1
|
Wang G, Shen WB, Chen AW, Reece EA, Yang P. Diabetes and Early Development: Epigenetics, Biological Stress, and Aging. Am J Perinatol 2024. [PMID: 39209306 DOI: 10.1055/a-2405-1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pregestational diabetes, either type 1 or type 2 diabetes, induces structural birth defects including neural tube defects and congenital heart defects in human fetuses. Rodent models of type 1 and type 2 diabetic embryopathy have been established and faithfully mimic human conditions. Hyperglycemia of maternal diabetes triggers oxidative stress in the developing neuroepithelium and the embryonic heart leading to the activation of proapoptotic kinases and excessive cell death. Oxidative stress also activates the unfolded protein response and endoplasmic reticulum stress. Hyperglycemia alters epigenetic landscapes by suppressing histone deacetylation, perturbing microRNA (miRNA) expression, and increasing DNA methylation. At cellular levels, besides the induction of cell apoptosis, hyperglycemia suppresses cell proliferation and induces premature senescence. Stress signaling elicited by maternal diabetes disrupts cellular organelle homeostasis leading to mitochondrial dysfunction, mitochondrial dynamic alteration, and autophagy impairment. Blocking oxidative stress, kinase activation, and cellular senescence ameliorates diabetic embryopathy. Deleting the mir200c gene or restoring mir322 expression abolishes maternal diabetes hyperglycemia-induced senescence and cellular stress, respectively. Both the autophagy activator trehalose and the senomorphic rapamycin can alleviate diabetic embryopathy. Thus, targeting cellular stress, miRNAs, senescence, or restoring autophagy or mitochondrial fusion is a promising approach to prevent poorly controlled maternal diabetes-induced structural birth defects. In this review, we summarize the causal events in diabetic embryopathy and propose preventions for this pathological condition. KEY POINTS: · Maternal diabetes induces structural birth defects.. · Kinase signaling and cellular organelle stress are critically involved in neural tube defects.. · Maternal diabetes increases DNA methylation and suppresses developmental gene expression.. · Cellular apoptosis and senescence are induced by maternal diabetes in the neuroepithelium.. · microRNAs disrupt mitochondrial fusion leading to congenital heart diseases in diabetic pregnancy..
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna Wu Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Mahajan N, Luo Q, Abhyankar S, Bhatwadekar AD. Transcriptomic Profile of Lin -Sca1 +c-kit (LSK) cells in db/db mice with long-standing diabetes. BMC Genomics 2024; 25:782. [PMID: 39134978 PMCID: PMC11318115 DOI: 10.1186/s12864-024-10679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Lin-Sca1+c-Kit+ (LSK) fraction of the bone marrow (BM) comprises multipotent hematopoietic stem cells (HSCs), which are vital to tissue homeostasis and vascular repair. While diabetes affects HSC homeostasis overall, the molecular signature of mRNA and miRNA transcriptomic under the conditions of long-standing type 2 diabetes (T2D;>6 months) remains unexplored. METHODS In this study, we assessed the transcriptomic signature of HSCs in db/db mice, a well-known and widely used model for T2D. LSK cells of db/db mice enriched using a cell sorter were subjected to paired-end mRNA and single-end miRNA seq library and sequenced on Illumina NovaSeq 6000. The mRNA sequence reads were mapped using STAR (Spliced Transcripts Alignment to a Reference), and the miRNA sequence reads were mapped to the designated reference genome using the Qiagen GeneGlobe RNA-seq Analysis Portal with default parameters for miRNA. RESULTS We uncovered 2076 out of 13,708 mRNAs and 35 out of 191 miRNAs that were expressed significantly in db/db animals; strikingly, previously unreported miRNAs (miR-3968 and miR-1971) were found to be downregulated in db/db mice. Furthermore, we observed a molecular shift in the transcriptome of HSCs of diabetes with an increase in pro-inflammatory cytokines (Il4, Tlr4, and Tnf11α) and a decrease in anti-inflammatory cytokine IL10. Pathway mapping demonstrated inflammation mediated by chemokine, cytokine, and angiogenesis as one of the top pathways with a significantly higher number of transcripts in db/db mice. These molecular changes were reflected in an overt defect in LSK mobility in the bone marrow. miRNA downstream target analysis unveils several mRNAs targeting leukocyte migration, microglia activation, phagosome formation, and macrophage activation signaling as their primary pathways, suggesting a shift to an inflammatory phenotype. CONCLUSION Our findings highlight that chronic diabetes adversely alters HSCs' homeostasis at the transcriptional level, thus potentially contributing to the inflammatory phenotype of HSCs under long-term diabetes. We also believe that identifying HSCs-based biomarkers in miRNAs or mRNAs could serve as diagnostic markers and potential therapeutic targets for diabetes and associated vascular complications.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Surabhi Abhyankar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Zhang Q, Lai S, Zhang Y, Ye X, Wu Y, Lin T, Huang H, Zhang W, Lin H, Yan J. Associations of elevated glucose levels at each time point during OGTT with fetal congenital heart diseases: a cohort study of 72,236 births. BMC Pregnancy Childbirth 2023; 23:837. [PMID: 38053046 DOI: 10.1186/s12884-023-06152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND It remains unclear how the condition of glucose metabolism during pregnancy affects fetal outcomes. This study aimed to investigate the associations of gestational diabetes mellitus (GDM) and elevated glucose levels at each time point during oral glucose tolerance test (OGTT) with congenital heart disease (CHD) risk in offspring. METHODS We conducted a retrospective cohort study of mothers with singleton pregnancies of 20 weeks or more registered at Maternal and Child Health Centers in Fujian Province, China. The OGTT results and offspring CHD occurrence were collected. We used logistic regression to analyse the association between elevated blood glucose at each time point during OGTT and CHD. RESULTS A total of 71,703 normal and 533 CHD fetuses were included. Compared to the corresponding normal group, women with GDM, elevated blood glucose at different time points in OGTT (0 h ≥ 5.1 mmol/L, 1 h ≥ 10 mmol/L, and 2 h ≥ 8.5 mmol/L) showed an increased risk of CHD in offspring (adjusted OR = 1.41, 1.36, 1.37, and 1.41, all P < 0.05, respectively). Compared to group 1 (normal OGTT 0 h, 1 h and 2 h), the risk of CHD was higher in group 3 (normal OGTT 0 h and abnormal OGTT 1 h or 2 h) and group 4 (abnormal OGTT 0 h, 1 h and 2 h), OR = 1.53 and 2.21, all P < 0.05, respectively. Moreover, we divided participants by advanced maternal age, multipara, assisted reproduction, fetal sex, and others, similar associations were observed in the subgroup analyses. CONCLUSION Elevated blood glucose at different time points during OGTT was associated with CHD in offspring. Fetuses of pregnant women with GDM should be screened for a high risk of CHD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Shuhua Lai
- Department of Neonatology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yulong Zhang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xu Ye
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yi Wu
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Tinghua Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Huiyun Huang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Wenhui Zhang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Hai Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jianying Yan
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
4
|
Chen Z, Chen HX, Hou HT, Yin XY, Yang Q, He GW. Identification and Functional Verification of CITED2 Gene Promoter Region in Patients with Patent Ductus Arteriosus. Int J Mol Sci 2023; 24:16204. [PMID: 38003393 PMCID: PMC10671043 DOI: 10.3390/ijms242216204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Patent ductus arteriosus (PDA) is a common congenital heart disease. CITED2 plays an important role in the development of the heart, and genetic variants in its coding region are significantly associated with cardiac malformations. However, the role of variants in the promoter region of CITED2 in the development of PDA remains unclear. We extracted the peripheral blood of 646 subjects (including 353 PDA patients and 293 unrelated healthy controls) for sequencing. We identified 13 promoter variants of the CITED2 gene (including 2 novel heterozygous variants). Of the 13 variants, 10 were found only in PDA patients. In mouse cardiomyocytes (HL-1) and rat cardiac myocytes (RCM), the transcriptional activity of the CITED2 gene promoter was significantly changed by the variants (p < 0.05). The results of the experiments of electrophoretic mobility indicated that these variants may affect the transcription of the CITED2 gene by influencing the binding ability of transcription factors. These results, combined with the JASPAR database analysis, showed that the destruction/production of transcription factor binding sites due to the variants in the promoter region of the CITED2 gene may directly or indirectly affect the binding ability of transcription factors. Our results suggest for the first time that variants at the CITED2 promoter region may cause low expression of CITED2 protein related to the formation of PDA.
Collapse
Affiliation(s)
- Zhuo Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hai-Tao Hou
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Xiu-Yun Yin
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| |
Collapse
|
5
|
Ren Z, Luo S, Cui J, Tang Y, Huang H, Ding G. Research Progress of Maternal Metabolism on Cardiac Development and Function in Offspring. Nutrients 2023; 15:3388. [PMID: 37571325 PMCID: PMC10420869 DOI: 10.3390/nu15153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The developmental origin of health and disease (DOHaD) hypothesis refers to the adverse effects of suboptimal developmental environments during embryonic and early fetal stages on the long-term health of offspring. Intrauterine metabolic perturbations can profoundly impact organogenesis in offspring, particularly affecting cardiac development and giving rise to potential structural and functional abnormalities. In this discussion, we contemplate the existing understanding regarding the impact of maternal metabolic disorders, such as obesity, diabetes, or undernutrition, on the developmental and functional aspects of the offspring's heart. This influence has the potential to contribute to the susceptibility of offspring to cardiovascular health issues. Alteration in the nutritional milieu can influence mitochondrial function in the developing hearts of offspring, while also serving as signaling molecules that directly modulate gene expression. Moreover, metabolic disorders can exert influence on cardiac development-related genes epigenetically through DNA methylation, levels of histone modifications, microRNA expression, and other factors. However, the comprehensive understanding of the mechanistic underpinnings of these phenomena remains incomplete. Further investigations in this domain hold profound clinical significance, as they can contribute to the enhancement of public health and the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Zhuoran Ren
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Sisi Luo
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- Shanghai First Maternity and Infant Hospital, Shanghai 200126, China
| | - Jiajun Cui
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Holvoet P. Noncoding RNAs Controlling Oxidative Stress in Cancer. Cancers (Basel) 2023; 15:cancers15041155. [PMID: 36831498 PMCID: PMC9954372 DOI: 10.3390/cancers15041155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria in cancer cells tend to overproduce reactive oxygen species (ROS), inducing a vicious cycle between mitochondria, ROS, genomic instability, and cancer development. The first part of this review deals with the role of noncoding RNAs in regulating mitochondrial ROS production and the expression of antioxidants in cancer cells, preventing the increase of ROS in the tumor microenvironment. In addition, cytotoxic T and natural killer cells release high levels of ROS, inducing cell death, while anti-immune regulatory T cells, tumor-associated M2 macrophages, and myeloid-derived suppressor cells, at least at the initial stage of tumor growth, release low levels of ROS supporting tumor growth. Therefore, this review's second part deals with noncoding RNAs' role in regulating the metabolic reprogramming of immune cells about ROS release. Furthermore, the enrichment of noncoding RNAs in microvesicles allows communication between cell types in a tumor and between a tumor and tumor-adjacent tissues. Therefore, the third part illustrates how noncoding RNA-containing microvesicles secreted by mesenchymal stem cells and primary tumor cells may primarily aid the shift of immune cells to a pro-oncogenic phenotype. Conversely, microvesicles released by tumor-adjacent tissues may have the opposite effect. Our review reveals that a specific noncoding RNA may affect oxidative stress by several mechanisms, which may have opposite effects on tumor growth. Furthermore, they may be involved in mechanisms other than regulating oxidative stress, which may level out their effects on oxidative stress and tumor growth. In addition, several noncoding RNAs might share a specific function, making it very unlikely that intervening with only one of these noncoding RNAs will block this particular mechanism. Overall, further validation of the interaction between noncoding RNAs about cancer types and stages of tumor development is warranted.
Collapse
Affiliation(s)
- Paul Holvoet
- Division of Experimental Cardiology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Chen Z, Chen HX, Hou HT, Yin XY, Yang Q, He GW. Pathophysiological Role of Variants of the Promoter Region of CITED2 Gene in Sporadic Tetralogy of Fallot Patients with Cellular Function Verification. Biomolecules 2022; 12:1644. [PMID: 36358994 PMCID: PMC9687598 DOI: 10.3390/biom12111644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2023] Open
Abstract
Tetralogy of Fallot (TOF) is a common congenital heart malformation. Genetic variants in the CITED2 coding region are known to be significantly associated with cardiac malformation, but the role of variants in the CITED2 promoter region in the development of TOF remains unclear. In this study, we investigated CITED2 promoter variants in the DNA of 605 subjects, including 312 TOF patients and 293 unrelated healthy controls, by Sanger sequencing. We identified nine CITED2 gene promoter variants (including one novel heterozygous variant). Six were found only in patients with TOF and none in the control group. The transcriptional activity of the CITED2 gene promoter in mouse cardiomyocyte (HL-1) cells was significantly altered by the six variants (p < 0.05). The results of the electrophoretic mobility change assay and JASPAR database analysis showed that these variants generated or destroyed a series of possible transcription factor binding sites, resulting in changes in the CITED2 protein expression. We conclude that CITED2 promoter variants in TOF patients affect transcriptional activity and may be involved in the occurrence and progression of TOF. These findings may provide new insights into molecular pathogenesis and potential therapeutic insights in patients with TOF.
Collapse
Affiliation(s)
- Zhuo Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hai-Tao Hou
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Xiu-Yun Yin
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| |
Collapse
|
8
|
Abstract
Embryonic heart development is an intricate process that mainly involves morphogens, transcription factors, and cardiac genes. The precise spatiotemporal expression of these genes during different developmental stages underlies normal heart development. Thus, mutation or aberrant expression of these genes may lead to congenital heart disease (CHD). However, evidence demonstrates that the mutation of genes accounts for only a small portion of CHD cases, whereas the aberrant expression regulated by epigenetic modification plays a predominant role in the pathogenesis of CHD. In this review, we provide essential knowledge on the aberrant epigenetic modification involved in the pathogenesis of CHD. Then, we discuss recent advances in the identification of novel epigenetic biomarkers. Last, we highlight the epigenetic roles in some adverse intrauterine environment‐related CHD, which may help the prevention, diagnosis, and treatment of these kinds of CHD.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
| | - Bingbing Wang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
- Department of Biochemistry & Molecular Biology University of Maryland School of Medicine Baltimore MD
| |
Collapse
|
9
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
10
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
11
|
Pohl J, Golovko O, Carlsson G, Örn S, Schmitz M, Ahi EP. Gene co-expression network analysis reveals mechanisms underlying ozone-induced carbamazepine toxicity in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2021; 276:130282. [PMID: 34088109 DOI: 10.1016/j.chemosphere.2021.130282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Sewage effluent ozonation can reduce concentrations of chemical pollutants including pharmaceutical residues. However, the formation of potentially toxic ozonation byproducts (OBPs) is a matter of concern. This study sought to elucidate toxicity mechanisms of ozonated carbamazepine (CBZ), an anti-epileptic drug frequently detected in sewage effluents and surface water, in zebrafish embryos (Danio rerio). Embryos were exposed to ozonated and non-ozonated CBZ from 3 h post-fertilization (hpf) until 144 hpf. Embryotoxicity endpoints (proportion of dead and malformed embryos) were assessed at 24, 48, and 144 hpf. Heart rate was recorded at 48 hpf. Exposure to ozonated CBZ gave rise to cardiovascular-related malformations and reduced heart rate. Moreover, embryo-larvae exposed to ozonated CBZ displayed a lack of swim bladder inflation. Hence, the expression patterns of CBZ target genes involved in cardiovascular and embryonal development were investigated through a stepwise gene co-expression analysis approach. Two co-expression networks and their upstream transcription regulators were identified, offering mechanistic explanations for the observed toxicity phenotypes. The study presents a novel application of gene co-expression analysis elucidating potential toxicity mechanisms of an ozonated pharmaceutical with environmental relevance. The resulting data was used to establish a putative adverse outcome pathway (AOP).
Collapse
Affiliation(s)
- Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology Section, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden
| | - Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology Section, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden; Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
12
|
MicroRNA miR-215-5p regulates doxorubicin-induced cardiomyocyte injury by targeting ZEB2. J Cardiovasc Pharmacol 2021; 78:622-629. [PMID: 34282068 DOI: 10.1097/fjc.0000000000001110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Doxorubicin (DOX) is a chemotherapeutic drug for treating various cancers. However, the DOX-induced cardiotoxicity greatly limits its clinical application. MicroRNAs (miRNAs) are emerged as critical mediators of cardiomyocyte injury. This work explored the function of miR-215-5p in the regulation of DOX-induced mouse HL-1 cardiomyocyte injury. An in vitro model of DOX-treated cardiotoxicity was established in HL-1 cells. Gene expression was measured by RT-qPCR. Cell viability was detected using CCK-8. Cell death and apoptosis were tested using TUNEL, flow cytometry, and caspase 3/7 activity assays. Luciferase reporter assay was used to examine the target of miR-215-5p. We found that DOX induced cardiomyocyte injury and upregulated miR-215-5p in HL-1 cells. Inhibition of miR-215-5p attenuated DOX-induced cardiomyocyte death and apoptosis in vitro. Mechanistical experiments indicated that ZEB2 was targeted by miR-215-5p. Additionally, ZEB2 expression was reduced in DOX-treated HL-1 cells. Rescue assays indicated that ZEB2 knockdown reversed the effects of miR-215-5p inhibition. In conclusion, miR-215-5p inhibition protects HL-1 cells against DOX-induced injury by upregulating ZEB2 expression.
Collapse
|
13
|
Li Y, Li X, Wang L, Han N, Yin G. miR-375-3p contributes to hypoxia-induced apoptosis by targeting forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) in rat cardiomyocyte h9c2 cells. Biotechnol Lett 2020; 43:353-367. [PMID: 33128129 DOI: 10.1007/s10529-020-03013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
miRNAs have been pointed to play critical role in the development of congenital heart disease (CHD). miRNA-375-3p (miR-375-3p) was involved in cardiac dysfunction and cardiogenesis. However, no prior study had established a therapeutic role of miR-375-3p in CHD. We intended to investigate the effect and mechanism of miR-375-3p on apoptosis in hypoxic cardiomyocytes in vitro. Expression of miR-375-3p, forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) was detected using real-time quantitative PCR and western blot. Apoptosis was measured with MTT assay, flow cytometry and caspase-3 activity assay. The potential target binding between miR-375-3p and FOXP1/Bcl2l2 was predicted on DianaTools, and was validated by luciferase reporter assay and RNA pull-down assay. As a result, miR-375-3p was upregulated and FOXP1/Bcl2l2 was downregulated in maternal serum of women with fetal CHD and hypoxia-induced rat cardiomyocyte h9c2 cells. Hypoxia induced apoptosis rate elevation, caspase-3 activity promotion and viability inhibition in h9c2 cells; overexpression of miR-375-3p promoted, whereas knockdown of miR-375-3p antagonized hypoxia-induced effects in h9c2 cells. In addition, miR-375-3p was validated to negatively regulate FOXP1 and Bcl2l2 expression through target binding, and silencing of FOXP1 and Bcl2l2 could independently abate the anti-apoptosis role of miR-375-3p knockdown in hypoxic h9c2 cells. Collectively, blocking miR-375-3p suppressed hypoxia-evoked apoptosis of cardiomyocytes by targeting and upregulating FOXP1 and Bcl2l2. Our results might suggest maternal serum miR-375-3p as a potential biomarker for prenatal detection of fetal CHD.
Collapse
Affiliation(s)
- Yuefan Li
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China
| | - Xiaofei Li
- Department of Acupuncture, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Ling Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Na Han
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China
| | - Gang Yin
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China.
| |
Collapse
|
14
|
Toni LS, Hailu F, Sucharov CC. Dysregulated micro-RNAs and long noncoding RNAs in cardiac development and pediatric heart failure. Am J Physiol Heart Circ Physiol 2020; 318:H1308-H1315. [PMID: 32216613 DOI: 10.1152/ajpheart.00511.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncoding RNAs (ncRNAs) are broadly described as RNA molecules that are not translated into protein. The investigation of dysregulated ncRNAs in human diseases such as cancer, neurological, and cardiovascular diseases has been under way for well over a decade. Micro-RNAs and long noncoding RNAs (lncRNAs) are the best characterized ncRNAs. These ncRNAs can have profound effects on the regulation of gene expression during cardiac development and disease. Importantly, ncRNAs are significant regulators of gene expression in several congenital heart diseases and can positively or negatively impact cardiovascular development. In this review, we focus on literature involving micro-RNAs and lncRNAs in the context of pediatric cardiovascular diseases, preclinical models of heart failure, and cardiac development.
Collapse
Affiliation(s)
- Lee S Toni
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Frehiwet Hailu
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
15
|
Yang H, Ma Q, Wang Y, Tang Z. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J Transl Med 2020; 18:32. [PMID: 31969163 PMCID: PMC6975063 DOI: 10.1186/s12967-020-02227-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
During pregnancy in humans, the physiology of the mother and foetus are finely regulated by many factors. Inappropriate regulation can result in pregnancy disorders, such as complications and foetal abnormalities. The early prediction or accurate diagnosis of related diseases is a concern of researchers. Liquid biopsy can be analysed for circulating cells, cell-free nucleic acids, and exosomes. Because exosomes can be detected in the peripheral blood of women in early pregnancy, these vesicles and their contents have become the focus of early prediction or diagnostic biomarker research on pregnancy complications and foetal developmental disorders. In this review, we focus on recent studies addressing the roles of peripheral blood exosomes and circulating miRNAs in pregnancy complications and in pregnancies with abnormal foetal developmental disorders, with particular attention paid to the potential application value of exosomes and circulating miRNAs as disease-specific biomarkers.
Collapse
Affiliation(s)
- Haiou Yang
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Qianqian Ma
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yu Wang
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhenhua Tang
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
16
|
Tsai CY, Hsieh SC, Lu CS, Wu TH, Liao HT, Wu CH, Li KJ, Kuo YM, Lee HT, Shen CY, Yu CL. Cross-Talk between Mitochondrial Dysfunction-Provoked Oxidative Stress and Aberrant Noncoding RNA Expression in the Pathogenesis and Pathophysiology of SLE. Int J Mol Sci 2019; 20:ijms20205183. [PMID: 31635056 PMCID: PMC6829370 DOI: 10.3390/ijms20205183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease involving almost every organ. Polygenic predisposition and complicated epigenetic regulations are the upstream factors to elicit its development. Mitochondrial dysfunction-provoked oxidative stress may also play a crucial role in it. Classical epigenetic regulations of gene expression may include DNA methylation/acetylation and histone modification. Recent investigations have revealed that intracellular and extracellular (exosomal) noncoding RNAs (ncRNAs), including microRNAs (miRs), and long noncoding RNAs (lncRNAs), are the key molecules for post-transcriptional regulation of messenger (m)RNA expression. Oxidative and nitrosative stresses originating from mitochondrial dysfunctions could become the pathological biosignatures for increased cell apoptosis/necrosis, nonhyperglycemic metabolic syndrome, multiple neoantigen formation, and immune dysregulation in patients with SLE. Recently, many authors noted that the cross-talk between oxidative stress and ncRNAs can trigger and perpetuate autoimmune reactions in patients with SLE. Intracellular interactions between miR and lncRNAs as well as extracellular exosomal ncRNA communication to and fro between remote cells/tissues via plasma or other body fluids also occur in the body. The urinary exosomal ncRNAs can now represent biosignatures for lupus nephritis. Herein, we’ll briefly review and discuss the cross-talk between excessive oxidative/nitrosative stress induced by mitochondrial dysfunction in tissues/cells and ncRNAs, as well as the prospect of antioxidant therapy in patients with SLE.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Hui-Ting Lee
- Section of Allergy, Immunology & Rheumatology, Mackay Memorial Hospital, #92 Sec. 2, Chung-Shan North Road, Taipei 10449, Taiwan.
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
17
|
Engineer A, Saiyin T, Greco ER, Feng Q. Say NO to ROS: Their Roles in Embryonic Heart Development and Pathogenesis of Congenital Heart Defects in Maternal Diabetes. Antioxidants (Basel) 2019; 8:antiox8100436. [PMID: 31581464 PMCID: PMC6826639 DOI: 10.3390/antiox8100436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects (CHDs) are the most prevalent and serious birth defect, occurring in 1% of all live births. Pregestational maternal diabetes is a known risk factor for the development of CHDs, elevating the risk in the child by more than four-fold. As the prevalence of diabetes rapidly rises among women of childbearing age, there is a need to investigate the mechanisms and potential preventative strategies for these defects. In experimental animal models of pregestational diabetes induced-CHDs, upwards of 50% of offspring display congenital malformations of the heart, including septal, valvular, and outflow tract defects. Specifically, the imbalance of nitric oxide (NO) and reactive oxygen species (ROS) signaling is a major driver of the development of CHDs in offspring of mice with pregestational diabetes. NO from endothelial nitric oxide synthase (eNOS) is crucial to cardiogenesis, regulating various cellular and molecular processes. In fact, deficiency in eNOS results in CHDs and coronary artery malformation. Embryonic hearts from diabetic dams exhibit eNOS uncoupling and oxidative stress. Maternal treatment with sapropterin, a cofactor of eNOS, and antioxidants such as N-acetylcysteine, vitamin E, and glutathione as well as maternal exercise have been shown to improve eNOS function, reduce oxidative stress, and lower the incidence CHDs in the offspring of mice with pregestational diabetes. This review summarizes recent data on pregestational diabetes-induced CHDs, and offers insights into the important roles of NO and ROS in embryonic heart development and pathogenesis of CHDs in maternal diabetes.
Collapse
Affiliation(s)
- Anish Engineer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Tana Saiyin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Elizabeth R Greco
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| |
Collapse
|
18
|
Ding X, Jian T, Wu Y, Zuo Y, Li J, Lv H, Ma L, Ren B, Zhao L, Li W, Chen J. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed Pharmacother 2018; 110:85-94. [PMID: 30466006 DOI: 10.1016/j.biopha.2018.11.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
As a promising new target, miR-233 may regulate oxidative stress by targeting keap1-Nrf2 system to affect the pathological process of liver injury in T2DM. Ellagic acid (EA) is versatile for protecting oxidative stress damage and metabolic disorders. In the present study, we investigated the effect of EA on oxidative stress and insulin resistance in high glucose-induced T2DM HepG2 cells and examined the role of miR-223/keap1-Nrf2 pathway in system. HepG2 cells were incubated in 30 mM of glucose, with or without EA (15 and 30 μM) or metformin (Met, 150 μM) for 12 h. Glucose consumption, phosphorylation of IRS1, Akt and ERK under insulin stimulation, ROS and O2- production, MDA level, SOD activity and miR-223 expression, as well as protein levels of keap1, Nrf2, HO-1, SOD1 and SOD2 were analyzed. Furthermore, dual luciferase reporter assay, miR-223 mimic and inhibitor were implemented in cellular studies to explore the possible mechanism. EA upregulated glucose consumption, IRS1, Akt and ERK phosphorylation under insulin stimulation, reduced ROS and O2- production and MDA level, and increased SOD activity in high glucose-exposed HepG2 cells. In addition, EA elevated miR-223 expression level, downregulated mRNA and protein levels of keap1, and upregulated Nrf2, HO-1, SOD1 and SOD2 protein levels in this cell model. What's more, dual luciferase reporter assay, miR-223 mimic and inhibitor transfection confirmed that EA activated keap1-Nrf2 system via elevating miR-223. The miR-223, a negative regulator of keap1, represents an attractive therapeutic target in hepatic injury in T2DM. EA ameliorates oxidative stress and insulin resistance via miR-223-mediated keap1-Nrf2 activation in high glucose-induced T2DM HepG2 cells.
Collapse
Affiliation(s)
- Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Forestry University, Nanjing 210037, China.
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
19
|
Diabetes in Pregnancy and MicroRNAs: Promises and Limitations in Their Clinical Application. Noncoding RNA 2018; 4:ncrna4040032. [PMID: 30424584 PMCID: PMC6316501 DOI: 10.3390/ncrna4040032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Maternal diabetes is associated with an increased risk of complications for the mother and her offspring. The latter have an increased risk of foetal macrosomia, hypoglycaemia, respiratory distress syndrome, preterm delivery, malformations and mortality but also of life-long development of obesity and diabetes. Epigenetics have been proposed as an explanation for this long-term risk, and microRNAs (miRNAs) may play a role, both in short- and long-term outcomes. Gestation is associated with increasing maternal insulin resistance, as well as β-cell expansion, to account for the increased insulin needs and studies performed in pregnant rats support a role of miRNAs in this expansion. Furthermore, several miRNAs are involved in pancreatic embryonic development. On the other hand, maternal diabetes is associated with changes in miRNA both in maternal and in foetal tissues. This review aims to summarise the existing knowledge on miRNAs in gestational and pre-gestational diabetes, both as diagnostic biomarkers and as mechanistic players, in the development of gestational diabetes itself and also of short- and long-term complications for the mother and her offspring.
Collapse
|
20
|
Liu XL, Wang G, Song W, Yang WX, Hua J, Lyu L. microRNA-137 promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke mice by targeting NR4A2 through the Notch pathway. J Cell Physiol 2018; 233:5255-5266. [PMID: 29206299 DOI: 10.1002/jcp.26312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/03/2017] [Indexed: 01/12/2023]
Abstract
Cerebral ischemic stroke (CIS) is one of the common causes of death and disability worldwide. This study aims to investigate effect of miR-137 on endothelial progenitor cells and angiogenesis in CIS by targeting NR4A2 via the Notch pathway. Brain tissues were extracted from CIS and normal mice. Immunohistochemistry was used to determine positive rate of NR4A2 expression. Serum VEGF, Ang, HGF, and IκBα levels were determined by ELISA. RT-qPCR and Western blotting were used to determine expression of related factors. Endothelial progenitor cells in CIS mice were treated and grouped into blank, NC, miR-137 mimic, miR-137 inhibitor, siRNA-NR4A2, and miR-137 inhibitor + siRNA-NR4A2 groups, and cells in normal mice into normal group. Proliferation and apoptosis were determined by MTT and flow cytometry, respectively. NR4A2 protein expression was strongly positive in CIS mice, which showed higher serum levels of VEGF, Ang, and HGF but lower IκBα than normal mice. Compared with normal group, the rest groups (endothelial progenitor cells from CIS mice) showed decreased expressions of miR-137, Hes1, Hes5, and IκBα but elevated NR4A2, Notch, Jagged1, Hey-2, VEGF, Ang, and HGF, inhibited proliferation and enhanced apoptosis. Compared with blank and NC groups, the miR-137 mimic and siRNA-NR4A2 groups exhibited increased expression of miR-137, Hes1, Hes5, and IκBα, but decreased NR4A2, Notch, Jagged1, and Hey-2, with enhanced proliferation and attenuated apoptosis. The miR-137 inhibitor group reversed the conditions. miR-137 enhances the endothelial progenitor cell proliferation and angiogenesis in CIS mice by targeting NR4A2 through the Notch signaling pathway.
Collapse
Affiliation(s)
- Xing-Li Liu
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Gang Wang
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Wei Song
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Wei-Xin Yang
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Jian Hua
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Liang Lyu
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
21
|
Zhao Y, Dong D, Reece EA, Wang AR, Yang P. Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy. Am J Obstet Gynecol 2018; 218:136.e1-136.e10. [PMID: 29100869 DOI: 10.1016/j.ajog.2017.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. OBJECTIVE In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. STUDY DESIGN We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. RESULTS We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were down-regulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. CONCLUSION Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Daoyin Dong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Ashley R Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
22
|
Zhong J, Wang S, Shen WB, Kaushal S, Yang P. The current status and future of cardiac stem/progenitor cell therapy for congenital heart defects from diabetic pregnancy. Pediatr Res 2018; 83:275-282. [PMID: 29016556 PMCID: PMC5876137 DOI: 10.1038/pr.2017.259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Pregestational maternal diabetes induces congenital heart defects (CHDs). Cardiac dysfunction after palliative surgical procedures contributes to the high mortality of CHD patients. Autologous or allogeneic stem cell therapies are effective for improving cardiac function in animal models and clinical trials. c-kit+ cardiac progenitor cells (CPCs), the most recognized CPCs, have the following basic properties of stem cells: self-renewal, multicellular clone formation, and differentiation into multiple cardiac lineages. However, there is ongoing debate regarding whether c-kit+ CPCs can give rise to sufficient cardiomyocytes. A new hypothesis to address the beneficial effect of c-kit+ CPCs is that these cells stimulate endogenous cardiac cells through a paracrine function in producing a robust secretome and exosomes. The values of other cardiac CPCs, including Sca1+ CPCs and cardiosphere-derived cells, are beginning to be revealed. These cells may be better choices than c-kit+ CPCs for generating cardiomyocytes. Adult mesenchymal stem cells are considered immune-incompetent and effective for improving cardiac function. Autologous CPC therapy may be limited by the observation that maternal diabetes adversely affects the biological function of embryonic stem cells and CPCs. Future studies should focus on determining the mechanistic action of these cells, identifying new CPC markers, selecting highly effective CPCs, and engineering cell-free products.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shengbing Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sunjay Kaushal
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Wang J, Wang F, Gui YH. [Research advances in the mechanism of congenital heart disease induced by pregestational diabetes mellitus]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1297-1300. [PMID: 29237533 PMCID: PMC7389805 DOI: 10.7499/j.issn.1008-8830.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect at present and has a complex etiology which involves the combined effect of genetic and environmental factors. Pregestational diabetes mellitus is significantly associated with the development of CHD, but the detailed mechanism remains unknown. This article reviews the research advances in the molecular mechanism of CHD caused by pregestational diabetes mellitus.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiovascular Medicine, Children's Hospital of Fudan University, Shanghai 200023, China.
| | | | | |
Collapse
|
24
|
Wang J, Wang F, Gui YH. [Research advances in the mechanism of congenital heart disease induced by pregestational diabetes mellitus]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1297-1300. [PMID: 29237533 PMCID: PMC7389805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 08/01/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect at present and has a complex etiology which involves the combined effect of genetic and environmental factors. Pregestational diabetes mellitus is significantly associated with the development of CHD, but the detailed mechanism remains unknown. This article reviews the research advances in the molecular mechanism of CHD caused by pregestational diabetes mellitus.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiovascular Medicine, Children's Hospital of Fudan University, Shanghai 200023, China.
| | | | | |
Collapse
|
25
|
Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 2017; 174:1533-1554. [PMID: 28332701 PMCID: PMC5446579 DOI: 10.1111/bph.13792] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Andreas Petry
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Joachim M Gerhold
- Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
| | - Agnes Görlach
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| |
Collapse
|
26
|
Yang P, Yang WW, Chen X, Kaushal S, Dong D, Shen WB. Maternal diabetes and high glucose in vitro trigger Sca1 + cardiac progenitor cell apoptosis through FoxO3a. Biochem Biophys Res Commun 2016; 482:575-581. [PMID: 27856257 DOI: 10.1016/j.bbrc.2016.11.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 12/21/2022]
Abstract
Recent controversies surrounding the authenticity of c-kit+ cardiac progenitor cells significantly push back the advance in regenerative therapies for cardiovascular diseases. There is an urgent need for research in characterizing alternative types of cardiac progenitor cells. Towards this goal, in the present study, we determined the effect of maternal diabetes on Sca1+ cardiac progenitor cells. Maternal diabetes induced caspase 3-dependent apoptosis in Sca1+ cardiac progenitor cells derived from embryonic day 17.5 (E17.5). Similarly, high glucose in vitro but not the glucose osmotic control mannitol triggered Sca1+ cardiac progenitor cell apoptosis in a dose- and time-dependent manner. Both maternal diabetes and high glucose in vitro activated the pro-apoptotic transcription factor, Forkhead O 3a (FoxO3a) via dephosphorylation at threonine 32 (Thr-32) residue. foxo3a gene deletion abolished maternal diabetes-induced Sca1+ cardiac progenitor cell apoptosis. The dominant negative FoxO3a mutant without the transactivation domain from the C terminus blocked high glucose-induced Sca1+ cardiac progenitor cell apoptosis, whereas the constitutively active FoxO3a mutant with the three phosphorylation sites, Thr-32, Ser-253, and Ser-315, being replaced by alanine residues mimicked the pro-apoptotic effect of high glucose. Thus, maternal diabetes and high glucose in vitro may limit the regenerative potential of Sca1+ cardiac progenitor cells by inducing apoptosis through FoxO3a activation. These findings will serve as the guide in optimizing the autologous therapy using Sca1+ cardiac progenitor cells in cardiac defect babies born exposed to maternal diabetes.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wendy W Yang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|