1
|
Wang Y, He J, Li M, Xu J, Yang H, Zhang Y. Abamectin at environmentally relevant concentrations impairs bone development in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110039. [PMID: 39265967 DOI: 10.1016/j.cbpc.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Abamectin (ABM) is a widely used pesticide in agriculture and veterinary medicine, which primarily acts by disrupting the neurological physiology of pests, leading to their paralysis and death. Its extensive application has resulted in contamination of many natural water bodies. While the adverse effects of ABM on the growth and development of non-target organisms are well documented, its impact on bone development remains inadequately studied. The present study aimed to investigate the effects of environmentally relevant concentrations of ABM (1, 5, 25 μg/L) on early bone development in zebrafish. Our results indicated that ABM significantly affected both cartilage and bone development of zebrafish larvae, accompanied by dose-dependent increase in deformity and mortality rates, as well as exacerbated apoptosis. ABM exposure led to deformities in the ceratobranchial (cb) and hyosymplectic (hs), accompanied by significant increases in the length of the palatoquadrate (pq). Furthermore, significant decreases in the CH-CH angle, Meckel's-Meckel's angle, and Meckel's-PQ angle were noted. Even at the safe concentration of 5 μg/L (1/10 of the 96 h LC50), ABM delayed the process of bone mineralization in zebrafish larvae. Real-time fluorescent quantitative PCR results demonstrated that ABM induced differential gene expression associated with cartilage and bone development in zebrafish. Thus, this study provides preliminary insights into the effects and molecular mechanisms underlying ABM's impact on the bone development of zebrafish larvae and offers new evidence for a better understanding of its toxicity.
Collapse
Affiliation(s)
- Yuting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiawen He
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Min Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiawen Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
3
|
Gu L, Li X, Zhu W, Shen Y, Wang Q, Liu W, Zhang J, Zhang H, Li J, Li Z, Liu Z, Li C, Wang H. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition. J Pharm Anal 2023; 13:942-954. [PMID: 37719194 PMCID: PMC10499587 DOI: 10.1016/j.jpha.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023] Open
Abstract
Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development. However, the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology. In this study, a comprehensive solution of ultrasensitive proteome technology (CS-UPT) was developed for single-cell or low-input mouse oocyte/embryo samples. The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands. Using the deep coverage route, we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition, including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample. Moreover, significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.
Collapse
Affiliation(s)
- Lei Gu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xumiao Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Yi Shen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Qinqin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjun Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Junfeng Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Jingquan Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyi Li
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Chen Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
4
|
Gu Z, Xie M, Lv S, Liu N, He J, Li Y, Zhu Y, Fu J, Lin H, Xie C, He Y. Perfusable Vessel-on-a-Chip for Antiangiogenic Drug Screening with Coaxial Bioprinting. Int J Bioprint 2022; 8:619. [PMID: 36404784 PMCID: PMC9668575 DOI: 10.18063/ijb.v8i4.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Vessel-on-a-chips, which can be used to study microscale fluid dynamics, tissue-level biological molecules delivery and intercellular communication under favorable three-dimensional (3D) extracellular matrix microenvironment, are increasingly gaining traction. However, not many of them can allow for long-term perfusion and easy observation of angiogenesis process. Since angiogenesis is necessary for the expansion of tumor, antiangiogenic drugs play a significant role in cancer treatment. In this study, we established an innovative and reliable antiangiogenic drug screening chip that was highly modularly integrated for long-term perfusion (up to 10 days depending on the hydrogel formula) and real-time monitoring. To maintain an unobstructed flow of cell-laden tubes for subsequent perfusion culture on the premise of excellent bioactivities, a polycaprolactone stent inspired by coronary artery stents was introduced to hold up the tubular lumen from the inside, while the perfusion chip was also elaborately designed to allow for convenient observation. After 3 days of perfusion screening, distinct differences in human umbilical vein endothelial cell sprouting were observed for a gradient of concentrations of bevacizumab, which pointed to the effectiveness and reliability of the drug screening perfusion system. Overall, a perfusion system for antiangiogenic drug screening was developed, which can not only conduct drug evaluation, but also be potentially useful in other vessel-mimicking scenarios in the area of tissue engineering, drug screening, pharmacokinetics, and regenerative medicine.
Collapse
Affiliation(s)
- Zeming Gu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanbo Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chaoqi Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Mauro AN, Turgeon PJ, Gupta S, Brand-Arzamendi K, Chen H, Malone JH, Ng R, Ho K, Dubinsky M, Di Ciano-Oliveira C, Spring C, Plant P, Leong-Poi H, Marshall JC, Marsden PA, Connelly KA, Singh KK. Automated in vivo compound screening with zebrafish and the discovery and validation of PD 81,723 as a novel angiogenesis inhibitor. Sci Rep 2022; 12:14537. [PMID: 36008455 PMCID: PMC9411172 DOI: 10.1038/s41598-022-18230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.
Collapse
Affiliation(s)
- Antonio N Mauro
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada.
| | - Paul J Turgeon
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sahil Gupta
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Koroboshka Brand-Arzamendi
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Hao Chen
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
| | - Jeanie H Malone
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Robin Ng
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Kevin Ho
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Michelle Dubinsky
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Christopher Spring
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Pamela Plant
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Howard Leong-Poi
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
| | - John C Marshall
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Departments of Surgery and Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Philip A Marsden
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, Canada
- Department of Medicine, University of Toronto, Toronto, M5S 3H2, Canada
| | - Kim A Connelly
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada.
| | - Krishna K Singh
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada.
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, N6A 5C1, Canada.
| |
Collapse
|
6
|
Wachholz GE, Rengel BD, Vargesson N, Fraga LR. From the Farm to the Lab: How Chicken Embryos Contribute to the Field of Teratology. Front Genet 2021; 12:666726. [PMID: 34367238 PMCID: PMC8339958 DOI: 10.3389/fgene.2021.666726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/11/2021] [Indexed: 02/04/2023] Open
Abstract
Congenital anomalies and its causes, particularly, by external factors are the aim of the field called teratology. The external factors studied by teratology are known as teratogens and can be biological or environmental factors for example, chemicals, medications, recreational drugs, environmental pollutants, physical agents (e.g., X-rays and maternal hyperthermia) and maternal metabolic conditions. Proving the teratogenicity of a factor is a difficult task requiring epidemiology studies as well as experimental teratology evidence from the use of animal models, one of which is the chicken embryo. This model in particular has the advantage of being able to follow development live and in vivo, with rapid development hatching around 21 days, is cheap and easy to manipulate and to observe development. All this allows the chicken embryo to be used in drug screening studies, teratogenic evaluation and studies of mechanisms of teratogenicity. The chicken embryo shares morphological, biochemical and genetic similarities with humans as well as mammalian species, making them ideal to ascertain the actions of teratogens, as well as screen drugs to test for their safety. Pre-clinical trials for new drugs are carried out in rodents and rabbits, however, chicken embryos have been used to screen new compounds or analogs of thalidomide as well as to investigate how some drugs can lead to congenital malformations. Indeed, the chicken embryo has proved valuable in understanding how many congenital anomalies, seen in humans, arise following teratogen exposure. The aim of this review is to highlight the role of the chicken embryo as an experimental model for studies in teratology, exploring its use in drug screening studies, phenotypic evaluation and studies of teratogenic mechanisms of action. Here, we discuss many known teratogens, that have been evaluated using the chicken embryo model including some medicines, such as, thalidomide, valproic acid; recreational drugs including alcohol; environmental influences, such as viruses, specifically ZIKV, which is a newly discovered human teratogen. In addition, we discuss how the chicken embryo has provided insight on the mechanisms of teratogenesis of many compounds and also how this impact on drug safety.
Collapse
Affiliation(s)
- Gabriela Elis Wachholz
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Liu Y, Zhang Y, Cui J. Recognized trophoblast-like cells conversion from human embryonic stem cells by BMP4 based on convolutional neural network. Reprod Toxicol 2020; 99:39-47. [PMID: 33249234 DOI: 10.1016/j.reprotox.2020.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023]
Abstract
The use of models of stem cell differentiation to trophoblastic cells provides an effective perspective for understanding the early molecular events in the establishment and maintenance of human pregnancy. In combination with the newly developed deep learning technology, the automated identification of this process can greatly accelerate the contribution to relevant knowledge. Based on the transfer learning technique, we used a convolutional neural network to distinguish the microscopic images of Embryonic stem cells (ESCs) from differentiated trophoblast -like cells (TBL). To tackle the problem of insufficient training data, the strategies of data augmentation were used. The results showed that the convolutional neural network could successfully recognize trophoblast cells and stem cells automatically, but could not distinguish TBL from the immortalized trophoblast cell lines in vitro (JEG-3 and HTR8-SVneo). We compare the recognition effect of the commonly used convolutional neural network, including DenseNet, VGG16, VGG19, InceptionV3, and Xception. This study extends the deep learning technique to trophoblast cell phenotype classification and paves the way for automatic bright-field microscopic image analysis of trophoblast cells in the future.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Gynecological Oncology Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou University, China.
| | - Yi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou University, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Gynecological Oncology Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou University, China.
| |
Collapse
|
8
|
Wachholz GE, Varela APM, Teixeira TF, de Matos SMS, Rigon da Luz Soster P, Vianna FSL, de Souza DOG, Roehe PM, Schuler-Faccini L, Fraga LR. Zika virus-induced brain malformations in chicken embryos. Birth Defects Res 2020; 113:22-31. [PMID: 33009728 DOI: 10.1002/bdr2.1813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Zika virus (ZIKV) was confirmed to be related to microcephaly in 2016. However, there is still a need for understanding the embryonic morphological changes induced by ZIKV and when they occur. Here, chicken embryos were chosen as experimental model of ZIKV to evaluate virus-associated morphological alterations that might take place during embryonic development. METHODS A screening with different viral doses was conducted in embryos at HH Stage 10-12 (E1.5) as well as a follow up of the first 5 days postinfection (dpi) was performed to observe the main morphologic changes post ZIKV infection. RESULTS ZIKV exposed embryos presented a higher prevalence of mortality and defects such as brain malformation when compared to controls. Moreover, we observed that the phenotypes become more evident at 4dpi, when the viral load quantification reaches a peak. CONCLUSIONS We found that ZIKV exposed embryos presented a high prevalence of mortality and central nervous system (CNS) abnormalities in a dose-dependent manner. The phenotype was more evident 4 days postinfection, when the viral load quantification reached a peak.
Collapse
Affiliation(s)
- Gabriela Elis Wachholz
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Postgraduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Thais Fumaco Teixeira
- Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sophia Martins Simon de Matos
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paula Rigon da Luz Soster
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Postgraduate Program in Biochemistry, Departamento f Biochemistry, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Abstract
Thalidomide remains notorious as a result of the damage it caused to children born to mothers who used it to treat morning sickness between 1957 and 1961. The re-emergence of the drug to treat a range of conditions including erythema nodosum leprosum (a complication of leprosy) has led to a new generation of thalidomide damaged children being born in Brazil. Although thalidomide affects most of the developing tissues and organs of the body, the damage to the limbs is striking. Indeed phocomelia, the severe reduction or loss of the proximal long bones with retention of the distal hand/foot plate remains the stereotypical image of thalidomide. This review focuses on the type and range of damage thalidomide caused to the limbs, reviews current understanding of the mechanisms underlying thalidomide-induced limb malformations and outlines some of the challenges remaining in elucidating its teratogenicity.
Collapse
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Luo W, Tweedie D, Beedie SL, Vargesson N, Figg WD, Greig NH, Scerba MT. Design, synthesis and biological assessment of N-adamantyl, substituted adamantyl and noradamantyl phthalimidines for nitrite, TNF-α and angiogenesis inhibitory activities. Bioorg Med Chem 2018; 26:1547-1559. [PMID: 29472124 PMCID: PMC5891396 DOI: 10.1016/j.bmc.2018.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
A library of 15 novel and heretofore uncharacterized adamantyl and noradamantyl phthalimidines was synthesized and evaluated for neuroprotective and anti-angiogenic properties. Phthalimidine treatment in LPS-challenged cells effected reductions in levels of secreted TNF-α and nitrite relative to basal amounts. The primary SAR suggests nitration of adamantyl phthalimidines has marginal effect on TNF-α activity but promotes anti-nitrite activity; thioamide congeners retain anti-nitrite activity but are less effective reducing TNF-α. Site-specific nitration and thioamidation provided phthalimidine 24, effecting an 88.5% drop in nitrite concurrent with only a 4% drop in TNF-α. Notable anti-angiogenesis activity was observed for 20, 21 and 22.
Collapse
Affiliation(s)
- Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shaunna L Beedie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Molecular Pharmacology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - William D Figg
- Molecular Pharmacology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
The Primodos components Norethisterone acetate and Ethinyl estradiol induce developmental abnormalities in zebrafish embryos. Sci Rep 2018; 8:2917. [PMID: 29440757 PMCID: PMC5811427 DOI: 10.1038/s41598-018-21318-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Primodos was a hormone pregnancy test used between 1958-1978 that has been implicated with causing a range of birth defects ever since. Though Primodos is no longer used, it's components, Norethisterone acetate and Ethinyl estradiol, are used in other medications today including treatments for endometriosis and contraceptives. However, whether Primodos caused birth defects or not remains controversial, and has been little investigated. Here we used the developing zebrafish embryo, a human cell-line and mouse retinal explants to investigate the actions of the components of Primodos upon embryonic and tissue development. We show that Norethisterone acetate and Ethinyl estradiol cause embryonic damage in a dose and time responsive manner. The damage occurs rapidly after drug exposure, affecting multiple organ systems. Moreover, we found that the Norethisterone acetate and Ethinyl estradiol mixture can affect nerve outgrowth and blood vessel patterning directly and accumulates in the forming embryo for at least 24 hrs. These data demonstrate that Norethisterone acetate and Ethinyl estradiol are potentially teratogenic, depending on dose and embryonic stage of development in the zebrafish. Further work in mammalian model species are now required to build on these findings and determine if placental embryos also are affected by synthetic sex hormones and their mechanisms of action.
Collapse
|
12
|
Newbronner E, Vargesson N, Atkin K. "The legacy of thalidomide" - A multidisciplinary meeting held at the University of York, United Kingdom, on September 30, 2016. Birth Defects Res 2017; 109:296-299. [PMID: 28398668 DOI: 10.1002/bdra.23619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Between 1957 and 1962 thalidomide was used as a nonaddictive, nonbarbiturate sedative that also was successful in relieving the symptoms of morning sickness in early pregnancy. Infamously, thousands of babies were subsequently born with severe birth defects. The drug is used again, today, to successfully treat leprosy, and tragically, there is a new generation of thalidomide damaged children in Brazil. While the outward damage in babies has been documented, the effects of the damage upon the survivors as they grow up, the lifestyle changes and adaptations required to be made, as well as studies into ageing in survivors, has received little attention and remains understudied. METHODS A unique multidisciplinary meeting was organized at the University of York bringing together thalidomide survivors, clinicians, scientists, historians, and social scientists to discuss the past, the current and the future implications of thalidomide. RESULTS There is still much to learn from thalidomide, from its complex history and ongoing impact on peoples' lives today, to understanding its mechanism/s to aid future drug safety, to help identify new drugs retaining clinical benefit without the risk of causing embryopathy. CONCLUSION For thalidomide survivors, the original impairments caused by the drug are compounded by the consequences of a lifetime of living with a rare disability, and early onset age-related health problems. This has profound implications for their quality of life and need for health and social care services. It is vital that these issues are addressed in research, and in clinical practice if thalidomide survivors are to "age well". Birth Defects Research 109:296-299, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elizabeth Newbronner
- Department of Health Sciences, Faculty of Sciences, University of York, Area 2 Seebohm Rowntree Building, Heslington, York
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Karl Atkin
- Department of Health Sciences, Faculty of Sciences, University of York, Area 2 Seebohm Rowntree Building, Heslington, York
| |
Collapse
|