1
|
Lu W, Chen M, Zhou Y, Ramírez MDA, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. EGFR-ERK1/2 signaling and mitochondrial dynamics in seasonal ovarian steroidogenesis of the muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2024; 243:106558. [PMID: 38815727 DOI: 10.1016/j.jsbmb.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17β-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17β-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqi Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhou
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | | | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Klohonatz K, Durrant B, Sirard MA, Ruggeri E. Granulosa cells provide transcriptomic information on ovarian follicle dynamics in southern white rhinoceros. Sci Rep 2024; 14:19321. [PMID: 39164442 PMCID: PMC11336098 DOI: 10.1038/s41598-024-70235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Much remains unknown about the reproductive physiology of southern white rhinoceros (SWR) and the effect of ovarian stimulation prior to ovum pickup (OPU) have not been fully elucidated. Granulosa cells (GC) provide valuable insight into follicle growth and oocyte maturation status. The goals of this study were to evaluate transcriptomic changes in GC from three stages of follicle development and to identify biomarkers possibly associated with follicular growth and maturation as a result of ovarian stimulation. GC collected from SWRs following OPU were assigned stages based upon follicle size. Total RNA was isolated, and cDNA libraries were prepared and sequenced on a NovaSeq 6000. All bioinformatics analyses were performed utilizing the Galaxy web platform. Reads were aligned to CerSimCot1.0, and the manual curation was performed with EquCab3.0. Overall, 39,455 transcripts (21,612 genes) were identified across follicle stages, and manual curation yielded a 61% increase in gene identification from the original annotation. Granulosa cells from preovulatory follicles expressed the highest number of unique transcripts. The following seven biomarkers were determined based upon cluster analysis and patterns of expression: COL1A1, JMY, FBXW11, NRG1, TMPO, MACIR and COL4A1. These data can be used to potentially evaluate the effects of different ovarian stimulation protocols on follicle dynamics, improve OPU results, and support conservation efforts in this species.
Collapse
Affiliation(s)
- Kristin Klohonatz
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Durrant
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA
| | - Marc-André Sirard
- Département des Sciences Animales, Université Laval, Québec City, Québec, Canada
| | - Elena Ruggeri
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA.
| |
Collapse
|
3
|
Shastak Y, Pelletier W. Pet Wellness and Vitamin A: A Narrative Overview. Animals (Basel) 2024; 14:1000. [PMID: 38612239 PMCID: PMC11010875 DOI: 10.3390/ani14071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The health of companion animals, particularly dogs and cats, is significantly influenced by nutrition, with vitamins playing a crucial role. Vitamin A, in particular, is indispensable, with diverse roles ranging from vision to immune modulation and reproduction. Despite its importance, the metabolism and dietary requirements of vitamin A in companion animals remain complex and not fully understood. This review provides a comprehensive overview of the historical perspective, the digestion, the metabolism, the physiological roles, the deficiency, the excess, and the interactions with other micronutrients of vitamin A in companion animals. Additionally, it highlights future research directions and gaps in our understanding. Insights into the metabolism of vitamin A in companion animals, personalized nutrition strategies based on genetic variability, longitudinal studies tracking the status of vitamin A, and investigations into its immunomodulatory effects are crucial for optimizing pet health and wellness. Furthermore, understanding the stability and bioavailability of vitamin A in pet food formulations is essential for ensuring the provision of adequate micronutrients. Overall, this review underscores the importance of vitamin A in companion animal nutrition and the need for further research to enhance our understanding and to optimize dietary recommendations for pet health and well-being.
Collapse
Affiliation(s)
- Yauheni Shastak
- Nutrition & Health Division, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
4
|
Latorre-Leal M, Rodriguez-Rodriguez P, Franchini L, Nikolidakis O, Daniilidou M, Delac L, Varshney MK, Arroyo-García LE, Eroli F, Winblad B, Blennow K, Zetterberg H, Kivipelto M, Pacciarini M, Wang Y, Griffiths WJ, Björkhem I, Matton A, Nalvarte I, Merino-Serrais P, Cedazo-Minguez A, Maioli S. CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice. SCIENCE ADVANCES 2024; 10:eadj1354. [PMID: 38266095 PMCID: PMC10807813 DOI: 10.1126/sciadv.adj1354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- María Latorre-Leal
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Luca Franchini
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Orestis Nikolidakis
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Makrina Daniilidou
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ljerka Delac
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Mukesh K. Varshney
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Luis E. Arroyo-García
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yuqin Wang
- Swansea University Medical School, SA2 8PP Swansea, UK
| | | | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Matton
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paula Merino-Serrais
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, Madrid, Spain
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Chacón C, Mounieres C, Ampuero S, Urzúa U. Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment. Int J Mol Sci 2023; 25:513. [PMID: 38203684 PMCID: PMC10779227 DOI: 10.3390/ijms25010513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) incidence and mortality peaks at post-menopause while OC risk is either reduced by parity or increased by nulliparity during fertile life. The long-term effect of nulliparity on ovarian gene expression is largely unknown. In this study, we describe a bioinformatic/data-mining analysis of 112 coding genes upregulated in the aged nulliparous (NP) mouse ovary compared to the aged multiparous one as reference. Canonical gene ontology and pathway analyses indicated a pro-oxidant, xenobiotic-like state accompanied by increased metabolism of inflammatory lipid mediators. Up-regulation of typical epithelial cell markers in the aged NP ovary was consistent with synchronized overexpression of Cldn3, Ezr, Krt7, Krt8 and Krt18 during the pre-neoplastic phase of mOSE cell cultures in a former transcriptome study. In addition, 61/112 genes were upregulated in knockout mice for Fshr and for three other tumor suppressor genes (Pten, Cdh1 and Smad3) known to regulate follicular homeostasis in the mammalian ovary. We conclude that the aged NP ovary displays a multifaceted stress state resulting from oxidative imbalance and pro-inflammatory lipid signaling. The enriched epithelial cell content might be linked to follicle depletion and is consistent with abundant clefts and cysts observed in aged human and mouse ovaries. It also suggests a mesenchymal-to-epithelial transition in the mOSE of the aged NP ovary. Our analysis suggests that in the long term, nulliparity worsens a variety of deleterious effects of aging and senescence thereby increasing susceptibility to cancer initiation in the ovary.
Collapse
Affiliation(s)
- Carlos Chacón
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| | - Constanza Mounieres
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| | - Sandra Ampuero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Ulises Urzúa
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| |
Collapse
|
6
|
Gao Q, Lu W, Fan S, Xie W, Zhang H, Han Y, Weng Q. Seasonal changes in endoplasmic reticulum stress and steroidogenesis in the ovary of the wild ground squirrels (Citellus dauricus Brandt). Gen Comp Endocrinol 2023; 343:114368. [PMID: 37604348 DOI: 10.1016/j.ygcen.2023.114368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The development of the follicle is accompanied by steroidogenesis and secretion, the endoplasmic reticulum (ER) requires significant synthesis of relevant proteins to support changes in the follicular microenvironment. The aim of this study was to investigate whether seasonal changes in gonadotropins and ovarian steroid hormones in the wild ground squirrels induce endoplasmic reticulum stress (ERS) and changes in ERS-mediated unfolded protein response (UPR) signaling. There were significant seasonal differences in ovarian mass, with values higher in the breeding season and relatively low in the non-breeding season. Histological observations revealed that ovaries in the breeding season had germ cells including primordial follicles, primary follicles, secondary follicles, tertiary follicles, and the corpus luteal, whereas ovaries consisted mainly of primary and secondary follicles in the non-breeding season. Analysis of ovarian transcriptome data showed that 1298 genes were up-regulated in expression and 1432 genes were down-regulated in expression during both periods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that these genes were mainly enriched in estrogen signaling pathways, ovarian steroidogenesis and endoplasmic reticulum protein processing pathways. The expression levels of steroidogenic enzymes (P450scc, P450c17, 3β-HSD, and P450arom) and gonadotropin receptor (FSHR and LHR) were significantly increased during the breeding season compared to the non-breeding season. GRP78 and UPR signaling factors (ATF4, ATF6, XBP1s) associated with ERS were expressed in both seasons. The mRNA expressions of Atf6 and Xbp1s were higher in the breeding season than those of the non-breeding season. Conversely, Atf4 and its downstream homologous protein (Chop) exhibited higher expression during the non-breeding season. In addition, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17β, and progesterone of serum were significantly higher in the breeding season than those of the non-breeding season. These results suggested that UPR signaling, associated with seasonal changes in ovarian steroidogenesis, was activated during the breeding season and that ERS might be involved in regulating seasonal changes in ovarian steroidogenesis in the wild ground squirrels.
Collapse
Affiliation(s)
- Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjing Lu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sijie Fan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenqiang Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
7
|
Wang G, Lu R, Gao Y, Zhang H, Shi X, Ma W, Wu L, Tian X, Liu H, Jiang H, Li X, Ma X. Molecular characterization and potential function of Rxrγ in gonadal differentiation of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2023; 233:106360. [PMID: 37429547 DOI: 10.1016/j.jsbmb.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Retinoid X receptor (RXR) is a member of the ligand-dependent nuclear receptor family. Previous studies revealed that RXRs are involved in reproduction in vertebrates. However, information on the function of RXRs in turtles is scarce. In this study, the Rxrγ cDNA sequence of Pelodiscus sinensis was cloned and analyzed, and a polyclonal antibody was constructed. RXRγ protein showed a positive signal in both mature and differentiated gonads of the turtle. Subsequently, the function of the Rxrγ gene in gonadal differentiation was confirmed using short interfering RNA (RNAi). The full-length cDNA sequence of the Rxrγ gene in P. sinensis was 2152 bp, encoding 407 amino acids and containing typical nuclear receptor family domains, including the DNA-binding domain (DBD), ligand-binding domain (LBD), and activation function 1 (AF1). Moreover, gonadal Ps-Rxrγ showed sexual dimorphism expression patterns in differentiated gonads. Real-time quantitative PCR results revealed that the Rxrγ gene was highly expressed in the turtle ovary. RNAi treatment increased the number of Sertoli cells in ZZ embryonic gonads. Furthermore, RNA interference upregulated Dmrt1 and Sox9 in ZZ and ZW embryonic gonads. However, Foxl2, Cyp19a1, Stra8, and Cyp26b1 were downregulated in embryonic gonads. The results indicated that Rxrγ participated in gonadal differentiation and development in P. sinensis.
Collapse
Affiliation(s)
- Guiyu Wang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Ruiyi Lu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Yijie Gao
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Haoran Zhang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xi Shi
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Wenge Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Limin Wu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xue Tian
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Huifen Liu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Hongxia Jiang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
8
|
Du S, Wang L, Wang Y, Jin Y, Wang A, Lv C, Abedi-Firouzjah R. The modulator role of Urtica dioica on deleterious effects of retinoic acid high doses on histological parameters and fertilization of rats. Heliyon 2023; 9:e17277. [PMID: 37389058 PMCID: PMC10300214 DOI: 10.1016/j.heliyon.2023.e17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Aim This study purposed to evaluate the modulator and protective role of Urtica dioica (UD) extract against deleterious effects of retinoic acid (RA) high doses on histological parameters and fertilization of rats. Materials and methods For the in-vivo phase, 60 female Wistar rats were divided into 6 identical groups as 1) control, 2) 25 mg/kg RA, 3) 25 mg/kg UD extract, 4) 50 mg/kg UD extract, 5) UD extract (25 mg/kg) + RA (25 mg/kg), and 6) UD extract (50 mg/kg) + RA (25 mg/kg). Biochemical parameters, including luteinizing hormone (LH), folliclestimulating hormone (FSH), malondialdehyde (MDA) levels, superoxide dismutase (SOD), and catalase (CAT) activities, were measured. In the in-vitro phase, oocytes were obtained from 10 female rats without injection. In addition to the mentioned parameters, histological parameters (oocytes in various stages) and the results of IVM, IVF, and embryo developments were assessed and compared among the groups with the use of one-way ANOVA and Tukey's post hoc tests. Results The high dosage of RA significantly reduced the LH and FSH levels; however, UD alone and with RA increased the hormone levels in rats. Regarding the reactive oxygen species (ROS) activity levels in rats' blood samples, RA increased the MDA and decreased the SOD and CAT levels. Treatment with UD extract (UD + RA groups) significantly improved the parameters mentioned, showing UD's antioxidant effect. The rate of oocyte maturation, 2-cell-4-cell and 4-cell-8-cell embryos, and blastocyst formation increased significantly in the groups in which UD extracts were administered compared to the control and RA groups. Furthermore, the increases were significant in the UD + RA groups compared to the RA group. Conclusion UD extract can significantly reduce RA high doses side effects on histological parameters and fertilization of rats and has the protective potential against RA deleterious effects.
Collapse
Affiliation(s)
- Shuli Du
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Lijuan Wang
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Yinghui Wang
- Department of Gynaecology, Laoling People’s Hospital, Dezhou, 253600, China
| | - Yanna Jin
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Aijing Wang
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Cuiting Lv
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University (Hebei Tuor Hospital), Shijiazhuang, 050000, China
| | - Razzagh Abedi-Firouzjah
- Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Li Z, Chen C, Yu W, Xu L, Jia H, Wang C, Pei N, Liu Z, Luo D, Wang J, Lv W, Yuan B, Zhang J, Jiang H. Colitis-Mediated Dysbiosis of the Intestinal Flora and Impaired Vitamin A Absorption Reduce Ovarian Function in Mice. Nutrients 2023; 15:nu15112425. [PMID: 37299390 DOI: 10.3390/nu15112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Changes in the composition and ratio of the flora during colitis have been found to potentially affect ovarian function through nutrient absorption. However, the mechanisms have not been fully explored. To investigate whether colitis-induced dysbacteriosis of the intestinal flora affects ovarian function, mice were given dextran sodium sulfate (DSS) through drinking water. High-throughput sequencing technology was used to clarify the composition and proportion of bacterial flora as well as gene expression changes in the colon. Changes in follicle type, number, and hormone secretion in the ovary were detected. The results showed that 2.5% DSS could induce severe colitis symptoms, including increased inflammatory cell infiltration, severe damage to the crypt, and high expression of inflammatory factors. Moreover, vitamin A synthesis metabolism-related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarβ were significantly decreased, as well as the levels of the steroid hormone synthase-related proteins STAR and CYP11A1. The levels of estradiol, progesterone, and Anti-Mullerian hormone as well as the quality of oocytes decreased significantly. The significantly changed abundances of Alistipes, Helicobacter, Bacteroides, and some other flora had potentially important roles. DSS-induced colitis and impaired vitamin A absorption reduced ovarian function.
Collapse
Affiliation(s)
- Ze Li
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Wenjie Yu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Lingxia Xu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haitao Jia
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chen Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Na Pei
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Zibin Liu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Dan Luo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lv
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| |
Collapse
|
10
|
Zheng N, Zhang W, Zhang X, Li B, Wu Z, Weng Y, Wang W, Miao J, Yang J, Zhang M, Xia W. RA-RAR signaling promotes mouse vaginal opening through increasing β-catenin expression and vaginal epithelial cell apoptosis. Reprod Biol Endocrinol 2023; 21:36. [PMID: 37041518 PMCID: PMC10088237 DOI: 10.1186/s12958-023-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Retinoic acid (RA) plays important role in the maintenance and differentiation of the Müllerian ducts during the embryonic stage via RA receptors (RARs). However, the function and mechanism of RA-RAR signaling in the vaginal opening are unknown. METHOD We used the Rarα knockout mouse model and the wild-type ovariectomized mouse models with subcutaneous injection of RA (2.5 mg/kg) or E2 (0.1 µg/kg) to study the role and mechanism of RA-RAR signaling on the vaginal opening. The effects of Rarα deletion on Ctnnb1 mRNA levels and cell apoptosis in the vaginas were analyzed by real-time PCR and immunofluorescence, respectively. The effects of RA on the expression of β-catenin and apoptosis in the vaginas were analyzed by real-time PCR and western blotting. The effects of E2 on RA signaling molecules were analyzed by real-time PCR and western blotting. RESULTS RA signaling molecules were expressed in vaginal epithelial cells, and the mRNA and/or protein levels of RALDH2, RALDH3, RARα and RARγ reached a peak at the time of vaginal opening. The deletion of Rarα resulted in 25.0% of females infertility due to vaginal closure, in which the mRNA (Ctnnb1, Bak and Bax) and protein (Cleaved Caspase-3) levels were significantly decreased, and Bcl2 mRNA levels were significantly increased in the vaginas. The percentage of vaginal epithelium with TUNEL- and Cleaved Caspase-3-positive signals were also significantly decreased in Rarα-/- females with vaginal closure. Furthermore, RA supplementation of ovariectomized wild-type (WT) females significantly increased the expression of β-catenin, active β-catenin, BAK and BAX, and significantly decreased BCL2 expression in the vaginas. Thus, the deletion of Rarα prevents vaginal opening by reducing the vaginal β-catenin expression and epithelial cell apoptosis. The deletion of Rarα also resulted in significant decreases in serum estradiol (E2) and vagina Raldh2/3 mRNA levels. E2 supplementation of ovariectomized WT females significantly increased the expression of RA signaling molecules in the vaginas, suggesting that the up-regulation of RA signaling molecules in the vaginas is dependent on E2 stimulation. CONCLUSION Taken together, we propose that RA-RAR signaling in the vaginas promotes vaginal opening through increasing β-catenin expression and vaginal epithelial cell apoptosis.
Collapse
Affiliation(s)
- Nana Zheng
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenbo Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodan Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Biao Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhanying Wu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yashuang Weng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiyong Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jingjing Miao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Wei Xia
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
11
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
12
|
Huang X, Weng Z, Zhang S, Li X, Zhou S, Liang J. LC-MS/MS-based metabolomic profiling identifies candidate biomarkers in follicular fluid of infertile women with chronic pelvic inflammatory disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:20-31. [PMID: 36910890 PMCID: PMC9993017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVES How chronic pelvic inflammatory disease (CPID), the most common cause of infertility, affects metabolic profiles of follicular fluid (FF) remains unknown. This study aimed to identify candidate biomarkers in FF of infertile women with CPID. METHOD FF samples were collected from infertile women with CPID (n = 8) and healthy controls (n = 8) at the time of oocyte retrieval. Untargeted metabolomic profiling of FF samples was conducted using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 240 differential metabolites (104 named biochemicals and 136 unnamed biochemicals) were screened out and identified. Among them, pregnane-3,3-diol, pc(p-18:1(11z)/18:3(6z,9z,12z)), and 1-octadecanoyl-2-(4z,7z,10z,13z,16z,19z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine were markedly down-regulated, while 17,21-dihydroxypregnenolone was significantly up-regulated in infertile women with CPID. Furthermore, KEGG biological pathway analysis revealed that these metabolites were especially enriched in steroid hormone biosynthesis, glyoxylate and dicarboxylate metabolism, glucagon signaling pathway, and the tricarboxylic acid (TCA) cycle. CONCLUSION FF of infertile women with CPID showed unique metabolic changes that may be involved in the pathogenesis of infertility and serve as new therapeutic targets or diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuekun Huang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510095, Guangdong, P. R. China
| | - Zhiwei Weng
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510095, Guangdong, P. R. China
| | - Shuting Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510095, Guangdong, P. R. China
| | - Xuerong Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510095, Guangdong, P. R. China
| | - Shaohu Zhou
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510095, Guangdong, P. R. China
| | - Jingyao Liang
- Department of Dermatology, Guangzhou Institute of Dermatology Guangzhou 510095, Guangdong, P. R. China
| |
Collapse
|
13
|
Abdalkareem Jasim S, Abdul-Jabbar Ali S, Q Fadhil O, Kh Rakhmatova M, H Kzar H, Margiana R, E Al-Gazally M, Turki Jalil A, Hameed Mahmood Z, Aravindhan S, Fakri Mustafa Y, Q Sultan M. Investigating the Effects of Hydro-alcoholic Urtica Dioica Extract and Retinoic Acid on Follicular Development: An Animal Study. Med J Islam Repub Iran 2023; 37:1. [PMID: 36923735 PMCID: PMC10008993 DOI: 10.47176/mjiri.37.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 03/18/2023] Open
Abstract
Background: Urtica dioica (UD), as a natural antioxidant, has positive effects on oocyte maturation. This study aimed to investigate the effects of hydro-alcoholic UD extract and retinoic acid on follicular development in an in vitro fertilization (IVF) condition. Methods: A total of 40 female Wistar rats were randomly divided into 5 groups: group 1 received normal saline, group 2 was given 25 mg/kg retinoic acid, group 3 was administered with 100 mg/kg UD extract, group 4 was treated with retinoic acid plus UD extract, and group 5 received 10 mg/kg olive oil. The histomorphometric parameters were analyzed, including the number of follicles, follicular atrophy, fertilized oocytes, 2-cell embryos, dead embryos, and blastocysts. Results: Retinoic acid caused a significant increase in the primary, preantral, and atretic follicles and a substantial decrease in the corpus luteum compared with the control group (p<0.001). The number of preantral, antral follicles, and corpus luteum was significantly higher in group 3 compared with group 1 (p<0.001). Moreover, coadministration of UD plus retinoic acid (group 4) significantly reduced the atretic follicles (p<0.05). Conclusion: Based on the results, UD herbal extract, as a natural antioxidant agent, could reduce the adverse effects of retinoic acid on oocyte maturation in an IVF condition.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | | | - Osama Q Fadhil
- Pharmacy Department, Al-Safwa University College, Karbalaa, Iraq
| | - Muqaddas Kh Rakhmatova
- Department of Histology and Medical Biology, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | |
Collapse
|
14
|
Pasquariello R, Anipchenko P, Pennarossa G, Crociati M, Zerani M, Brevini TA, Gandolfi F, Maranesi M. Carotenoids in female and male reproduction. PHYTOCHEMISTRY 2022; 204:113459. [PMID: 36183866 DOI: 10.1016/j.phytochem.2022.113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are among the best-known pigments in nature, confer color to plants and animals, and are mainly derived from photosynthetic bacteria, fungi, algae, plants. Mammals cannot synthesize carotenoids. Carotenoids' source is only alimentary and after their assumption, they are mainly converted in retinal, retinol and retinoic acid, collectively known also as pro-vitamins and vitamin A, which play an essential role in tissue growth and regulate different aspects of the reproductive functions. However, their mechanisms of action and potential therapeutic effects are still unclear. This review aims to clarify the role of carotenoids in the male and female reproductive functions in species of veterinary interest. In female, carotenoids and their derivatives regulate not only folliculogenesis and oogenesis but also steroidogenesis. Moreover, they improve fertility by decreasing the risk of embryonic mortality. In male, retinol and retinoic acids activate molecular pathways related to spermatogenesis. Deficiencies of these vitamins have been correlated with degeneration of testis parenchyma with consequent absence of the mature sperm. Carotenoids have also been considered anti-antioxidants as they ameliorate the effect of free radicals. The mechanisms of action seem to be exerted by activating Kit and Stra8 pathways in both female and male. In conclusion, carotenoids have potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy; Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129, Perugia, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Tiziana Al Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| |
Collapse
|
15
|
Abdulrahman Alrabiah N, Simintiras CA, Evans ACO, Lonergan P, Fair T. Biochemical alterations in the follicular fluid of bovine peri-ovulatory follicles and association with final oocyte maturation. REPRODUCTION AND FERTILITY 2022; 4:RAF-22-0090. [PMID: 36547396 PMCID: PMC9874974 DOI: 10.1530/raf-22-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Follicular fluid (FF), a product of vascular transudate and granulosa and thecal cell secretions, is the milieu that has evolved to support oocyte growth and maturation which plays a central role in oocyte quality determination. Therefore, a suboptimal FF composition may be reflected in compromised oocyte progression through maturation, fertilization or embryo development. To date, the composition of bovine FF remains understudied. To address this, we comprehensively characterized the metabolomic constituency of bovine FF in the period during which the oocyte undergoes meiotic maturation. More specifically, FF from pre (-24 h) and peri (-2 h) -ovulatory follicles was profiled by high-throughput untargeted ultra-high-performance liquid chromatography tandem mass spectroscopy. A total of 634 metabolites were identified, comprising: lipids (37.1%), amino acids (30.0%), xenobiotics (11.5%), nucleotides (6.8%), carbohydrates (4.4%), cofactors and vitamins (4.4%), peptides (3.6%) and energy substrates (2.1%). The concentrations of 67 metabolites were significantly affected by stage of follicle development, 33.3% (n=21) were reduced (P≤0.05) by a mean of 9.0-fold, whereas 46 were elevated (P≤0.05) by a mean of 1.7-fold in peri vs. pre -ovulatory FF. The most pronounced individual metabolite concentration decreases were hypoxanthine (98.9-fold), xanthine (65.7-fold), 17β-oestradiol (12.4-fold), and inosine (4.6-fold). In contrast, the greatest increases were in retinal (4.9-fold), 1-methyl-5-imidazoleacetate (2.7-fold), and isovalerylcarnitine (2.7-fold). This global metabolomic analysis of bovine FF temporal dynamics provides new information for understanding the environment supporting oocyte maturation and facilitating ovulation, that has the potential for improving oocyte quality both in vivo and in vitro.
Collapse
Affiliation(s)
- Noof Abdulrahman Alrabiah
- School of Agriculture and Food Science, University College Dublin, Ireland
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Ireland
| |
Collapse
|
16
|
Seasonal Change in Adiponectin Associated with Ovarian Morphology and Function in Wild Ground Squirrels ( Citellus dauricus Brandt). Int J Mol Sci 2022; 23:ijms232314698. [PMID: 36499026 PMCID: PMC9741246 DOI: 10.3390/ijms232314698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
The goal of this study is to explore the relationship between altered circulating adiponectin concentration, ovarian tissue morphology, ovarian steroidogenesis, and sex hormone production in ovaries of wild ground squirrels. The ovarian mass differed significantly during the breeding and non-breeding seasons, and the circulating estradiol and progesterone concentrations were significantly higher in the breeding season, while the circulating adiponectin level was significantly lower. The expression levels of gonadotropin receptors (FSHR and LHR) and steroidogenic enzymes (StAR, P450scc, P450arom, and 3β-HSD) were significantly higher during the breeding season. Comparing the ovarian transcriptome data of wild ground squirrels between the two periods, we found that some differentially expressed genes were enriched for ovarian steroidogenesis and the adipocytokine signaling pathway, which correlated with our present results. Notably, the MAPK signaling pathway was also enriched and its related genes (Erk1, p38 Mapk, Jnk) were up-regulated by qPCR during the non-breeding season. These findings suggested that adiponectin may be involved in the regulation of seasonal changes in the ovarian function of wild ground squirrels, possibly by acting on the MAPK signaling pathway to regulate sex steroidogenesis in the ovaries.
Collapse
|
17
|
Baker NC, Pierro JD, Taylor LW, Knudsen TB. Identifying candidate reference chemicals for in vitro testing of the retinoid pathway for predictive developmental toxicity. ALTEX 2022; 40:217–236. [PMID: 35796328 PMCID: PMC10765368 DOI: 10.14573/altex.2202231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Evaluating chemicals for potential in vivo toxicity based on their in vitro bioactivity profile is an important step toward animal- free testing. A compendium of reference chemicals and data describing their bioactivity on specific molecular targets, cellular pathways, and biological processes is needed to bolster confidence in the predictive value of in vitro hazard detection. Endogenous signaling by all-trans retinoic acid (ATRA) is an important pathway in developmental processes and toxicities. Employing data extraction methods and advanced literature extraction tools, we assembled a set of candidate reference chemicals with demonstrated activity on ten protein family targets in the retinoid system. The compendium was culled from Protein Data Bank, ChEMBL, ToxCast/Tox21, and the biomedical literature in PubMed. Finally, we performed a case study on one chemical in our collection, citral, an inhibitor of endogenous ATRA production, to determine whether the literature supports an adverse outcome pathway explaining the compound’s developmental toxicity initiated by disruption of the retinoid pathway. We also deliver an updated Abstract Sifter tool populated with these reference compounds and complex search terms designed to query the literature for the downstream consequences to support concordance with targeted retinoid pathway disruption.
Collapse
Affiliation(s)
| | - Jocylin D. Pierro
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Laura W. Taylor
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
18
|
Maioli S, Leander K, Nilsson P, Nalvarte I. Estrogen receptors and the aging brain. Essays Biochem 2021; 65:913-925. [PMID: 34623401 PMCID: PMC8628183 DOI: 10.1042/ebc20200162] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERβ) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
19
|
Huang P, Zhou Y, Tang W, Ren C, Jiang A, Wang X, Qian X, Zhou Z, Gong A. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice. J Nutr Biochem 2021; 101:108911. [PMID: 34801690 DOI: 10.1016/j.jnutbio.2021.108911] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Ovarian aging affects the reproductive health of elderly women due to decline in oocyte quality, which is closely related to mitochondrial dysfunction. Nicotinamide mononucleotide (NMN), as a precursor of NAD+, effectively regulate mitochondria metabolism in mice. However, roles of NMN in improving age-related diminished ovary reserve remain to be determined. In present study, 4, 8, 12, 24, 40-week old female ICR mice were collected and a 20-week-long administration of NMN was conducted to 40-week-old mice (60WN), meanwhile the control group is given water (60WC). First, we found that 20-week-long administration of NMN to 40-week-old mice exhibited anti-aging and anti-inflammatory effects on organ structures, along with the improvement of estrus cycle condition and endocrine function. The number of primordial, primary, secondary, antral follicles and corpora luteum of ovaries in 60WN group was significantly increased compared with those in 60WC group. Additionally, the protein and gene expressions of P16 of ovaries were significantly reduced in 60WN group than in 60WC group. the mitochondria biogenesis, autophagy level, and proteases activity enhanced in granulosa cells after 20-week-administration of NMN. Present results indicate that NMN has the potential to save diminished ovary reserve by long-term treatment, providing a basis for exploring the role of NMN in anti-ovarian aging by enhancing the mitophagy level of granulosa cells.
Collapse
Affiliation(s)
- Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yan Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Weihong Tang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Anqi Jiang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xuxin Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
20
|
Håkansson H. Role of retinoids in biology and toxicology. Reprod Toxicol 2021; 107:40-42. [PMID: 34774707 DOI: 10.1016/j.reprotox.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Biyong EF, Tremblay C, Leclerc M, Caron V, Alfos S, Helbling JC, Rodriguez L, Pernet V, Bennett DA, Pallet V, Calon F. Role of Retinoid X Receptors (RXRs) and dietary vitamin A in Alzheimer's disease: Evidence from clinicopathological and preclinical studies. Neurobiol Dis 2021; 161:105542. [PMID: 34737043 DOI: 10.1016/j.nbd.2021.105542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vitamin A (VitA), via its active metabolite retinoic acid (RA), is critical for the maintenance of memory function with advancing age. Although its role in Alzheimer's disease (AD) is not well understood, data suggest that impaired brain VitA signaling is associated with the accumulation of β-amyloid peptides (Aβ), and could thus contribute to the onset of AD. METHODS We evaluated the protective action of a six-month-long dietary VitA-supplementation (20 IU/g), starting at 8 months of age, on the memory and the neuropathology of the 3xTg-AD mouse model of AD (n = 11-14/group; including 4-6 females and 7-8 males). We also measured protein levels of Retinoic Acid Receptor β (RARβ) and Retinoid X Receptor γ (RXRγ) in homogenates from the inferior parietal cortex of 60 participants of the Religious Orders study (ROS) divided in three groups: no cognitive impairment (NCI) (n = 20), mild cognitive impairment (MCI) (n = 20) and AD (n = 20). RESULTS The VitA-enriched diet preserved spatial memory of 3xTg-AD mice in the Y maze. VitA-supplementation affected hippocampal RXR expression in an opposite way according to sex by tending to increase in males and decrease in females their mRNA expression. VitA-enriched diet also reduced the amount of hippocampal Aβ40 and Aβ42, as well as the phosphorylation of tau protein at sites Ser396/Ser404 (PHF-1) in males. VitA-supplementation had no effect on tau phosphorylation in females but worsened their hippocampal Aβ load. However, the expression of Rxr-β in the hippocampus was negatively correlated with the amount of both soluble and insoluble Aβ in both males and females. Western immunoblotting in the human cortical samples of the ROS study did not reveal differences in RARβ levels. However, it evidenced a switch from a 60-kDa-RXRγ to a 55-kDa-RXRγ in AD, correlating with ante mortem cognitive decline and the accumulation of neuritic plaques in the brain cortex. CONCLUSION Our data suggest that (i) an altered expression of RXRs receptors is a contributor to β-amyloid pathology in both humans and 3xTg-AD mice, (ii) a chronic exposure of 3xTg-AD mice to a VitA-enriched diet may be protective in males, but not in females.
Collapse
Affiliation(s)
- Essi F Biyong
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Cyntia Tremblay
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Manon Leclerc
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Vicky Caron
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Serge Alfos
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Véronique Pallet
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada.
| |
Collapse
|
22
|
Liu JC, Xing CH, Xu Y, Pan ZN, Zhang HL, Zhang Y, Sun SC. DEHP exposure to lactating mice affects ovarian hormone production and antral follicle development of offspring. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125862. [PMID: 34492810 DOI: 10.1016/j.jhazmat.2021.125862] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is widely used as a plastic additive and it could induce reproduction defects and fertility in mammals as environmental endocrine disruptor. However, the effects and potential mechanism of DEHP exposure during lactation stage on follicular development of offspring are still unclear. In this study, we found that the total primordial follicle number and antral follicles in the suckling of mice exposed to DEHP during lactation was significantly reduced. RNA-seq analysis results showed that the transcription levels of genes related to steroid production, ovarian hormone secretion and oxidative stress were significantly changed, which led to a decrease in 17β-estradiol and an increase in oxidative stress. The proportion of DNA damage marker γH2AX in the ovary of female suckling exposed to DEHP was significantly increased. We also found an increase in the level of ovarian apoptosis, and the proliferation of ovarian granulosa cells was inhibited. These alterations also lead to abnormal spindle and chromosome misalignment during oocyte maturation. Overall, our data indicate that lactation exposure to DEHP can affect the secretion of hormones and the development of antral follicles in suckling mice by affecting the secretion pathways of ovarian hormone enzymes and oxidative stress pathway.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
The impact of isotretinoin on the pituitary-ovarian axis: An interpretative review of the literature. Reprod Toxicol 2021; 104:85-95. [PMID: 34224824 DOI: 10.1016/j.reprotox.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Isotretinoin (13-cis-retinoic acid), a derivative of vitamin A, is used in the treatment of severe acne resulting in sebum suppression induced by sebocyte apoptosis. Isotretinoin treatment is associated with several adverse effects including teratogenicity, hepatotoxicity, and dyslipidemia. Isotretinoin's effects on endocrine systems and its potential role as an endocrine disruptor are not yet adequately investigated. This review presents clinical, endocrine, and molecular evidence showing that isotretinoin treatment adversely affects the pituitary-ovarian axis and enhances the risk of granulosa cell apoptosis reducing follicular reserve. Isotretinoin is associated with pro-apoptotic signaling in sebaceous glands through upregulated expression of p53, forkhead box O transcription factors (FOXO1, FOXO3), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Two literature searches including clinical and experimental studies respectively support the hypothesis that isotretinoin's toxicological mode of action on the pituitary-ovarian axis might be caused by over-expressed p53/FOXO1 signaling resulting in gonadotropin suppression and granulosa cell apoptosis. The reduction of follicular reserve by isotretinoin treatment should be especially considered when this drug will be administered for the treatment of acne in post-adolescent women, in whom fertility may be adversely affected. In contrast, isotretinoin treatment may exert beneficial effects in states of hyperandrogenism, especially in patients with polycystic ovary syndrome.
Collapse
|
24
|
Alarcón S, Esteban J, Roos R, Heikkinen P, Sánchez-Pérez I, Adamsson A, Toppari J, Koskela A, Finnilä MAJ, Tuukkanen J, Herlin M, Hamscher G, Leslie HA, Korkalainen M, Halldin K, Schrenk D, Håkansson H, Viluksela M. Endocrine, metabolic and apical effects of in utero and lactational exposure to non-dioxin-like 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB 180): A postnatal follow-up study in rats. Reprod Toxicol 2021; 102:109-127. [PMID: 33992733 DOI: 10.1016/j.reprotox.2021.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
PCB 180 is a persistent and abundant non-dioxin-like PCB (NDL-PCB). We determined the developmental toxicity profile of ultrapure PCB 180 in developing offspring following in utero and lactational exposure with the focus on endocrine, metabolic and retinoid system alterations. Pregnant rats were given total doses of 0, 10, 30, 100, 300 or 1000 mg PCB 180/kg bw on gestational days 7-10 by oral gavage, and the offspring were sampled on postnatal days (PND) 7, 35 and 84. Decreased serum testosterone and triiodothyronine concentrations on PND 84, altered liver retinoid levels, increased liver weights and induced 7-pentoxyresorufin O-dealkylase (PROD) activity were the sensitive effects used for margin of exposure (MoE) calculations. Liver weights were increased together with induction of the metabolizing enzymes cytochrome P450 (CYP) 2B1, CYP3A1, and CYP1A1. Less sensitive effects included decreased serum estradiol and increased luteinizing hormone levels in females, decreased prostate and seminal vesicle weight and increased pituitary weight in males, increased cortical bone area and thickness of tibial diaphysis in females and decreased cortical bone mineral density in males. Developmental toxicity profiles were partly different in male and female offspring, males being more sensitive to increased liver weight, PROD induction and decreased thyroxine concentrations. MoE assessment indicated that the 95th percentile of current maternal PCB 180 concentrations do not exceed the estimated tolerable human lipid-based PCB 180 concentration. Although PCB 180 is much less potent than dioxin-like compounds, it shares several toxicological targets suggesting a potential for interactions.
Collapse
Affiliation(s)
- Sonia Alarcón
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche (Alicante), Spain; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche (Alicante), Spain.
| | - Robert Roos
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Päivi Heikkinen
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), P.O. Box 95, Kuopio, FI-70701, Finland
| | - Ismael Sánchez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche (Alicante), Spain
| | - Annika Adamsson
- Research Center for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Department of Paediatrics, Turku University Hospital, Turku, FI-20520, Finland
| | - Jorma Toppari
- Research Center for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Department of Paediatrics, Turku University Hospital, Turku, FI-20520, Finland
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University, Giessen, D-35392, Germany
| | - Heather A Leslie
- Department of Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, NL-1081 HZ, The Netherlands
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), P.O. Box 95, Kuopio, FI-70701, Finland
| | - Krister Halldin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matti Viluksela
- School of Pharmacy (Toxicology), Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Abstract
Endocrine disrupting chemicals pose a threat to health and reproduction. Plasticizers such as phthalates and bisphenols are particularly problematic because they are present in many consumer products and exposure can begin in utero and continue throughout the lifetime of the individual. Evidence suggests that these chemicals can have ancestral and transgenerational effects, making them a huge public health concern for the reproductive health of current and future generations. Studies performed in rodents or using rodent- or human-derived tissues have been critical for understanding the toxic effects of plasticizers on the ovary and their mechanisms of action. This review addresses current in vitro and rodent-based in vivo studies investigating the effects of bisphenols and phthalates on ovarian health, female reproduction, and correlations between human exposure and reproductive pathologies.
Collapse
|
26
|
Rodríguez-Varela C, Labarta E. Clinical Application of Antioxidants to Improve Human Oocyte Mitochondrial Function: A Review. Antioxidants (Basel) 2020; 9:antiox9121197. [PMID: 33260761 PMCID: PMC7761442 DOI: 10.3390/antiox9121197] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria produce adenosine triphosphate (ATP) while also generating high amounts of reactive oxygen species (ROS) derived from oxygen metabolism. ROS are small but highly reactive molecules that can be detrimental if unregulated. While normally functioning mitochondria produce molecules that counteract ROS production, an imbalance between the amount of ROS produced in the mitochondria and the capacity of the cell to counteract them leads to oxidative stress and ultimately to mitochondrial dysfunction. This dysfunction impairs cellular functions through reduced ATP output and/or increased oxidative stress. Mitochondrial dysfunction may also lead to poor oocyte quality and embryo development, ultimately affecting pregnancy outcomes. Improving mitochondrial function through antioxidant supplementation may enhance reproductive performance. Recent studies suggest that antioxidants may treat infertility by restoring mitochondrial function and promoting mitochondrial biogenesis. However, further randomized, controlled trials are needed to determine their clinical efficacy. In this review, we discuss the use of resveratrol, coenzyme-Q10, melatonin, folic acid, and several vitamins as antioxidant treatments to improve human oocyte and embryo quality, focusing on the mitochondria as their main hypothetical target. However, this mechanism of action has not yet been demonstrated in the human oocyte, which highlights the need for further studies in this field.
Collapse
Affiliation(s)
- Cristina Rodríguez-Varela
- IVI Foundation—IIS La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain;
- Correspondence:
| | - Elena Labarta
- IVI Foundation—IIS La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain;
- IVIRMA Valencia, Plaza de la Policía Local 3, 46015 Valencia, Spain
| |
Collapse
|