCLUSIONS Fetal growth is strongly associated with particulates exposure from later in second trimester onwards but the effect appears to be subsumed by smoking. Typical ambient exposures in this study were relatively low compared to other studies and given these results, it may be necessary to consider reducing recommended "safe" ambient air exposures.
Collapse
Affiliation(s)
- Tom Clemens
- School of Geosciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, Scotland, UK
| | - Chris Dibben
- School of Geosciences, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
33
|
Martinek R, Nedoma J, Fajkus M, Kahankova R, Konecny J, Janku P, Kepak S, Bilik P, Nazeran H. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring. SENSORS 2017; 17:s17040890. [PMID: 28420215 PMCID: PMC5426540 DOI: 10.3390/s17040890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/28/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022]
Abstract
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV.
Collapse
Affiliation(s)
- Radek Martinek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, Ostrava 70833, Czech Republic.
| | - Jan Nedoma
- Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, Ostrava 70833, Czech Republic.
| | - Marcel Fajkus
- Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, Ostrava 70833, Czech Republic.
| | - Radana Kahankova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, Ostrava 70833, Czech Republic.
| | - Jaromir Konecny
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, Ostrava 70833, Czech Republic.
| | - Petr Janku
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00 Brno, Czech Republic.
| | - Stanislav Kepak
- Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, Ostrava 70833, Czech Republic.
| | - Petr Bilik
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, Ostrava 70833, Czech Republic.
| | - Homer Nazeran
- Department of Electrical and Computer Engineering, University of Texas El Paso, 500 W University Ave, El Paso, TX 79968, USA.
| |
Collapse
|
34
|
Wang W, Zhong C, Huang L, Zhou X, Chen R, Wu J, Li X, Xiong T, Liu C, Xiao M, Yang X, Hao L, Yang N, Wei S. Prenatal NO2exposure and ultrasound measures of foetal growth: a prospective cohort study in Wuhan, China. Occup Environ Med 2017; 74:204-210. [DOI: 10.1136/oemed-2016-103980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 11/04/2022]
|